Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
fecbc958
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
fecbc958
编写于
7月 29, 2022
作者:
Q
QingshuChen
提交者:
GitHub
7月 29, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add some fp16 op for kunlun resnet50 model (#44672)
* add some fp16 op for kunlun resnet50 model *test=kunlun * tmp *test=kunlun
上级
a9919903
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
375 addition
and
310 deletion
+375
-310
paddle/fluid/operators/fused/resnet_unit_op_xpu.cc
paddle/fluid/operators/fused/resnet_unit_op_xpu.cc
+71
-50
paddle/fluid/operators/optimizers/lars_momentum_op_xpu.cc
paddle/fluid/operators/optimizers/lars_momentum_op_xpu.cc
+18
-11
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+13
-6
paddle/phi/kernels/xpu/elementwise_add_kernel.cc
paddle/phi/kernels/xpu/elementwise_add_kernel.cc
+11
-4
paddle/phi/kernels/xpu/log_softmax_grad_kernel.cc
paddle/phi/kernels/xpu/log_softmax_grad_kernel.cc
+21
-15
paddle/phi/kernels/xpu/log_softmax_kernel.cc
paddle/phi/kernels/xpu/log_softmax_kernel.cc
+10
-4
python/paddle/fluid/tests/unittests/xpu/test_update_loss_scaling_op_xpu.py
...id/tests/unittests/xpu/test_update_loss_scaling_op_xpu.py
+231
-220
未找到文件。
paddle/fluid/operators/fused/resnet_unit_op_xpu.cc
浏览文件 @
fecbc958
...
...
@@ -23,6 +23,8 @@ using Tensor = framework::Tensor;
template
<
typename
T
>
class
ResNetUnitXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
place
=
ctx
.
GetPlace
();
...
...
@@ -63,9 +65,12 @@ class ResNetUnitXPUKernel : public framework::OpKernel<T> {
std
::
string
act_type
=
ctx
.
Attr
<
std
::
string
>
(
"act_type"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
std
::
vector
<
const
T
*>
x_list
=
{
input_x
->
data
<
T
>
()};
std
::
vector
<
const
T
*>
w_list
=
{
filter_x
->
data
<
T
>
()};
std
::
vector
<
T
*>
conv_y_list
=
{
conv_out_x
->
mutable_data
<
T
>
(
place
)};
std
::
vector
<
const
XPUType
*>
x_list
=
{
reinterpret_cast
<
const
XPUType
*>
(
input_x
->
data
<
T
>
())};
std
::
vector
<
const
XPUType
*>
w_list
=
{
reinterpret_cast
<
const
XPUType
*>
(
filter_x
->
data
<
T
>
())};
std
::
vector
<
XPUType
*>
conv_y_list
=
{
reinterpret_cast
<
XPUType
*>
(
conv_out_x
->
mutable_data
<
T
>
(
place
))};
std
::
vector
<
std
::
vector
<
int
>>
x_shape_list
=
{
phi
::
vectorize
<
int
>
(
input_x
->
dims
())};
...
...
@@ -107,9 +112,10 @@ class ResNetUnitXPUKernel : public framework::OpKernel<T> {
Tensor
*
running_mean_z
=
ctx
.
Output
<
Tensor
>
(
"RunningMeanZ"
);
Tensor
*
running_var_z
=
ctx
.
Output
<
Tensor
>
(
"RunningVarZ"
);
x_list
.
push_back
(
input_z
->
data
<
T
>
());
w_list
.
push_back
(
filter_z
->
data
<
T
>
());
conv_y_list
.
push_back
(
conv_out_z
->
mutable_data
<
T
>
(
place
));
x_list
.
push_back
(
reinterpret_cast
<
const
XPUType
*>
(
input_z
->
data
<
T
>
()));
w_list
.
push_back
(
reinterpret_cast
<
const
XPUType
*>
(
filter_z
->
data
<
T
>
()));
conv_y_list
.
push_back
(
reinterpret_cast
<
XPUType
*>
(
conv_out_z
->
mutable_data
<
T
>
(
place
)));
x_shape_list
.
push_back
(
phi
::
vectorize
<
int
>
(
input_z
->
dims
()));
...
...
@@ -133,17 +139,17 @@ class ResNetUnitXPUKernel : public framework::OpKernel<T> {
if
(
fuse_add
)
{
const
Tensor
*
input_z
=
ctx
.
Input
<
Tensor
>
(
"Z"
);
auto
input_z_shape
=
phi
::
vectorize
<
int
>
(
input_z
->
dims
());
x_list
.
push_back
(
input_z
->
data
<
T
>
(
));
x_list
.
push_back
(
reinterpret_cast
<
const
XPUType
*>
(
input_z
->
data
<
T
>
()
));
x_shape_list
.
push_back
(
input_z_shape
);
x_maxlist
.
push_back
(
nullptr
);
}
}
int
r
=
xpu
::
resnet_unit_fusion
<
T
,
T
,
T
,
int16_t
>
(
int
r
=
xpu
::
resnet_unit_fusion
<
XPUType
,
XPUType
,
XPUType
,
int16_t
>
(
dev_ctx
.
x_context
(),
x_list
,
w_list
,
conv_y_list
,
output
->
mutable_data
<
T
>
(
place
),
reinterpret_cast
<
XPUType
*>
(
output
->
mutable_data
<
T
>
(
place
)
),
x_shape_list
,
filter_x_shape
[
0
],
ksize_list
,
...
...
@@ -172,6 +178,8 @@ class ResNetUnitXPUKernel : public framework::OpKernel<T> {
template
<
typename
T
>
class
ResNetUnitGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
place
=
ctx
.
GetPlace
();
...
...
@@ -208,11 +216,16 @@ class ResNetUnitGradXPUKernel : public framework::OpKernel<T> {
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
std
::
vector
<
const
T
*>
x_list
=
{
x
->
data
<
T
>
()};
std
::
vector
<
const
T
*>
w_list
=
{
filter_x
->
data
<
T
>
()};
std
::
vector
<
const
T
*>
conv_y_list
=
{
conv_out_x
->
data
<
T
>
()};
std
::
vector
<
T
*>
dx_list
=
{
x_grad
->
mutable_data
<
T
>
(
place
)};
std
::
vector
<
T
*>
dw_list
=
{
filter_x_grad
->
mutable_data
<
T
>
(
place
)};
std
::
vector
<
const
XPUType
*>
x_list
=
{
reinterpret_cast
<
const
XPUType
*>
(
x
->
data
<
T
>
())};
std
::
vector
<
const
XPUType
*>
w_list
=
{
reinterpret_cast
<
const
XPUType
*>
(
filter_x
->
data
<
T
>
())};
std
::
vector
<
const
XPUType
*>
conv_y_list
=
{
reinterpret_cast
<
const
XPUType
*>
(
conv_out_x
->
data
<
T
>
())};
std
::
vector
<
XPUType
*>
dx_list
=
{
reinterpret_cast
<
XPUType
*>
(
x_grad
->
mutable_data
<
T
>
(
place
))};
std
::
vector
<
XPUType
*>
dw_list
=
{
reinterpret_cast
<
XPUType
*>
(
filter_x_grad
->
mutable_data
<
T
>
(
place
))};
std
::
vector
<
std
::
vector
<
int
>>
x_shape_list
=
{
phi
::
vectorize
<
int
>
(
x
->
dims
())};
...
...
@@ -262,11 +275,14 @@ class ResNetUnitGradXPUKernel : public framework::OpKernel<T> {
Tensor
*
scale_z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"ScaleZ"
));
Tensor
*
bias_z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BiasZ"
));
x_list
.
push_back
(
z
->
data
<
T
>
());
w_list
.
push_back
(
filter_z
->
data
<
T
>
());
conv_y_list
.
push_back
(
conv_out_z
->
data
<
T
>
());
dx_list
.
push_back
(
z_grad
->
mutable_data
<
T
>
(
place
));
dw_list
.
push_back
(
filter_z_grad
->
mutable_data
<
T
>
(
place
));
x_list
.
push_back
(
reinterpret_cast
<
const
XPUType
*>
(
z
->
data
<
T
>
()));
w_list
.
push_back
(
reinterpret_cast
<
const
XPUType
*>
(
filter_z
->
data
<
T
>
()));
conv_y_list
.
push_back
(
reinterpret_cast
<
const
XPUType
*>
(
conv_out_z
->
data
<
T
>
()));
dx_list
.
push_back
(
reinterpret_cast
<
XPUType
*>
(
z_grad
->
mutable_data
<
T
>
(
place
)));
dw_list
.
push_back
(
reinterpret_cast
<
XPUType
*>
(
filter_z_grad
->
mutable_data
<
T
>
(
place
)));
x_shape_list
.
push_back
(
phi
::
vectorize
<
int
>
(
z
->
dims
()));
auto
filter_z_shape
=
phi
::
vectorize
<
int
>
(
filter_z
->
dims
());
...
...
@@ -288,38 +304,39 @@ class ResNetUnitGradXPUKernel : public framework::OpKernel<T> {
}
else
{
if
(
fuse_add
)
{
auto
z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Z"
));
dx_list
.
push_back
(
z_grad
->
mutable_data
<
T
>
(
place
));
dx_list
.
push_back
(
reinterpret_cast
<
XPUType
*>
(
z_grad
->
mutable_data
<
T
>
(
place
)));
}
}
int
r
=
xpu
::
resnet_unit_grad_fusion
<
T
,
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
x_list
,
w_list
,
y_grad
->
data
<
T
>
(
),
output
->
data
<
T
>
(
),
conv_y_list
,
dx_list
,
dw_list
,
x_shape_list
,
filter_x_shape
[
0
],
ksize_list
,
stride_list
,
paddings
,
dilations
,
group
,
x_maxlist
,
w_maxlist
,
scale_list
,
batch_mean_list
,
batch_invstd_list
,
dscale_list
,
dbias_list
,
xpu
::
Activation_t
::
RELU
,
eps
,
is_nchw
,
has_shortcut
,
fuse_add
);
int
r
=
xpu
::
resnet_unit_grad_fusion
<
XPUType
,
XPUType
,
XPUType
,
int16_t
>
(
dev_ctx
.
x_context
(),
x_list
,
w_list
,
reinterpret_cast
<
const
XPUType
*>
(
y_grad
->
data
<
T
>
()
),
reinterpret_cast
<
const
XPUType
*>
(
output
->
data
<
T
>
()
),
conv_y_list
,
dx_list
,
dw_list
,
x_shape_list
,
filter_x_shape
[
0
],
ksize_list
,
stride_list
,
paddings
,
dilations
,
group
,
x_maxlist
,
w_maxlist
,
scale_list
,
batch_mean_list
,
batch_invstd_list
,
dscale_list
,
dbias_list
,
xpu
::
Activation_t
::
RELU
,
eps
,
is_nchw
,
has_shortcut
,
fuse_add
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"resnet_unit_grad_fusion"
);
}
};
...
...
@@ -329,5 +346,9 @@ class ResNetUnitGradXPUKernel : public framework::OpKernel<T> {
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_XPU_KERNEL
(
resnet_unit
,
ops
::
ResNetUnitXPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
resnet_unit_grad
,
ops
::
ResNetUnitGradXPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
resnet_unit
,
ops
::
ResNetUnitXPUKernel
<
plat
::
float16
>
,
ops
::
ResNetUnitXPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
resnet_unit_grad
,
ops
::
ResNetUnitGradXPUKernel
<
plat
::
float16
>
,
ops
::
ResNetUnitGradXPUKernel
<
float
>
);
paddle/fluid/operators/optimizers/lars_momentum_op_xpu.cc
浏览文件 @
fecbc958
...
...
@@ -22,6 +22,8 @@ namespace operators {
template
<
typename
T
>
class
LarsMomentumOpXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
bool
multi_precision
=
ctx
.
Attr
<
bool
>
(
"multi_precision"
);
...
...
@@ -35,14 +37,14 @@ class LarsMomentumOpXPUKernel : public framework::OpKernel<T> {
auto
master_param
=
ctx
.
MultiInput
<
framework
::
LoDTensor
>
(
"MasterParam"
);
auto
master_param_out
=
ctx
.
MultiOutput
<
framework
::
LoDTensor
>
(
"MasterParamOut"
);
T
mu
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"mu"
));
T
lars_coeff
=
ctx
.
Attr
<
float
>
(
"lars_coeff"
);
T
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
T
rescale_grad
=
ctx
.
Attr
<
float
>
(
"rescale_grad"
);
float
mu
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"mu"
));
float
lars_coeff
=
ctx
.
Attr
<
float
>
(
"lars_coeff"
);
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
float
rescale_grad
=
ctx
.
Attr
<
float
>
(
"rescale_grad"
);
std
::
vector
<
T
*>
param_list
;
std
::
vector
<
T
*>
grad_list
;
std
::
vector
<
T
*>
param_out_list
;
std
::
vector
<
XPUType
*>
param_list
;
std
::
vector
<
XPUType
*>
grad_list
;
std
::
vector
<
XPUType
*>
param_out_list
;
std
::
vector
<
float
*>
velocity_list
;
std
::
vector
<
float
*>
velocity_out_list
;
std
::
vector
<
float
*>
lrs
;
...
...
@@ -52,9 +54,12 @@ class LarsMomentumOpXPUKernel : public framework::OpKernel<T> {
std
::
vector
<
float
*>
master_param_out_list
;
int
op_num
=
param
.
size
();
for
(
int
i
=
0
;
i
<
op_num
;
++
i
)
{
param_list
.
push_back
(
const_cast
<
T
*>
(
param
[
i
]
->
data
<
T
>
()));
grad_list
.
push_back
(
const_cast
<
T
*>
(
grad
[
i
]
->
data
<
T
>
()));
param_out_list
.
push_back
(
param_out
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
()));
param_list
.
push_back
(
reinterpret_cast
<
XPUType
*>
(
const_cast
<
T
*>
((
param
[
i
]
->
data
<
T
>
()))));
grad_list
.
push_back
(
reinterpret_cast
<
XPUType
*>
(
const_cast
<
T
*>
(
grad
[
i
]
->
data
<
T
>
())));
param_out_list
.
push_back
(
reinterpret_cast
<
XPUType
*>
(
param_out
[
i
]
->
mutable_data
<
T
>
(
ctx
.
GetPlace
())));
velocity_list
.
push_back
(
const_cast
<
float
*>
(
velocity
[
i
]
->
data
<
float
>
()));
velocity_out_list
.
push_back
(
velocity_out
[
i
]
->
mutable_data
<
float
>
(
ctx
.
GetPlace
()));
...
...
@@ -111,5 +116,7 @@ class LarsMomentumOpXPUKernel : public framework::OpKernel<T> {
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_XPU_KERNEL
(
lars_momentum
,
ops
::
LarsMomentumOpXPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
lars_momentum
,
ops
::
LarsMomentumOpXPUKernel
<
paddle
::
platform
::
float16
>
,
ops
::
LarsMomentumOpXPUKernel
<
float
>
);
#endif
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
fecbc958
...
...
@@ -231,7 +231,9 @@ XPUOpMap& get_kl2_ops() {
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"generate_proposals_v2"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"grad_add"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"grad_add"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"greater_equal"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
...
...
@@ -254,9 +256,8 @@ XPUOpMap& get_kl2_ops() {
{
"label_smooth"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"lars_momentum"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"layer_norm_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"layer_norm_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
...
...
@@ -380,9 +381,12 @@ XPUOpMap& get_kl2_ops() {
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
BOOL
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"resnet_unit"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"resnet_unit"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"resnet_unit_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rmsprop"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rnn"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rnn_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
...
...
@@ -502,6 +506,9 @@ XPUOpMap& get_kl2_ops() {
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"top_k_v2"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"update_loss_scaling"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP16
,
XPUPlace
())})},
{
"unsqueeze2_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP64
,
XPUPlace
()),
pOpKernelType
(
vartype
::
INT64
,
XPUPlace
()),
...
...
paddle/phi/kernels/xpu/elementwise_add_kernel.cc
浏览文件 @
fecbc958
...
...
@@ -24,13 +24,15 @@ void GradAddXPUKernel(const Context& dev_ctx,
const
DenseTensor
&
x
,
const
DenseTensor
&
y
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
dev_ctx
.
template
Alloc
<
T
>(
out
);
auto
x_shape
=
phi
::
vectorize
<
int
>
(
x
.
dims
());
auto
y_shape
=
phi
::
vectorize
<
int
>
(
y
.
dims
());
int
r
=
xpu
::
broadcast_add
(
dev_ctx
.
x_context
(),
x
.
data
<
T
>
(
),
y
.
data
<
T
>
(
),
out
->
data
<
T
>
(
),
reinterpret_cast
<
const
XPUType
*>
(
x
.
data
<
T
>
()
),
reinterpret_cast
<
const
XPUType
*>
(
y
.
data
<
T
>
()
),
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()
),
x_shape
,
y_shape
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"broadcast_add"
);
...
...
@@ -38,4 +40,9 @@ void GradAddXPUKernel(const Context& dev_ctx,
}
// namespace phi
PD_REGISTER_KERNEL
(
grad_add
,
XPU
,
ALL_LAYOUT
,
phi
::
GradAddXPUKernel
,
float
)
{}
PD_REGISTER_KERNEL
(
grad_add
,
XPU
,
ALL_LAYOUT
,
phi
::
GradAddXPUKernel
,
phi
::
dtype
::
float16
,
float
)
{}
paddle/phi/kernels/xpu/log_softmax_grad_kernel.cc
浏览文件 @
fecbc958
...
...
@@ -26,6 +26,7 @@ void LogSoftmaxGradKernel(const Context& dev_ctx,
const
DenseTensor
&
out_grad
,
int
axis
,
DenseTensor
*
x_grad
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
int
rank
=
out
.
dims
().
size
();
axis
=
funcs
::
CanonicalAxis
(
axis
,
rank
);
...
...
@@ -40,24 +41,29 @@ void LogSoftmaxGradKernel(const Context& dev_ctx,
PADDLE_ENFORCE_NE
(
tmp2_ptr
,
nullptr
,
phi
::
errors
::
External
(
"no enough memory in xpu"
));
int
r
=
xpu
::
exp
(
dev_ctx
.
x_context
(),
out
.
data
<
T
>
(),
tmp_ptr
,
out_grad
.
numel
());
int
r
=
xpu
::
exp
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
tmp_ptr
),
out_grad
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"exp"
);
r
=
xpu
::
reciprocal
(
dev_ctx
.
x_context
(),
tmp_ptr
,
tmp2_ptr
,
out_grad
.
numel
());
r
=
xpu
::
reciprocal
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
tmp_ptr
),
reinterpret_cast
<
XPUType
*>
(
tmp2_ptr
),
out_grad
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"reciprocal"
);
r
=
xpu
::
mul
(
dev_ctx
.
x_context
(),
tmp2_ptr
,
out_grad
.
data
<
T
>
(
),
tmp2_ptr
,
out_grad
.
numel
());
r
=
xpu
::
mul
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
tmp2_ptr
)
,
reinterpret_cast
<
const
XPUType
*>
(
out_grad
.
data
<
T
>
()
),
reinterpret_cast
<
XPUType
*>
(
tmp2_ptr
)
,
out_grad
.
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"mul"
);
r
=
xpu
::
softmax_grad
(
dev_ctx
.
x_context
(),
tmp_ptr
,
tmp2_ptr
,
x_grad
->
data
<
T
>
(),
out_shape
,
axis
);
r
=
xpu
::
softmax_grad
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
tmp_ptr
),
reinterpret_cast
<
const
XPUType
*>
(
tmp2_ptr
),
reinterpret_cast
<
XPUType
*>
(
x_grad
->
data
<
T
>
()),
out_shape
,
axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"softmax_grad"
);
}
}
...
...
paddle/phi/kernels/xpu/log_softmax_kernel.cc
浏览文件 @
fecbc958
...
...
@@ -25,6 +25,7 @@ void LogSoftmaxKernel(const Context& dev_ctx,
const
DenseTensor
&
x
,
int
axis
,
DenseTensor
*
out
)
{
using
XPUType
=
typename
XPUTypeTrait
<
T
>::
Type
;
const
int
rank
=
x
.
dims
().
size
();
axis
=
funcs
::
CanonicalAxis
(
axis
,
rank
);
...
...
@@ -32,11 +33,16 @@ void LogSoftmaxKernel(const Context& dev_ctx,
auto
x_shape
=
phi
::
vectorize
<
int
>
(
x
.
dims
());
dev_ctx
.
template
Alloc
<
T
>(
out
);
if
(
axis
<
0
)
axis
+=
rank
;
int
r
=
xpu
::
softmax
<
T
>
(
dev_ctx
.
x_context
(),
x
.
data
<
T
>
(),
out
->
data
<
T
>
(),
x_shape
,
axis
);
int
r
=
xpu
::
softmax
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
x
.
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
x_shape
,
axis
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"softmax"
);
r
=
xpu
::
log
<
T
>
(
dev_ctx
.
x_context
(),
out
->
data
<
T
>
(),
out
->
data
<
T
>
(),
out
->
numel
());
r
=
xpu
::
log
<
XPUType
>
(
dev_ctx
.
x_context
(),
reinterpret_cast
<
const
XPUType
*>
(
out
->
data
<
T
>
()),
reinterpret_cast
<
XPUType
*>
(
out
->
data
<
T
>
()),
out
->
numel
());
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"log"
);
}
}
...
...
python/paddle/fluid/tests/unittests/xpu/test_update_loss_scaling_op_xpu.py
浏览文件 @
fecbc958
...
...
@@ -23,231 +23,242 @@ import paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.contrib.mixed_precision.amp_nn
as
amp_nn
from
op_test_xpu
import
XPUOpTest
from
xpu.get_test_cover_info
import
create_test_class
,
get_xpu_op_support_types
,
XPUOpTestWrapper
paddle
.
enable_static
()
class
TestUpdateLossScalingOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"update_loss_scaling"
self
.
init
()
found_inf
=
np
.
array
([
False
],
dtype
=
np
.
bool_
)
x
=
np
.
random
.
random
((
1024
,
1024
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
[(
'x0'
,
x
)],
'FoundInfinite'
:
found_inf
,
'PrevLossScaling'
:
self
.
prev_loss_scaling
,
'InGoodSteps'
:
self
.
num_good_steps
,
'InBadSteps'
:
self
.
num_bad_steps
}
self
.
outputs
=
{
'Out'
:
[(
'out0'
,
x
)],
'LossScaling'
:
self
.
prev_loss_scaling
*
self
.
incr_ratio
,
'OutGoodSteps'
:
self
.
zero_steps
,
'OutBadSteps'
:
self
.
zero_steps
}
def
init
(
self
):
self
.
incr_ratio
=
2.0
self
.
decr_ratio
=
0.8
self
.
dtype
=
np
.
float32
self
.
prev_loss_scaling
=
np
.
array
([
2048
]).
astype
(
self
.
dtype
)
self
.
num_good_steps
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
self
.
num_bad_steps
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
self
.
zero_steps
=
np
.
array
([
0
],
dtype
=
np
.
int32
)
self
.
attrs
=
{
'incr_every_n_steps'
:
1000
,
'decr_every_n_nan_or_inf'
:
2
,
'incr_ratio'
:
self
.
incr_ratio
,
'decr_ratio'
:
self
.
decr_ratio
,
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
no_check_set
=
[
'Out'
])
class
TestUpdateLossScalingOpBad
(
TestUpdateLossScalingOp
):
def
setUp
(
self
):
self
.
op_type
=
"update_loss_scaling"
self
.
init
()
found_inf
=
np
.
array
([
True
],
dtype
=
np
.
bool_
)
x
=
np
.
random
.
random
((
1024
,
1024
)).
astype
(
self
.
dtype
)
i
=
np
.
random
.
randint
(
0
,
1024
,
1
)
j
=
np
.
random
.
randint
(
0
,
1024
,
1
)
x
[
i
[
0
]][
j
[
0
]]
=
np
.
inf
self
.
inputs
=
{
'X'
:
[(
'x0'
,
x
)],
'FoundInfinite'
:
found_inf
,
'PrevLossScaling'
:
self
.
prev_loss_scaling
,
'InGoodSteps'
:
self
.
num_good_steps
,
'InBadSteps'
:
self
.
num_bad_steps
}
self
.
outputs
=
{
'Out'
:
[(
'out0'
,
np
.
zeros_like
(
x
))],
'LossScaling'
:
self
.
prev_loss_scaling
*
self
.
decr_ratio
,
'OutGoodSteps'
:
self
.
zero_steps
,
'OutBadSteps'
:
self
.
zero_steps
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
#self.check_output()
class
TestUpdateLossScalingLayer
(
unittest
.
TestCase
):
def
loss_scaling_check
(
self
,
scope
=
fluid
.
Scope
()):
a
=
fluid
.
data
(
name
=
"a"
,
shape
=
[
1024
,
1024
],
dtype
=
'float32'
)
b
=
fluid
.
data
(
name
=
"b"
,
shape
=
[
512
,
128
],
dtype
=
'float32'
)
x
=
[
a
,
b
]
found_inf
=
fluid
.
data
(
name
=
"found_inf"
,
shape
=
[
1
],
dtype
=
'bool'
)
prev_loss_scaling
=
fluid
.
data
(
name
=
"prev_loss_scaling"
,
class
XPUTestUpdateLossScalingOp
(
XPUOpTestWrapper
):
def
__init__
(
self
):
self
.
op_name
=
"update_loss_scaling"
self
.
use_dynamic_create_class
=
False
class
TestUpdateLossScalingOp
(
XPUOpTest
):
def
setUp
(
self
):
self
.
op_type
=
"update_loss_scaling"
self
.
init
()
found_inf
=
np
.
array
([
False
],
dtype
=
np
.
bool_
)
x
=
np
.
random
.
random
((
1024
,
1024
)).
astype
(
self
.
dtype
)
self
.
inputs
=
{
'X'
:
[(
'x0'
,
x
)],
'FoundInfinite'
:
found_inf
,
'PrevLossScaling'
:
self
.
prev_loss_scaling
,
'InGoodSteps'
:
self
.
num_good_steps
,
'InBadSteps'
:
self
.
num_bad_steps
}
self
.
outputs
=
{
'Out'
:
[(
'out0'
,
x
)],
'LossScaling'
:
self
.
prev_loss_scaling
*
self
.
incr_ratio
,
'OutGoodSteps'
:
self
.
zero_steps
,
'OutBadSteps'
:
self
.
zero_steps
}
def
init
(
self
):
self
.
incr_ratio
=
2.0
self
.
decr_ratio
=
0.8
self
.
dtype
=
np
.
float32
self
.
prev_loss_scaling
=
np
.
array
([
2048
]).
astype
(
self
.
dtype
)
self
.
num_good_steps
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
self
.
num_bad_steps
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
self
.
zero_steps
=
np
.
array
([
0
],
dtype
=
np
.
int32
)
self
.
attrs
=
{
'incr_every_n_steps'
:
1000
,
'decr_every_n_nan_or_inf'
:
2
,
'incr_ratio'
:
self
.
incr_ratio
,
'decr_ratio'
:
self
.
decr_ratio
,
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
,
no_check_set
=
[
'Out'
])
class
TestUpdateLossScalingOpBad
(
TestUpdateLossScalingOp
):
def
setUp
(
self
):
self
.
op_type
=
"update_loss_scaling"
self
.
init
()
found_inf
=
np
.
array
([
True
],
dtype
=
np
.
bool_
)
x
=
np
.
random
.
random
((
1024
,
1024
)).
astype
(
self
.
dtype
)
i
=
np
.
random
.
randint
(
0
,
1024
,
1
)
j
=
np
.
random
.
randint
(
0
,
1024
,
1
)
x
[
i
[
0
]][
j
[
0
]]
=
np
.
inf
self
.
inputs
=
{
'X'
:
[(
'x0'
,
x
)],
'FoundInfinite'
:
found_inf
,
'PrevLossScaling'
:
self
.
prev_loss_scaling
,
'InGoodSteps'
:
self
.
num_good_steps
,
'InBadSteps'
:
self
.
num_bad_steps
}
self
.
outputs
=
{
'Out'
:
[(
'out0'
,
np
.
zeros_like
(
x
))],
'LossScaling'
:
self
.
prev_loss_scaling
*
self
.
decr_ratio
,
'OutGoodSteps'
:
self
.
zero_steps
,
'OutBadSteps'
:
self
.
zero_steps
}
def
test_check_output
(
self
):
if
paddle
.
is_compiled_with_xpu
():
place
=
paddle
.
XPUPlace
(
0
)
self
.
check_output_with_place
(
place
)
#self.check_output()
class
TestUpdateLossScalingLayer
(
unittest
.
TestCase
):
def
loss_scaling_check
(
self
,
scope
=
fluid
.
Scope
()):
a
=
fluid
.
data
(
name
=
"a"
,
shape
=
[
1024
,
1024
],
dtype
=
'float32'
)
b
=
fluid
.
data
(
name
=
"b"
,
shape
=
[
512
,
128
],
dtype
=
'float32'
)
x
=
[
a
,
b
]
found_inf
=
fluid
.
data
(
name
=
"found_inf"
,
shape
=
[
1
],
dtype
=
'bool'
)
prev_loss_scaling
=
fluid
.
data
(
name
=
"prev_loss_scaling"
,
shape
=
[
1
],
dtype
=
'float32'
)
num_good_steps
=
fluid
.
data
(
name
=
"num_good_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
num_bad_steps
=
fluid
.
data
(
name
=
"num_bad_steps"
,
shape
=
[
1
],
dtype
=
'
floa
t32'
)
num_good_steps
=
fluid
.
data
(
name
=
"num_good_steps"
,
shape
=
[
1
],
dtype
=
'in
t32'
)
num_bad_steps
=
fluid
.
data
(
name
=
"num_bad_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
a_v
=
np
.
random
.
random
([
1024
,
1024
]).
astype
(
'float32'
)
b_v
=
np
.
random
.
random
([
512
,
128
]).
astype
(
'float32'
)
found_inf_v
=
np
.
array
([
False
]).
astype
(
'bool'
)
prev_loss_scaling_v
=
np
.
array
([
2048
]).
astype
(
'float32'
)
num_good_steps_v
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
num_bad_steps_v
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
incr_every_n_steps
=
1000
decr_every_n_nan_or_inf
=
2
incr_ratio
=
2
decr_ratio
=
0.8
result
=
amp_nn
.
update_loss_scaling
(
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
name
=
"update_loss_scaling"
)
place
=
fluid
.
XPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
fluid
.
default_startup_program
())
result_v
=
exe
.
run
(
feed
=
{
'a'
:
a_v
,
'b'
:
b_v
,
'found_inf'
:
found_inf_v
,
'prev_loss_scaling'
:
prev_loss_scaling_v
,
'num_good_steps'
:
num_good_steps_v
,
'num_bad_steps'
:
num_bad_steps_v
},
fetch_list
=
[
result
,
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
]
)
assert
np
.
array_equal
(
result_v
[
0
],
a_v
)
assert
np
.
array_equal
(
result_v
[
1
],
b_v
)
assert
np
.
array_equal
(
result_v
[
0
],
result_v
[
2
])
assert
np
.
array_equal
(
result_v
[
1
],
result_v
[
3
])
assert
np
.
array_equal
(
result_v
[
4
],
found_inf_v
)
assert
np
.
array_equal
(
result_v
[
5
],
prev_loss_scaling_v
*
incr_ratio
)
assert
np
.
array_equal
(
result_v
[
6
],
np
.
zeros_like
(
num_good_steps_v
))
assert
np
.
array_equal
(
result_v
[
7
],
np
.
zeros_like
(
num_bad_steps_v
)
)
def
loss_scaling_check_inf
(
self
,
use_cuda
=
True
,
scope
=
fluid
.
Scope
()):
a
=
fluid
.
data
(
name
=
"a"
,
shape
=
[
1024
,
1024
],
dtype
=
'float32'
)
b
=
fluid
.
data
(
name
=
"b"
,
shape
=
[
512
,
128
],
dtype
=
'float32'
)
x
=
[
a
,
b
]
found_inf
=
fluid
.
data
(
name
=
"found_inf"
,
shape
=
[
1
],
dtype
=
'bool
'
)
prev_loss_scaling
=
fluid
.
data
(
name
=
"prev_loss_scaling
"
,
dtype
=
'
in
t32'
)
a_v
=
np
.
random
.
random
([
1024
,
1024
]).
astype
(
'float32'
)
b_v
=
np
.
random
.
random
([
512
,
128
]).
astype
(
'floa
t32'
)
found_inf_v
=
np
.
array
([
False
]).
astype
(
'bool'
)
prev_loss_scaling_v
=
np
.
array
([
2048
]).
astype
(
'float32'
)
num_good_steps_v
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
num_bad_steps_v
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
incr_every_n_steps
=
1000
decr_every_n_nan_or_inf
=
2
incr_ratio
=
2
decr_ratio
=
0.8
result
=
amp_nn
.
update_loss_scaling
(
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
name
=
"update_loss_scaling"
)
place
=
fluid
.
XPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
fluid
.
default_startup_program
())
result_v
=
exe
.
run
(
feed
=
{
'a'
:
a_v
,
'b'
:
b_v
,
'found_inf'
:
found_inf_v
,
'prev_loss_scaling'
:
prev_loss_scaling_v
,
'num_good_steps'
:
num_good_steps_v
,
'num_bad_steps'
:
num_bad_steps_v
}
,
fetch_list
=
[
result
,
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
])
assert
np
.
array_equal
(
result_v
[
0
],
a_v
)
assert
np
.
array_equal
(
result_v
[
1
],
b_v
)
assert
np
.
array_equal
(
result_v
[
0
],
result_v
[
2
])
assert
np
.
array_equal
(
result_v
[
1
],
result_v
[
3
])
assert
np
.
array_equal
(
result_v
[
4
],
found_inf_v
)
assert
np
.
array_equal
(
result_v
[
5
],
prev_loss_scaling_v
*
incr_ratio
)
assert
np
.
array_equal
(
result_v
[
6
],
np
.
zeros_like
(
num_good_steps_v
)
)
assert
np
.
array_equal
(
result_v
[
7
],
np
.
zeros_like
(
num_bad_steps_v
)
)
def
loss_scaling_check_inf
(
self
,
use_cuda
=
True
,
scope
=
fluid
.
Scope
()):
a
=
fluid
.
data
(
name
=
"a"
,
shape
=
[
1024
,
1024
],
dtype
=
'float32'
)
b
=
fluid
.
data
(
name
=
"b"
,
shape
=
[
512
,
128
],
dtype
=
'float32'
)
x
=
[
a
,
b
]
found_inf
=
fluid
.
data
(
name
=
"found_inf"
,
shape
=
[
1
],
dtype
=
'bool'
)
prev_loss_scaling
=
fluid
.
data
(
name
=
"prev_loss_scaling"
,
shape
=
[
1
],
dtype
=
'float32'
)
num_good_steps
=
fluid
.
data
(
name
=
"num_good_steps"
,
shape
=
[
1
],
dtype
=
'int32
'
)
num_bad_steps
=
fluid
.
data
(
name
=
"num_bad_steps
"
,
shape
=
[
1
],
dtype
=
'float32'
)
num_good_steps
=
fluid
.
data
(
name
=
"num_good_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
num_bad_steps
=
fluid
.
data
(
name
=
"num_bad_steps"
,
shape
=
[
1
],
dtype
=
'int32'
)
a_v
=
np
.
random
.
random
([
1024
,
1024
]).
astype
(
'float32'
)
b_v
=
np
.
random
.
random
([
512
,
128
]).
astype
(
'float32'
)
i
=
np
.
random
.
randint
(
0
,
1024
,
1
)
j
=
np
.
random
.
randint
(
0
,
1024
,
1
)
a_v
[
i
[
0
]][
j
[
0
]]
=
np
.
inf
found_inf_v
=
np
.
array
([
True
]).
astype
(
'bool'
)
prev_loss_scaling_v
=
np
.
array
([
2048
]).
astype
(
'float32'
)
num_good_steps_v
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
num_bad_steps_v
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
incr_every_n_steps
=
1000
decr_every_n_nan_or_inf
=
2
incr_ratio
=
2
decr_ratio
=
0.8
result
=
amp_nn
.
update_loss_scaling
(
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
name
=
"update_loss_scaling"
)
place
=
fluid
.
XPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
fluid
.
default_startup_program
())
result_v
=
exe
.
run
(
feed
=
{
'a'
:
a_v
,
'b'
:
b_v
,
'found_inf'
:
found_inf_v
,
'prev_loss_scaling'
:
prev_loss_scaling_v
,
'num_good_steps'
:
num_good_steps_v
,
'num_bad_steps'
:
num_bad_steps_v
},
fetch_list
=
[
result
,
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
])
assert
np
.
array_equal
(
result_v
[
0
],
np
.
zeros_like
(
a_v
))
assert
np
.
array_equal
(
result_v
[
1
],
np
.
zeros_like
(
b_v
))
assert
np
.
array_equal
(
result_v
[
2
],
np
.
zeros_like
(
a_v
))
assert
np
.
array_equal
(
result_v
[
3
],
np
.
zeros_like
(
b_v
))
assert
np
.
array_equal
(
result_v
[
4
],
found_inf_v
)
assert
np
.
array_equal
(
result_v
[
5
],
prev_loss_scaling_v
*
decr_ratio
)
assert
np
.
array_equal
(
result_v
[
6
],
np
.
zeros_like
(
num_good_steps_v
))
assert
np
.
array_equal
(
result_v
[
7
],
np
.
zeros_like
(
num_bad_steps_v
))
def
test_loss_scaling
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
self
.
loss_scaling_check
()
def
test_loss_scaling_inf
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
self
.
loss_scaling_check_inf
()
dtype
=
'int32'
)
a_v
=
np
.
random
.
random
([
1024
,
1024
]).
astype
(
'float32'
)
b_v
=
np
.
random
.
random
([
512
,
128
]).
astype
(
'float32'
)
i
=
np
.
random
.
randint
(
0
,
1024
,
1
)
j
=
np
.
random
.
randint
(
0
,
1024
,
1
)
a_v
[
i
[
0
]][
j
[
0
]]
=
np
.
inf
found_inf_v
=
np
.
array
([
True
]).
astype
(
'bool'
)
prev_loss_scaling_v
=
np
.
array
([
2048
]).
astype
(
'float32'
)
num_good_steps_v
=
np
.
array
([
999
],
dtype
=
np
.
int32
)
num_bad_steps_v
=
np
.
array
([
1
],
dtype
=
np
.
int32
)
incr_every_n_steps
=
1000
decr_every_n_nan_or_inf
=
2
incr_ratio
=
2
decr_ratio
=
0.8
result
=
amp_nn
.
update_loss_scaling
(
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
,
incr_every_n_steps
,
decr_every_n_nan_or_inf
,
incr_ratio
,
decr_ratio
,
name
=
"update_loss_scaling"
)
place
=
fluid
.
XPUPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
with
fluid
.
scope_guard
(
scope
):
exe
.
run
(
fluid
.
default_startup_program
())
result_v
=
exe
.
run
(
feed
=
{
'a'
:
a_v
,
'b'
:
b_v
,
'found_inf'
:
found_inf_v
,
'prev_loss_scaling'
:
prev_loss_scaling_v
,
'num_good_steps'
:
num_good_steps_v
,
'num_bad_steps'
:
num_bad_steps_v
},
fetch_list
=
[
result
,
x
,
found_inf
,
prev_loss_scaling
,
num_good_steps
,
num_bad_steps
])
assert
np
.
array_equal
(
result_v
[
0
],
np
.
zeros_like
(
a_v
))
assert
np
.
array_equal
(
result_v
[
1
],
np
.
zeros_like
(
b_v
))
assert
np
.
array_equal
(
result_v
[
2
],
np
.
zeros_like
(
a_v
))
assert
np
.
array_equal
(
result_v
[
3
],
np
.
zeros_like
(
b_v
))
assert
np
.
array_equal
(
result_v
[
4
],
found_inf_v
)
assert
np
.
array_equal
(
result_v
[
5
],
prev_loss_scaling_v
*
decr_ratio
)
assert
np
.
array_equal
(
result_v
[
6
],
np
.
zeros_like
(
num_good_steps_v
))
assert
np
.
array_equal
(
result_v
[
7
],
np
.
zeros_like
(
num_bad_steps_v
))
def
test_loss_scaling
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
self
.
loss_scaling_check
()
def
test_loss_scaling_inf
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
unique_name
.
guard
():
with
fluid
.
program_guard
(
main
,
startup
):
self
.
loss_scaling_check_inf
()
support_types
=
get_xpu_op_support_types
(
'update_loss_scaling'
)
for
stype
in
support_types
:
create_test_class
(
globals
(),
XPUTestUpdateLossScalingOp
,
stype
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录