resnet_unit_op_xpu.cc 14.4 KB
Newer Older
Q
QingshuChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/fluid/platform/float16.h"

namespace paddle {
namespace operators {

22
using Tensor = phi::DenseTensor;
Q
QingshuChen 已提交
23 24 25

template <typename T>
class ResNetUnitXPUKernel : public framework::OpKernel<T> {
26 27
  using XPUType = typename XPUTypeTrait<T>::Type;

Q
QingshuChen 已提交
28 29 30 31 32 33 34 35 36 37
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(
        platform::is_xpu_place(place),
        true,
        platform::errors::PreconditionNotMet("It must use XPUPlace."));

    bool is_nchw = (ctx.Attr<std::string>("data_format") == "NCHW");
    // input x
38 39 40 41
    const Tensor *input_x = ctx.Input<phi::DenseTensor>("X");
    const Tensor *filter_x = ctx.Input<phi::DenseTensor>("FilterX");
    const Tensor *scale_x = ctx.Input<phi::DenseTensor>("ScaleX");
    const Tensor *bias_x = ctx.Input<phi::DenseTensor>("BiasX");
Q
QingshuChen 已提交
42 43

    // output x
44 45 46 47 48
    Tensor *conv_out_x = ctx.Output<phi::DenseTensor>("ConvX");
    Tensor *saved_mean_x = ctx.Output<phi::DenseTensor>("SavedMeanX");
    Tensor *saved_invstd_x = ctx.Output<phi::DenseTensor>("SavedInvstdX");
    Tensor *running_mean_x = ctx.Output<phi::DenseTensor>("RunningMeanX");
    Tensor *running_var_x = ctx.Output<phi::DenseTensor>("RunningVarX");
Q
QingshuChen 已提交
49

50
    Tensor *output = ctx.Output<phi::DenseTensor>("Y");
Q
QingshuChen 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

    //  attrs
    int padding = ctx.Attr<int>("padding");
    int stride = ctx.Attr<int>("stride");
    int stride_z = ctx.Attr<int>("stride_z");
    int dilation = ctx.Attr<int>("dilation");
    int group = ctx.Attr<int>("group");
    float eps = ctx.Attr<float>("epsilon");
    float momentum = ctx.Attr<float>("momentum");
    bool has_shortcut = ctx.Attr<bool>("has_shortcut");
    bool fuse_add = ctx.Attr<bool>("fuse_add");
    bool use_global_stats = ctx.Attr<bool>("use_global_stats");
    bool is_test = ctx.Attr<bool>("is_test");
    bool is_train = !is_test && !use_global_stats;
    std::string act_type = ctx.Attr<std::string>("act_type");
    auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();

68 69 70 71 72 73
    std::vector<const XPUType *> x_list = {
        reinterpret_cast<const XPUType *>(input_x->data<T>())};
    std::vector<const XPUType *> w_list = {
        reinterpret_cast<const XPUType *>(filter_x->data<T>())};
    std::vector<XPUType *> conv_y_list = {
        reinterpret_cast<XPUType *>(conv_out_x->mutable_data<T>(place))};
Q
QingshuChen 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

    std::vector<std::vector<int>> x_shape_list = {
        phi::vectorize<int>(input_x->dims())};

    auto filter_x_shape = phi::vectorize<int>(filter_x->dims());
    std::vector<int> ksize = {filter_x_shape[2], filter_x_shape[3]};
    if (!is_nchw) {
      ksize[0] = filter_x_shape[1];
      ksize[1] = filter_x_shape[2];
    }
    std::vector<int> strides = {stride, stride};
    std::vector<std::vector<int>> ksize_list = {ksize};
    std::vector<std::vector<int>> stride_list = {strides};
    std::vector<int> paddings = {padding, padding};
    std::vector<int> dilations = {dilation, dilation};
    std::vector<const float *> scale_list = {scale_x->data<float>()};
    std::vector<const float *> bias_list = {bias_x->data<float>()};
    std::vector<float *> batch_mean_list = {
        saved_mean_x->mutable_data<float>(place)};
    std::vector<float *> batch_invstd_list = {
        saved_invstd_x->mutable_data<float>(place)};
    std::vector<float *> global_mean_list = {
        running_mean_x->mutable_data<float>(place)};
    std::vector<float *> global_var_list = {
        running_var_x->mutable_data<float>(place)};

    std::vector<const float *> x_maxlist = {nullptr};
    std::vector<const float *> w_maxlist = {nullptr};
    if (has_shortcut) {
      // input z
104 105 106 107
      const Tensor *input_z = ctx.Input<phi::DenseTensor>("Z");
      const Tensor *filter_z = ctx.Input<phi::DenseTensor>("FilterZ");
      const Tensor *scale_z = ctx.Input<phi::DenseTensor>("ScaleZ");
      const Tensor *bias_z = ctx.Input<phi::DenseTensor>("BiasZ");
Q
QingshuChen 已提交
108

109 110 111 112 113
      Tensor *conv_out_z = ctx.Output<phi::DenseTensor>("ConvZ");
      Tensor *saved_mean_z = ctx.Output<phi::DenseTensor>("SavedMeanZ");
      Tensor *saved_invstd_z = ctx.Output<phi::DenseTensor>("SavedInvstdZ");
      Tensor *running_mean_z = ctx.Output<phi::DenseTensor>("RunningMeanZ");
      Tensor *running_var_z = ctx.Output<phi::DenseTensor>("RunningVarZ");
Q
QingshuChen 已提交
114

115 116 117 118
      x_list.push_back(reinterpret_cast<const XPUType *>(input_z->data<T>()));
      w_list.push_back(reinterpret_cast<const XPUType *>(filter_z->data<T>()));
      conv_y_list.push_back(
          reinterpret_cast<XPUType *>(conv_out_z->mutable_data<T>(place)));
Q
QingshuChen 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

      x_shape_list.push_back(phi::vectorize<int>(input_z->dims()));

      auto filter_z_shape = phi::vectorize<int>(filter_z->dims());
      std::vector<int> ksize_z = {filter_z_shape[2], filter_z_shape[3]};
      if (!is_nchw) {
        ksize_z[0] = filter_z_shape[1];
        ksize_z[1] = filter_z_shape[2];
      }
      ksize_list.push_back(ksize_z);
      stride_list.push_back({stride_z, stride_z});
      scale_list.push_back(scale_z->data<float>());
      bias_list.push_back(bias_z->data<float>());
      batch_mean_list.push_back(saved_mean_z->mutable_data<float>(place));
      batch_invstd_list.push_back(saved_invstd_z->mutable_data<float>(place));
      global_mean_list.push_back(running_mean_z->mutable_data<float>(place));
      global_var_list.push_back(running_var_z->mutable_data<float>(place));
      x_maxlist.push_back(nullptr);
      w_maxlist.push_back(nullptr);
    } else {
      if (fuse_add) {
140
        const Tensor *input_z = ctx.Input<phi::DenseTensor>("Z");
Q
QingshuChen 已提交
141
        auto input_z_shape = phi::vectorize<int>(input_z->dims());
142
        x_list.push_back(reinterpret_cast<const XPUType *>(input_z->data<T>()));
Q
QingshuChen 已提交
143 144 145 146
        x_shape_list.push_back(input_z_shape);
        x_maxlist.push_back(nullptr);
      }
    }
147
    int r = xpu::resnet_unit_fusion<XPUType, XPUType, XPUType, int16_t>(
Q
QingshuChen 已提交
148 149 150 151
        dev_ctx.x_context(),
        x_list,
        w_list,
        conv_y_list,
152
        reinterpret_cast<XPUType *>(output->mutable_data<T>(place)),
Q
QingshuChen 已提交
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
        x_shape_list,
        filter_x_shape[0],
        ksize_list,
        stride_list,
        paddings,
        dilations,
        group,
        eps,
        momentum,
        x_maxlist,
        w_maxlist,
        scale_list,
        bias_list,
        batch_mean_list,
        batch_invstd_list,
        global_mean_list,
        global_var_list,
        xpu::Activation_t::RELU,
        is_nchw,
        has_shortcut,
        fuse_add,
        is_train);
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "resnet_unit_fusion");
  }
};

template <typename T>
class ResNetUnitGradXPUKernel : public framework::OpKernel<T> {
181 182
  using XPUType = typename XPUTypeTrait<T>::Type;

Q
QingshuChen 已提交
183 184 185 186 187 188 189 190 191
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto place = ctx.GetPlace();
    PADDLE_ENFORCE_EQ(
        platform::is_xpu_place(place),
        true,
        platform::errors::PreconditionNotMet("It must use XPUPlace."));

    bool is_nchw = (ctx.Attr<std::string>("data_format") == "NCHW");
192 193 194 195 196 197 198 199 200 201 202
    const Tensor *y_grad =
        ctx.Input<phi::DenseTensor>(framework::GradVarName("Y"));
    const Tensor *x = ctx.Input<phi::DenseTensor>("X");
    const Tensor *filter_x = ctx.Input<phi::DenseTensor>("FilterX");
    const Tensor *scale_x = ctx.Input<phi::DenseTensor>("ScaleX");
    const Tensor *saved_mean_x = ctx.Input<phi::DenseTensor>("SavedMeanX");
    const Tensor *saved_invstd_x = ctx.Input<phi::DenseTensor>("SavedInvstdX");
    const Tensor *conv_out_x = ctx.Input<phi::DenseTensor>("ConvX");
    const Tensor *output = ctx.Input<phi::DenseTensor>("Y");

    Tensor *x_grad = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
Q
QingshuChen 已提交
203
    Tensor *filter_x_grad =
204 205 206 207 208
        ctx.Output<phi::DenseTensor>(framework::GradVarName("FilterX"));
    Tensor *scale_x_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("ScaleX"));
    Tensor *bias_x_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("BiasX"));
Q
QingshuChen 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221

    int padding = ctx.Attr<int>("padding");
    int stride = ctx.Attr<int>("stride");
    int stride_z = ctx.Attr<int>("stride_z");
    int dilation = ctx.Attr<int>("dilation");
    int group = ctx.Attr<int>("group");
    float eps = ctx.Attr<float>("epsilon");
    bool has_shortcut = ctx.Attr<bool>("has_shortcut");
    bool fuse_add = ctx.Attr<bool>("fuse_add");
    std::string act_type = ctx.Attr<std::string>("act_type");

    auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>();

222 223 224 225 226 227 228 229 230 231
    std::vector<const XPUType *> x_list = {
        reinterpret_cast<const XPUType *>(x->data<T>())};
    std::vector<const XPUType *> w_list = {
        reinterpret_cast<const XPUType *>(filter_x->data<T>())};
    std::vector<const XPUType *> conv_y_list = {
        reinterpret_cast<const XPUType *>(conv_out_x->data<T>())};
    std::vector<XPUType *> dx_list = {
        reinterpret_cast<XPUType *>(x_grad->mutable_data<T>(place))};
    std::vector<XPUType *> dw_list = {
        reinterpret_cast<XPUType *>(filter_x_grad->mutable_data<T>(place))};
Q
QingshuChen 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267

    std::vector<std::vector<int>> x_shape_list = {
        phi::vectorize<int>(x->dims())};

    auto filter_x_shape = phi::vectorize<int>(filter_x->dims());
    std::vector<int> x_ksize = {filter_x_shape[2], filter_x_shape[3]};
    if (!is_nchw) {
      x_ksize[0] = filter_x_shape[1];
      x_ksize[1] = filter_x_shape[2];
    }
    std::vector<std::vector<int>> ksize_list = {x_ksize};
    std::vector<std::vector<int>> stride_list = {{stride, stride}};
    std::vector<int> paddings = {padding, padding};
    std::vector<int> dilations = {dilation, dilation};

    std::vector<const float *> x_maxlist = {nullptr};
    std::vector<const float *> w_maxlist = {nullptr};

    std::vector<const float *> scale_list = {scale_x->data<float>()};
    std::vector<const float *> batch_mean_list = {saved_mean_x->data<float>()};
    std::vector<const float *> batch_invstd_list = {
        saved_invstd_x->data<float>()};
    std::vector<float *> dscale_list = {
        scale_x_grad->mutable_data<float>(place)};
    std::vector<float *> dbias_list = {bias_x_grad->mutable_data<float>(place)};

    if (has_shortcut) {
      //       X                   Z
      //       |                   |
      //    NormConv            NormConv
      //       |                   |
      // BNStatsFinalize    BNStatsFinalize
      //       \                   /
      //          ScaleBiasAddRelu
      //                  |
      //                  Y
268 269 270 271 272 273 274 275 276 277
      const Tensor *z = ctx.Input<phi::DenseTensor>("Z");
      const Tensor *filter_z = ctx.Input<phi::DenseTensor>("FilterZ");
      const Tensor *scale_z = ctx.Input<phi::DenseTensor>("ScaleZ");
      const Tensor *saved_mean_z = ctx.Input<phi::DenseTensor>("SavedMeanZ");
      const Tensor *saved_invstd_z =
          ctx.Input<phi::DenseTensor>("SavedInvstdZ");
      const Tensor *conv_out_z = ctx.Input<phi::DenseTensor>("ConvZ");

      Tensor *z_grad =
          ctx.Output<phi::DenseTensor>(framework::GradVarName("Z"));
Q
QingshuChen 已提交
278
      Tensor *filter_z_grad =
279
          ctx.Output<phi::DenseTensor>(framework::GradVarName("FilterZ"));
Q
QingshuChen 已提交
280
      Tensor *scale_z_grad =
281 282 283
          ctx.Output<phi::DenseTensor>(framework::GradVarName("ScaleZ"));
      Tensor *bias_z_grad =
          ctx.Output<phi::DenseTensor>(framework::GradVarName("BiasZ"));
284 285 286 287 288 289 290 291
      x_list.push_back(reinterpret_cast<const XPUType *>(z->data<T>()));
      w_list.push_back(reinterpret_cast<const XPUType *>(filter_z->data<T>()));
      conv_y_list.push_back(
          reinterpret_cast<const XPUType *>(conv_out_z->data<T>()));
      dx_list.push_back(
          reinterpret_cast<XPUType *>(z_grad->mutable_data<T>(place)));
      dw_list.push_back(
          reinterpret_cast<XPUType *>(filter_z_grad->mutable_data<T>(place)));
Q
QingshuChen 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
      x_shape_list.push_back(phi::vectorize<int>(z->dims()));

      auto filter_z_shape = phi::vectorize<int>(filter_z->dims());
      std::vector<int> ksize_z = {filter_z_shape[2], filter_z_shape[3]};
      if (!is_nchw) {
        ksize_z[0] = filter_z_shape[1];
        ksize_z[1] = filter_z_shape[2];
      }
      ksize_list.push_back(ksize_z);
      stride_list.push_back({stride_z, stride_z});
      x_maxlist.push_back(nullptr);
      w_maxlist.push_back(nullptr);

      scale_list.push_back(scale_z->data<float>());
      batch_mean_list.push_back(saved_mean_z->data<float>());
      batch_invstd_list.push_back(saved_invstd_z->data<float>());
      dscale_list.push_back(scale_z_grad->mutable_data<float>(place));
      dbias_list.push_back(bias_z_grad->mutable_data<float>(place));
    } else {
      if (fuse_add) {
312
        auto z_grad = ctx.Output<phi::DenseTensor>(framework::GradVarName("Z"));
313 314
        dx_list.push_back(
            reinterpret_cast<XPUType *>(z_grad->mutable_data<T>(place)));
Q
QingshuChen 已提交
315 316 317
      }
    }

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
    int r = xpu::resnet_unit_grad_fusion<XPUType, XPUType, XPUType, int16_t>(
        dev_ctx.x_context(),
        x_list,
        w_list,
        reinterpret_cast<const XPUType *>(y_grad->data<T>()),
        reinterpret_cast<const XPUType *>(output->data<T>()),
        conv_y_list,
        dx_list,
        dw_list,
        x_shape_list,
        filter_x_shape[0],
        ksize_list,
        stride_list,
        paddings,
        dilations,
        group,
        x_maxlist,
        w_maxlist,
        scale_list,
        batch_mean_list,
        batch_invstd_list,
        dscale_list,
        dbias_list,
        xpu::Activation_t::RELU,
        eps,
        is_nchw,
        has_shortcut,
        fuse_add);
Q
QingshuChen 已提交
346 347 348 349 350 351 352 353 354
    PADDLE_ENFORCE_XDNN_SUCCESS(r, "resnet_unit_grad_fusion");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
355 356 357 358 359 360
REGISTER_OP_XPU_KERNEL(resnet_unit,
                       ops::ResNetUnitXPUKernel<plat::float16>,
                       ops::ResNetUnitXPUKernel<float>);
REGISTER_OP_XPU_KERNEL(resnet_unit_grad,
                       ops::ResNetUnitGradXPUKernel<plat::float16>,
                       ops::ResNetUnitGradXPUKernel<float>);