Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
02e9453f
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
02e9453f
编写于
7月 18, 2022
作者:
Q
QingshuChen
提交者:
GitHub
7月 18, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add xpu resnet_unit (#44297)
* add xpu resnet_unit *test=kunlun * tmp *test=kunlun
上级
74412dfe
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
376 addition
and
17 deletion
+376
-17
cmake/external/xpu.cmake
cmake/external/xpu.cmake
+2
-2
paddle/fluid/operators/fused/CMakeLists.txt
paddle/fluid/operators/fused/CMakeLists.txt
+1
-0
paddle/fluid/operators/fused/resnet_unit_op.cc
paddle/fluid/operators/fused/resnet_unit_op.cc
+16
-10
paddle/fluid/operators/fused/resnet_unit_op_xpu.cc
paddle/fluid/operators/fused/resnet_unit_op_xpu.cc
+333
-0
paddle/fluid/platform/device/xpu/xpu2_op_list.h
paddle/fluid/platform/device/xpu/xpu2_op_list.h
+3
-0
python/paddle/fluid/tests/unittests/xpu/get_test_cover_info.py
...n/paddle/fluid/tests/unittests/xpu/get_test_cover_info.py
+3
-1
python/paddle/incubate/operators/resnet_unit.py
python/paddle/incubate/operators/resnet_unit.py
+18
-4
未找到文件。
cmake/external/xpu.cmake
浏览文件 @
02e9453f
...
...
@@ -10,7 +10,7 @@ set(XPU_RT_LIB_NAME "libxpurt.so")
if
(
NOT DEFINED XPU_BASE_URL
)
set
(
XPU_BASE_URL_WITHOUT_DATE
"https://baidu-kunlun-product.cdn.bcebos.com/KL-SDK/klsdk-dev"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022071
2
"
)
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL_WITHOUT_DATE
}
/2022071
8
"
)
else
()
set
(
XPU_BASE_URL
"
${
XPU_BASE_URL
}
"
)
endif
()
...
...
@@ -19,7 +19,7 @@ endif()
if
(
NOT DEFINED XPU_XDNN_BASE_URL
)
set
(
XPU_XDNN_BASE_URL_WITHOUT_DATE
"https://klx-sdk-release-public.su.bcebos.com/xdnn/dev"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022071
2
"
)
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL_WITHOUT_DATE
}
/2022071
8
"
)
else
()
set
(
XPU_XDNN_BASE_URL
"
${
XPU_XDNN_BASE_URL
}
"
)
endif
()
...
...
paddle/fluid/operators/fused/CMakeLists.txt
浏览文件 @
02e9453f
...
...
@@ -35,6 +35,7 @@ op_library(fusion_lstm_op)
if
(
WITH_XPU
)
op_library
(
resnet_basic_block_op
)
op_library
(
resnet_unit_op
)
endif
()
if
(
WITH_GPU OR WITH_ROCM
)
...
...
paddle/fluid/operators/fused/resnet_unit_op.cc
浏览文件 @
02e9453f
...
...
@@ -159,22 +159,28 @@ class ResNetUnitOp : public framework::OperatorWithKernel {
bn_param_dims
,
bn_param_dims
.
size
()));
auto
data_format
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"data_format"
);
PADDLE_ENFORCE_EQ
(
data_format
,
"NHWC"
,
platform
::
errors
::
InvalidArgument
(
"The data format must equal to NHWC. "
"But received: the data format "
"= [%s]"
,
data_format
));
bool
is_nchw
=
(
data_format
==
"NCHW"
);
// Calculate the dims of outputs
int
batch
=
x_dims
[
0
];
int
output_channel
=
w_dims
[
0
];
int
filter_size
=
w_dims
[
2
];
int
stride
=
ctx
->
Attrs
().
Get
<
int
>
(
"stride"
);
int
padding
=
ctx
->
Attrs
().
Get
<
int
>
(
"padding"
);
int
out_h
=
(
x_dims
[
1
]
+
padding
*
2
-
filter_size
)
/
stride
+
1
;
int
out_w
=
(
x_dims
[
2
]
+
padding
*
2
-
filter_size
)
/
stride
+
1
;
std
::
vector
<
int
>
out_shape
=
{
batch
,
out_h
,
out_w
,
output_channel
};
std
::
vector
<
int
>
out_shape
;
out_shape
.
push_back
(
batch
);
if
(
is_nchw
)
{
int
out_h
=
(
x_dims
[
2
]
+
padding
*
2
-
filter_size
)
/
stride
+
1
;
int
out_w
=
(
x_dims
[
3
]
+
padding
*
2
-
filter_size
)
/
stride
+
1
;
out_shape
.
push_back
(
output_channel
);
out_shape
.
push_back
(
out_h
);
out_shape
.
push_back
(
out_w
);
}
else
{
int
out_h
=
(
x_dims
[
1
]
+
padding
*
2
-
filter_size
)
/
stride
+
1
;
int
out_w
=
(
x_dims
[
2
]
+
padding
*
2
-
filter_size
)
/
stride
+
1
;
out_shape
.
push_back
(
out_h
);
out_shape
.
push_back
(
out_w
);
out_shape
.
push_back
(
output_channel
);
}
auto
y_dims
=
phi
::
make_ddim
(
out_shape
);
auto
bitmask_dims
=
GetBitmaskDims
(
out_shape
);
...
...
paddle/fluid/operators/fused/resnet_unit_op_xpu.cc
0 → 100644
浏览文件 @
02e9453f
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#include "paddle/fluid/platform/float16.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
>
class
ResNetUnitXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
place
=
ctx
.
GetPlace
();
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
place
),
true
,
platform
::
errors
::
PreconditionNotMet
(
"It must use XPUPlace."
));
bool
is_nchw
=
(
ctx
.
Attr
<
std
::
string
>
(
"data_format"
)
==
"NCHW"
);
// input x
const
Tensor
*
input_x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
filter_x
=
ctx
.
Input
<
Tensor
>
(
"FilterX"
);
const
Tensor
*
scale_x
=
ctx
.
Input
<
Tensor
>
(
"ScaleX"
);
const
Tensor
*
bias_x
=
ctx
.
Input
<
Tensor
>
(
"BiasX"
);
// output x
Tensor
*
conv_out_x
=
ctx
.
Output
<
Tensor
>
(
"ConvX"
);
Tensor
*
saved_mean_x
=
ctx
.
Output
<
Tensor
>
(
"SavedMeanX"
);
Tensor
*
saved_invstd_x
=
ctx
.
Output
<
Tensor
>
(
"SavedInvstdX"
);
Tensor
*
running_mean_x
=
ctx
.
Output
<
Tensor
>
(
"RunningMeanX"
);
Tensor
*
running_var_x
=
ctx
.
Output
<
Tensor
>
(
"RunningVarX"
);
Tensor
*
output
=
ctx
.
Output
<
Tensor
>
(
"Y"
);
// attrs
int
padding
=
ctx
.
Attr
<
int
>
(
"padding"
);
int
stride
=
ctx
.
Attr
<
int
>
(
"stride"
);
int
stride_z
=
ctx
.
Attr
<
int
>
(
"stride_z"
);
int
dilation
=
ctx
.
Attr
<
int
>
(
"dilation"
);
int
group
=
ctx
.
Attr
<
int
>
(
"group"
);
float
eps
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
bool
has_shortcut
=
ctx
.
Attr
<
bool
>
(
"has_shortcut"
);
bool
fuse_add
=
ctx
.
Attr
<
bool
>
(
"fuse_add"
);
bool
use_global_stats
=
ctx
.
Attr
<
bool
>
(
"use_global_stats"
);
bool
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
bool
is_train
=
!
is_test
&&
!
use_global_stats
;
std
::
string
act_type
=
ctx
.
Attr
<
std
::
string
>
(
"act_type"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
std
::
vector
<
const
T
*>
x_list
=
{
input_x
->
data
<
T
>
()};
std
::
vector
<
const
T
*>
w_list
=
{
filter_x
->
data
<
T
>
()};
std
::
vector
<
T
*>
conv_y_list
=
{
conv_out_x
->
mutable_data
<
T
>
(
place
)};
std
::
vector
<
std
::
vector
<
int
>>
x_shape_list
=
{
phi
::
vectorize
<
int
>
(
input_x
->
dims
())};
auto
filter_x_shape
=
phi
::
vectorize
<
int
>
(
filter_x
->
dims
());
std
::
vector
<
int
>
ksize
=
{
filter_x_shape
[
2
],
filter_x_shape
[
3
]};
if
(
!
is_nchw
)
{
ksize
[
0
]
=
filter_x_shape
[
1
];
ksize
[
1
]
=
filter_x_shape
[
2
];
}
std
::
vector
<
int
>
strides
=
{
stride
,
stride
};
std
::
vector
<
std
::
vector
<
int
>>
ksize_list
=
{
ksize
};
std
::
vector
<
std
::
vector
<
int
>>
stride_list
=
{
strides
};
std
::
vector
<
int
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
int
>
dilations
=
{
dilation
,
dilation
};
std
::
vector
<
const
float
*>
scale_list
=
{
scale_x
->
data
<
float
>
()};
std
::
vector
<
const
float
*>
bias_list
=
{
bias_x
->
data
<
float
>
()};
std
::
vector
<
float
*>
batch_mean_list
=
{
saved_mean_x
->
mutable_data
<
float
>
(
place
)};
std
::
vector
<
float
*>
batch_invstd_list
=
{
saved_invstd_x
->
mutable_data
<
float
>
(
place
)};
std
::
vector
<
float
*>
global_mean_list
=
{
running_mean_x
->
mutable_data
<
float
>
(
place
)};
std
::
vector
<
float
*>
global_var_list
=
{
running_var_x
->
mutable_data
<
float
>
(
place
)};
std
::
vector
<
const
float
*>
x_maxlist
=
{
nullptr
};
std
::
vector
<
const
float
*>
w_maxlist
=
{
nullptr
};
if
(
has_shortcut
)
{
// input z
const
Tensor
*
input_z
=
ctx
.
Input
<
Tensor
>
(
"Z"
);
const
Tensor
*
filter_z
=
ctx
.
Input
<
Tensor
>
(
"FilterZ"
);
const
Tensor
*
scale_z
=
ctx
.
Input
<
Tensor
>
(
"ScaleZ"
);
const
Tensor
*
bias_z
=
ctx
.
Input
<
Tensor
>
(
"BiasZ"
);
Tensor
*
conv_out_z
=
ctx
.
Output
<
Tensor
>
(
"ConvZ"
);
Tensor
*
saved_mean_z
=
ctx
.
Output
<
Tensor
>
(
"SavedMeanZ"
);
Tensor
*
saved_invstd_z
=
ctx
.
Output
<
Tensor
>
(
"SavedInvstdZ"
);
Tensor
*
running_mean_z
=
ctx
.
Output
<
Tensor
>
(
"RunningMeanZ"
);
Tensor
*
running_var_z
=
ctx
.
Output
<
Tensor
>
(
"RunningVarZ"
);
x_list
.
push_back
(
input_z
->
data
<
T
>
());
w_list
.
push_back
(
filter_z
->
data
<
T
>
());
conv_y_list
.
push_back
(
conv_out_z
->
mutable_data
<
T
>
(
place
));
x_shape_list
.
push_back
(
phi
::
vectorize
<
int
>
(
input_z
->
dims
()));
auto
filter_z_shape
=
phi
::
vectorize
<
int
>
(
filter_z
->
dims
());
std
::
vector
<
int
>
ksize_z
=
{
filter_z_shape
[
2
],
filter_z_shape
[
3
]};
if
(
!
is_nchw
)
{
ksize_z
[
0
]
=
filter_z_shape
[
1
];
ksize_z
[
1
]
=
filter_z_shape
[
2
];
}
ksize_list
.
push_back
(
ksize_z
);
stride_list
.
push_back
({
stride_z
,
stride_z
});
scale_list
.
push_back
(
scale_z
->
data
<
float
>
());
bias_list
.
push_back
(
bias_z
->
data
<
float
>
());
batch_mean_list
.
push_back
(
saved_mean_z
->
mutable_data
<
float
>
(
place
));
batch_invstd_list
.
push_back
(
saved_invstd_z
->
mutable_data
<
float
>
(
place
));
global_mean_list
.
push_back
(
running_mean_z
->
mutable_data
<
float
>
(
place
));
global_var_list
.
push_back
(
running_var_z
->
mutable_data
<
float
>
(
place
));
x_maxlist
.
push_back
(
nullptr
);
w_maxlist
.
push_back
(
nullptr
);
}
else
{
if
(
fuse_add
)
{
const
Tensor
*
input_z
=
ctx
.
Input
<
Tensor
>
(
"Z"
);
auto
input_z_shape
=
phi
::
vectorize
<
int
>
(
input_z
->
dims
());
x_list
.
push_back
(
input_z
->
data
<
T
>
());
x_shape_list
.
push_back
(
input_z_shape
);
x_maxlist
.
push_back
(
nullptr
);
}
}
int
r
=
xpu
::
resnet_unit_fusion
<
T
,
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
x_list
,
w_list
,
conv_y_list
,
output
->
mutable_data
<
T
>
(
place
),
x_shape_list
,
filter_x_shape
[
0
],
ksize_list
,
stride_list
,
paddings
,
dilations
,
group
,
eps
,
momentum
,
x_maxlist
,
w_maxlist
,
scale_list
,
bias_list
,
batch_mean_list
,
batch_invstd_list
,
global_mean_list
,
global_var_list
,
xpu
::
Activation_t
::
RELU
,
is_nchw
,
has_shortcut
,
fuse_add
,
is_train
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"resnet_unit_fusion"
);
}
};
template
<
typename
T
>
class
ResNetUnitGradXPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
place
=
ctx
.
GetPlace
();
PADDLE_ENFORCE_EQ
(
platform
::
is_xpu_place
(
place
),
true
,
platform
::
errors
::
PreconditionNotMet
(
"It must use XPUPlace."
));
bool
is_nchw
=
(
ctx
.
Attr
<
std
::
string
>
(
"data_format"
)
==
"NCHW"
);
const
Tensor
*
y_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
const
Tensor
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
const
Tensor
*
filter_x
=
ctx
.
Input
<
Tensor
>
(
"FilterX"
);
const
Tensor
*
scale_x
=
ctx
.
Input
<
Tensor
>
(
"ScaleX"
);
const
Tensor
*
saved_mean_x
=
ctx
.
Input
<
Tensor
>
(
"SavedMeanX"
);
const
Tensor
*
saved_invstd_x
=
ctx
.
Input
<
Tensor
>
(
"SavedInvstdX"
);
const
Tensor
*
conv_out_x
=
ctx
.
Input
<
Tensor
>
(
"ConvX"
);
const
Tensor
*
output
=
ctx
.
Input
<
Tensor
>
(
"Y"
);
Tensor
*
x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
Tensor
*
filter_x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"FilterX"
));
Tensor
*
scale_x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"ScaleX"
));
Tensor
*
bias_x_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BiasX"
));
int
padding
=
ctx
.
Attr
<
int
>
(
"padding"
);
int
stride
=
ctx
.
Attr
<
int
>
(
"stride"
);
int
stride_z
=
ctx
.
Attr
<
int
>
(
"stride_z"
);
int
dilation
=
ctx
.
Attr
<
int
>
(
"dilation"
);
int
group
=
ctx
.
Attr
<
int
>
(
"group"
);
float
eps
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
bool
has_shortcut
=
ctx
.
Attr
<
bool
>
(
"has_shortcut"
);
bool
fuse_add
=
ctx
.
Attr
<
bool
>
(
"fuse_add"
);
std
::
string
act_type
=
ctx
.
Attr
<
std
::
string
>
(
"act_type"
);
auto
&
dev_ctx
=
ctx
.
template
device_context
<
platform
::
XPUDeviceContext
>();
std
::
vector
<
const
T
*>
x_list
=
{
x
->
data
<
T
>
()};
std
::
vector
<
const
T
*>
w_list
=
{
filter_x
->
data
<
T
>
()};
std
::
vector
<
const
T
*>
conv_y_list
=
{
conv_out_x
->
data
<
T
>
()};
std
::
vector
<
T
*>
dx_list
=
{
x_grad
->
mutable_data
<
T
>
(
place
)};
std
::
vector
<
T
*>
dw_list
=
{
filter_x_grad
->
mutable_data
<
T
>
(
place
)};
std
::
vector
<
std
::
vector
<
int
>>
x_shape_list
=
{
phi
::
vectorize
<
int
>
(
x
->
dims
())};
auto
filter_x_shape
=
phi
::
vectorize
<
int
>
(
filter_x
->
dims
());
std
::
vector
<
int
>
x_ksize
=
{
filter_x_shape
[
2
],
filter_x_shape
[
3
]};
if
(
!
is_nchw
)
{
x_ksize
[
0
]
=
filter_x_shape
[
1
];
x_ksize
[
1
]
=
filter_x_shape
[
2
];
}
std
::
vector
<
std
::
vector
<
int
>>
ksize_list
=
{
x_ksize
};
std
::
vector
<
std
::
vector
<
int
>>
stride_list
=
{{
stride
,
stride
}};
std
::
vector
<
int
>
paddings
=
{
padding
,
padding
};
std
::
vector
<
int
>
dilations
=
{
dilation
,
dilation
};
std
::
vector
<
const
float
*>
x_maxlist
=
{
nullptr
};
std
::
vector
<
const
float
*>
w_maxlist
=
{
nullptr
};
std
::
vector
<
const
float
*>
scale_list
=
{
scale_x
->
data
<
float
>
()};
std
::
vector
<
const
float
*>
batch_mean_list
=
{
saved_mean_x
->
data
<
float
>
()};
std
::
vector
<
const
float
*>
batch_invstd_list
=
{
saved_invstd_x
->
data
<
float
>
()};
std
::
vector
<
float
*>
dscale_list
=
{
scale_x_grad
->
mutable_data
<
float
>
(
place
)};
std
::
vector
<
float
*>
dbias_list
=
{
bias_x_grad
->
mutable_data
<
float
>
(
place
)};
if
(
has_shortcut
)
{
// X Z
// | |
// NormConv NormConv
// | |
// BNStatsFinalize BNStatsFinalize
// \ /
// ScaleBiasAddRelu
// |
// Y
const
Tensor
*
z
=
ctx
.
Input
<
Tensor
>
(
"Z"
);
const
Tensor
*
filter_z
=
ctx
.
Input
<
Tensor
>
(
"FilterZ"
);
const
Tensor
*
scale_z
=
ctx
.
Input
<
Tensor
>
(
"ScaleZ"
);
const
Tensor
*
saved_mean_z
=
ctx
.
Input
<
Tensor
>
(
"SavedMeanZ"
);
const
Tensor
*
saved_invstd_z
=
ctx
.
Input
<
Tensor
>
(
"SavedInvstdZ"
);
const
Tensor
*
conv_out_z
=
ctx
.
Input
<
Tensor
>
(
"ConvZ"
);
Tensor
*
z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Z"
));
Tensor
*
filter_z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"FilterZ"
));
Tensor
*
scale_z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"ScaleZ"
));
Tensor
*
bias_z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"BiasZ"
));
x_list
.
push_back
(
z
->
data
<
T
>
());
w_list
.
push_back
(
filter_z
->
data
<
T
>
());
conv_y_list
.
push_back
(
conv_out_z
->
data
<
T
>
());
dx_list
.
push_back
(
z_grad
->
mutable_data
<
T
>
(
place
));
dw_list
.
push_back
(
filter_z_grad
->
mutable_data
<
T
>
(
place
));
x_shape_list
.
push_back
(
phi
::
vectorize
<
int
>
(
z
->
dims
()));
auto
filter_z_shape
=
phi
::
vectorize
<
int
>
(
filter_z
->
dims
());
std
::
vector
<
int
>
ksize_z
=
{
filter_z_shape
[
2
],
filter_z_shape
[
3
]};
if
(
!
is_nchw
)
{
ksize_z
[
0
]
=
filter_z_shape
[
1
];
ksize_z
[
1
]
=
filter_z_shape
[
2
];
}
ksize_list
.
push_back
(
ksize_z
);
stride_list
.
push_back
({
stride_z
,
stride_z
});
x_maxlist
.
push_back
(
nullptr
);
w_maxlist
.
push_back
(
nullptr
);
scale_list
.
push_back
(
scale_z
->
data
<
float
>
());
batch_mean_list
.
push_back
(
saved_mean_z
->
data
<
float
>
());
batch_invstd_list
.
push_back
(
saved_invstd_z
->
data
<
float
>
());
dscale_list
.
push_back
(
scale_z_grad
->
mutable_data
<
float
>
(
place
));
dbias_list
.
push_back
(
bias_z_grad
->
mutable_data
<
float
>
(
place
));
}
else
{
if
(
fuse_add
)
{
auto
z_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Z"
));
dx_list
.
push_back
(
z_grad
->
mutable_data
<
T
>
(
place
));
}
}
int
r
=
xpu
::
resnet_unit_grad_fusion
<
T
,
T
,
T
,
int16_t
>
(
dev_ctx
.
x_context
(),
x_list
,
w_list
,
y_grad
->
data
<
T
>
(),
output
->
data
<
T
>
(),
conv_y_list
,
dx_list
,
dw_list
,
x_shape_list
,
filter_x_shape
[
0
],
ksize_list
,
stride_list
,
paddings
,
dilations
,
group
,
x_maxlist
,
w_maxlist
,
scale_list
,
batch_mean_list
,
batch_invstd_list
,
dscale_list
,
dbias_list
,
xpu
::
Activation_t
::
RELU
,
eps
,
is_nchw
,
has_shortcut
,
fuse_add
);
PADDLE_ENFORCE_XDNN_SUCCESS
(
r
,
"resnet_unit_grad_fusion"
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_XPU_KERNEL
(
resnet_unit
,
ops
::
ResNetUnitXPUKernel
<
float
>
);
REGISTER_OP_XPU_KERNEL
(
resnet_unit_grad
,
ops
::
ResNetUnitGradXPUKernel
<
float
>
);
paddle/fluid/platform/device/xpu/xpu2_op_list.h
浏览文件 @
02e9453f
...
...
@@ -374,6 +374,9 @@ XPUOpMap& get_kl2_ops() {
pOpKernelType
(
vartype
::
INT32
,
XPUPlace
()),
pOpKernelType
(
vartype
::
BOOL
,
XPUPlace
()),
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"resnet_unit"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"resnet_unit_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rmsprop"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rnn"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
{
"rnn_grad"
,
XPUKernelSet
({
pOpKernelType
(
vartype
::
FP32
,
XPUPlace
())})},
...
...
python/paddle/fluid/tests/unittests/xpu/get_test_cover_info.py
浏览文件 @
02e9453f
...
...
@@ -87,7 +87,9 @@ xpu_test_device_type_white_list = ['xpu1_float64']
xpu_test_op_type_white_list
=
[
'dropout_float16'
,
'dropout_grad_float16'
,
"grad_add_float32"
# no api for grad_add, skip
"grad_add_float32"
,
# no api for grad_add, skip
"resnet_unit"
,
"resnet_unit_grad"
]
xpu_test_device_op_white_list
=
[]
xpu_test_device_op_type_white_list
=
[]
...
...
python/paddle/incubate/operators/resnet_unit.py
浏览文件 @
02e9453f
...
...
@@ -170,7 +170,7 @@ class ResNetUnit(Layer):
self
.
_is_test
=
is_test
# check format
valid_format
=
{
'NHWC'
}
valid_format
=
{
'NHWC'
,
'NCHW'
}
if
data_format
not
in
valid_format
:
raise
ValueError
(
"conv_format must be one of {}, but got conv_format='{}'"
.
...
...
@@ -181,11 +181,25 @@ class ResNetUnit(Layer):
std
=
(
2.0
/
filter_elem_num
)
**
0.5
return
I
.
Normal
(
0.0
,
std
)
is_nchw
=
(
data_format
==
'NCHW'
)
# initial filter
bn_param_dtype
=
fluid
.
core
.
VarDesc
.
VarType
.
FP32
bn_param_shape
=
[
1
,
1
,
1
,
num_filters
]
filter_x_shape
=
[
num_filters
,
filter_size
,
filter_size
,
num_channels_x
]
filter_z_shape
=
[
num_filters
,
filter_size
,
filter_size
,
num_channels_z
]
if
not
is_nchw
:
bn_param_shape
=
[
1
,
1
,
1
,
num_filters
]
filter_x_shape
=
[
num_filters
,
filter_size
,
filter_size
,
num_channels_x
]
filter_z_shape
=
[
num_filters
,
filter_size
,
filter_size
,
num_channels_z
]
else
:
bn_param_shape
=
[
1
,
num_filters
,
1
,
1
]
filter_x_shape
=
[
num_filters
,
num_channels_x
,
filter_size
,
filter_size
]
filter_z_shape
=
[
num_filters
,
num_channels_z
,
filter_size
,
filter_size
]
self
.
filter_x
=
self
.
create_parameter
(
shape
=
filter_x_shape
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录