Matrix.cpp 131.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Matrix.h"
Q
qijun 已提交
16
#include "MathFunctions.h"
Z
zhangjinchao01 已提交
17 18 19 20 21
#include "SparseMatrix.h"
#include "SparseRowMatrix.h"

#include <float.h>
#include <algorithm>
Q
qijun 已提交
22
#include <cmath>
Z
zhangjinchao01 已提交
23 24

#include <string.h>
L
liaogang 已提交
25
#include "hl_cnn.h"
Z
zhangjinchao01 已提交
26 27 28
#include "hl_gpu.h"
#include "hl_table_apply.h"
#include "hl_top_k.h"
Q
qijun 已提交
29
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42

#include "paddle/utils/ThreadLocal.h"

#include "SIMDFunctions.h"

namespace paddle {

inline real _pow(real a, real beta) { return std::pow(a, beta); }

inline real _square(real a) { return a * a; }

inline real _safelog(real a) { return a > 0.0f ? std::log(a) : -40.0f; }

43 44 45 46 47
Matrix::Matrix(MemoryHandlePtr memHandle,
               size_t height,
               size_t width,
               bool trans,
               bool use_gpu)
Z
zhangjinchao01 已提交
48
    : BaseMatrix(
49 50
          height,
          width,
Q
qijun 已提交
51
          memHandle ? (reinterpret_cast<real*>(memHandle->getBuf())) : nullptr,
52 53
          trans,
          use_gpu) {
Z
zhangjinchao01 已提交
54 55 56 57
  elementCnt_ = width * height;
  memoryHandle_ = memHandle;
}

58 59
Matrix::Matrix(
    real* data, size_t height, size_t width, bool trans, bool use_gpu)
Z
zhangjinchao01 已提交
60 61 62 63
    : BaseMatrix(height, width, data, trans, use_gpu) {
  elementCnt_ = width * height;
}

64 65 66 67 68 69
Matrix::Matrix(real* data,
               size_t height,
               size_t width,
               size_t stride,
               bool trans,
               bool use_gpu)
Z
zhangjinchao01 已提交
70 71 72 73
    : BaseMatrix(height, width, stride, data, trans, use_gpu) {
  elementCnt_ = width * height;
}

74 75 76 77 78
MatrixPtr Matrix::createSparseMatrix(real* data,
                                     int* row,
                                     int* col,
                                     size_t height,
                                     size_t width,
Z
zhangjinchao01 已提交
79 80
                                     size_t nnz, /* used to allocate space */
                                     SparseValueType valueType, /*value type*/
81 82
                                     SparseFormat format,
                                     bool trans,
Z
zhangjinchao01 已提交
83 84
                                     bool useGpu) {
  if (useGpu) {
85 86
    return std::make_shared<GpuSparseMatrix>(
        data, row, col, height, width, nnz, valueType, format, trans);
Z
zhangjinchao01 已提交
87
  } else {
88 89
    return std::make_shared<CpuSparseMatrix>(
        data, row, col, height, width, nnz, valueType, format, trans);
Z
zhangjinchao01 已提交
90 91 92
  }
}

93 94
MatrixPtr Matrix::createSparseMatrix(size_t height,
                                     size_t width,
Z
zhangjinchao01 已提交
95 96
                                     size_t nnz, /* used to allocate space */
                                     SparseValueType valueType, /*value type*/
97 98
                                     SparseFormat format,
                                     bool trans,
Z
zhangjinchao01 已提交
99 100
                                     bool useGpu) {
  if (useGpu) {
101 102
    return std::make_shared<GpuSparseMatrix>(
        height, width, nnz, valueType, format, trans);
Z
zhangjinchao01 已提交
103
  } else {
104 105
    return std::make_shared<CpuSparseMatrix>(
        height, width, nnz, valueType, format, trans);
Z
zhangjinchao01 已提交
106 107 108
  }
}

109 110 111
MatrixPtr Matrix::create(MemoryHandlePtr memHandle,
                         size_t height,
                         size_t width,
Z
zhangjinchao01 已提交
112 113 114 115
                         bool trans) {
  if (auto gpuHandle = std::dynamic_pointer_cast<GpuMemoryHandle>(memHandle)) {
    return std::make_shared<GpuMatrix>(gpuHandle, height, width, trans);
  } else if (auto cpuHandle =
Q
qijun 已提交
116
                 std::dynamic_pointer_cast<CpuMemoryHandle>(memHandle)) {
Z
zhangjinchao01 已提交
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
    return std::make_shared<CpuMatrix>(cpuHandle, height, width, trans);
  } else {
    LOG(FATAL) << "Wrong";
    return nullptr;
  }
}

MatrixPtr Matrix::create(size_t height, size_t width, bool trans, bool useGpu) {
  if (useGpu) {
    return std::make_shared<GpuMatrix>(height, width, trans);
  } else {
    return std::make_shared<CpuMatrix>(height, width, trans);
  }
}

132 133
MatrixPtr Matrix::create(
    real* data, size_t height, size_t width, bool trans, bool useGpu) {
Z
zhangjinchao01 已提交
134 135 136 137 138 139 140
  if (useGpu) {
    return std::make_shared<GpuMatrix>(data, height, width, trans);
  } else {
    return std::make_shared<CpuMatrix>(data, height, width, trans);
  }
}

141 142 143 144 145 146
MatrixPtr Matrix::create(real* data,
                         size_t height,
                         size_t width,
                         size_t stride,
                         bool trans,
                         bool useGpu) {
Z
zhangjinchao01 已提交
147 148 149 150 151 152 153
  if (useGpu) {
    return std::make_shared<GpuMatrix>(data, height, width, stride, trans);
  } else {
    return std::make_shared<CpuMatrix>(data, height, width, stride, trans);
  }
}

154 155 156 157 158
MatrixPtr Matrix::createSparseMatrix(size_t height,
                                     size_t width,
                                     size_t nnz,
                                     SparseValueType valueType,
                                     bool trans,
Z
zhangjinchao01 已提交
159 160
                                     bool useGpu) {
  if (useGpu) {
161 162
    return std::make_shared<GpuSparseMatrix>(
        height, width, nnz, valueType, SPARSE_CSR, trans);
Z
zhangjinchao01 已提交
163
  } else {
164 165
    return std::make_shared<CpuSparseMatrix>(
        height, width, nnz, valueType, SPARSE_CSR, trans);
Z
zhangjinchao01 已提交
166 167 168
  }
}

169 170
void Matrix::resizeOrCreate(
    MatrixPtr& matrix, size_t height, size_t width, bool trans, bool useGpu) {
Z
zhangjinchao01 已提交
171 172 173
  if (!matrix) {
    matrix = Matrix::create(height, width, trans, useGpu);
  } else {
174
    CHECK_EQ(matrix->useGpu(), useGpu);
Z
zhangjinchao01 已提交
175 176 177 178
    matrix->resize(height, width);
  }
}

179 180 181 182
void Matrix::resizeOrCreateSparseMatrix(MatrixPtr& matrix,
                                        size_t height,
                                        size_t width,
                                        size_t nnz,
Z
zhangjinchao01 已提交
183
                                        SparseValueType valueType,
184 185
                                        SparseFormat format,
                                        bool trans,
Z
zhangjinchao01 已提交
186 187
                                        bool useGpu) {
  if (!matrix) {
188 189
    matrix = Matrix::createSparseMatrix(
        height, width, nnz, valueType, format, trans, useGpu);
Z
zhangjinchao01 已提交
190 191 192
  } else {
    CHECK(dynamic_cast<CpuSparseMatrix*>(matrix.get()) ||
          dynamic_cast<GpuSparseMatrix*>(matrix.get()));
193
    CHECK_EQ(matrix->useGpu(), useGpu);
Z
zhangjinchao01 已提交
194 195 196 197 198 199 200 201 202 203 204 205
    matrix->resize(height, width, nnz, valueType, format);
  }
}

void Matrix::reshape(size_t height, size_t width) {
  CHECK(isContiguous());
  CHECK(height_ * width_ == height * width);
  height_ = height;
  width_ = width;
  stride_ = width_;
}

206 207 208
MatrixPtr Matrix::subMatrix(size_t startRow,
                            size_t endRow,
                            size_t startCol,
Z
zhangjinchao01 已提交
209 210 211 212 213 214 215
                            size_t endCol) {
  CHECK_LE(startRow, endRow);
  CHECK_LE(endRow, getHeight());
  CHECK_LE(startCol, endCol);
  CHECK_LE(endCol, getWidth());

  return Matrix::create(getData() + startRow * getStride() + startCol,
216 217 218 219 220
                        endRow - startRow,
                        endCol - startCol,
                        getStride(),
                        trans_,
                        useGpu_);
Z
zhangjinchao01 已提交
221 222
}

223 224 225 226 227 228 229 230 231
void Matrix::setDiag(real value) {
  CHECK(data_ != NULL);
  CHECK_EQ(height_, width_);

  zeroMem();
  BaseMatrix diag(height_, 1, stride_ + 1, data_, false, useGpu_);
  diag.assign(value);
}

Z
zhangjinchao01 已提交
232 233
GpuMatrix::GpuMatrix(size_t height, size_t width, bool trans)
    : Matrix(std::make_shared<GpuMemoryHandle>(height * width * sizeof(real)),
234 235 236 237
             height,
             width,
             trans,
             true) {}
Z
zhangjinchao01 已提交
238 239 240 241 242 243 244 245 246 247 248 249

GpuMatrix::~GpuMatrix() {}

void GpuMatrix::zeroMem() {
  CHECK(data_ != NULL);
  zero();
}

void GpuMatrix::resetOne() {
  CHECK(data_ != NULL);
  one();
}
250

Z
zhangjinchao01 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
void GpuMatrix::resize(size_t newHeight, size_t newWidth) {
  size_t newSize = newHeight * newWidth;
  if (NULL == memoryHandle_.get() ||
      newSize * sizeof(real) > memoryHandle_->getAllocSize()) {
    memoryHandle_ = std::make_shared<GpuMemoryHandle>(newSize * sizeof(real));
    data_ = reinterpret_cast<real*>(memoryHandle_->getBuf());
  }
  height_ = newHeight;
  width_ = newWidth;
  elementCnt_ = newSize;
  stride_ = width_;
}

real GpuMatrix::getElement(size_t x, size_t y) const {
  real elem = 0;
  hl_memcpy_device2host(&elem, &data_[x * stride_ + y], sizeof(real));
  return elem;
}

real GpuMatrix::getSum() {
  CHECK(isContiguous());
  real sum = 0.0f;
  hl_vector_sum(data_, &sum, height_ * width_);
  return sum;
}

277 278 279 280 281 282 283 284 285 286 287 288
real GpuMatrix::getMin() {
  CHECK(isContiguous());
  auto vec = GpuVector(height_ * width_, data_);
  return vec.getMin();
}

real GpuMatrix::getMax() {
  CHECK(isContiguous());
  auto vec = GpuVector(height_ * width_, data_);
  return vec.getMax();
}

Z
zhangjinchao01 已提交
289 290 291
void GpuMatrix::accumulateColSum(Matrix& src) {
  CHECK_EQ(getWidth(), src.getWidth());
  CHECK_EQ(getHeight(), (size_t)1);
X
xuwei06 已提交
292
  sumCols(src, 1.0, 1.0);
Z
zhangjinchao01 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
}

real GpuMatrix::getAbsSum() {
  CHECK(isContiguous());
  real sum = 0.0f;
  hl_vector_abs_sum(data_, &sum, height_ * width_);
  return sum;
}

void GpuMatrix::copyFrom(const Matrix& src) {
  CHECK(isContiguous());
  CHECK(src.isContiguous());
  CHECK(elementCnt_ == src.getElementCnt());

  if (typeid(src) == typeid(CpuMatrix)) {
308 309
    hl_memcpy_host2device(
        data_, const_cast<real*>(src.getData()), sizeof(real) * elementCnt_);
Z
zhangjinchao01 已提交
310
  } else if (typeid(src) == typeid(GpuMatrix)) {
311 312
    hl_memcpy_device2device(
        data_, const_cast<real*>(src.getData()), sizeof(real) * elementCnt_);
Z
zhangjinchao01 已提交
313 314 315 316 317 318 319 320 321
  } else {
    LOG(FATAL) << "Wrong";
  }
}

void GpuMatrix::copyFrom(const Matrix& src, hl_stream_t stream) {
  CHECK(isContiguous());
  CHECK(src.isContiguous());
  CHECK(elementCnt_ == src.getElementCnt());
322 323 324 325
  hl_memcpy_async(this->getData(),
                  const_cast<real*>(src.getData()),
                  sizeof(real) * elementCnt_,
                  stream);
Z
zhangjinchao01 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
}

void GpuMatrix::copyFrom(const real* hostSrc, size_t size) {
  CHECK(isContiguous());
  CHECK(size <= elementCnt_);
  hl_memcpy_host2device(data_, const_cast<real*>(hostSrc), sizeof(real) * size);
}

void GpuMatrix::copyFrom(const real* hostSrc, const int64_t* seq) {
  LOG(FATAL) << "not implemented";
}

void GpuMatrix::copyFrom(const IVector& src) {
  CHECK(isContiguous());
  CpuMatrix matrix(src.getSize(), 1, false);
  matrix.copyFrom(src);
  copyFrom(matrix);
}

345
void GpuMatrix::copyByRowIndex(Matrix& b, const IVector& rowIndex) {
Z
zhangjinchao01 已提交
346 347 348 349 350
  size_t height = getHeight();
  size_t width = getWidth();
  CHECK_EQ(b.getWidth(), width);
  real* dst = getData();
  real* src = b.getData();
351
  const int* index = rowIndex.getData();
Z
zhangjinchao01 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
  hl_sequence2batch_copy(dst, src, index, width, height, true);
}

MatrixPtr GpuMatrix::clone(size_t height, size_t width, bool useGpu) {
  CHECK(isContiguous());

  if (height == 0 && width == 0) {
    height = height_;
    width = width_;
  }

  CHECK(width && height);

  if (useGpu) {
    return std::make_shared<GpuMatrix>(height, width);
  } else {
    return std::make_shared<CpuMatrix>(height, width);
  }
}

MatrixPtr GpuMatrix::getTranspose() {
  if (memoryHandle_.get() != NULL) {
    MatrixPtr copy_T(
        new GpuMatrix(std::dynamic_pointer_cast<GpuMemoryHandle>(memoryHandle_),
376 377 378
                      height_,
                      width_,
                      true));
Z
zhangjinchao01 已提交
379 380 381 382 383 384 385
    return copy_T;
  } else {
    MatrixPtr copy_T(new GpuMatrix(data_, height_, width_, true));
    return copy_T;
  }
}

386
void GpuMatrix::transpose(MatrixPtr& matTrans, bool memAlloc) {
Z
zhangjinchao01 已提交
387 388 389 390
  if (memAlloc) {
    matTrans = std::make_shared<GpuMatrix>(width_, height_);
  } else {
    CHECK(matTrans != NULL);
H
Haonan 已提交
391 392
    CHECK_EQ(matTrans->getHeight(), width_);
    CHECK_EQ(matTrans->getWidth(), height_);
Z
zhangjinchao01 已提交
393 394 395 396 397 398 399 400 401
  }
  real* dataTrans = matTrans->getData();
  real* data = getData();
  int lda = getStride();
  int ldc = matTrans->getStride();

  hl_matrix_transpose(data, dataTrans, height_, width_, lda, ldc);
}

402 403 404 405 406
void GpuMatrix::rotate(MatrixPtr& matRot, bool memAlloc, bool clockWise) {
  if (memAlloc) {
    matRot = std::make_shared<GpuMatrix>(width_, height_);
  } else {
    CHECK(matRot != NULL);
H
Haonan 已提交
407 408
    CHECK_EQ(matRot->getHeight(), width_);
    CHECK_EQ(matRot->getWidth(), height_);
409 410
  }

H
Haonan 已提交
411 412 413
  real* dataRot = matRot->getData();
  real* data = getData();
  hl_matrix_rotate(data, dataRot, height_, width_, clockWise);
414 415
}

L
lzhao4ever 已提交
416 417 418 419 420 421
MatrixPtr GpuMatrix::getInverse() {
  MatrixPtr matInv;
  inverse(matInv, true);
  return matInv;
}

422
void GpuMatrix::inverse(MatrixPtr& matInv, bool memAlloc) {
L
lzhao4ever 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
  CHECK_EQ(height_, width_);

  if (memAlloc) {
    matInv = std::make_shared<GpuMatrix>(height_, width_);
  } else {
    CHECK(matInv != NULL);
  }

  real* data = getData();
  real* dataInv = matInv->getData();
  int lda = getStride();
  int ldc = matInv->getStride();

  hl_matrix_inverse(data, dataInv, height_, lda, ldc);
}

Z
zhangjinchao01 已提交
439 440 441 442 443
void GpuMatrix::addBias(Matrix& b, real scale) {
  CHECK(b.getHeight() == 1) << "the Bias should be a vector";
  BaseMatrix::addBias(b, scale);
}

444 445 446 447
void GpuMatrix::addSharedBias(Matrix& b, real scale) {
  CHECK(b.getHeight() == 1) << "the Bias should be a vector";
  CHECK_LE(b.getWidth(), getWidth());
  CHECK_EQ(getWidth() % b.getWidth(), 0UL);
448 449
  hl_matrix_add_shared_bias(
      getData(), b.getData(), b.getWidth(), getHeight(), getWidth(), scale);
450 451
}

Z
zhangjinchao01 已提交
452 453 454
void GpuMatrix::collectBias(Matrix& a, real scale) {
  CHECK_EQ(getHeight(), (size_t)1);
  CHECK_EQ(width_, a.getWidth());
Q
qijun 已提交
455
  GpuSparseMatrix* sMatPtr = dynamic_cast<GpuSparseMatrix*>(&a);
Z
zhangjinchao01 已提交
456
  if (!sMatPtr) {
457
    sumCols(a, /* scaleSum= */ scale, /* scaleDest= */ 1);
Z
zhangjinchao01 已提交
458 459 460
  } else {
    real* data = getData();
    hl_sparse_matrix_s A_d = sMatPtr->sMatrix_.get();
Q
qijun 已提交
461
    hl_sparse_matrix_column_sum(data, A_d, sMatPtr->getHeight(), width_, scale);
Z
zhangjinchao01 已提交
462 463 464
  }
}

465 466 467
void GpuMatrix::collectSharedBias(Matrix& a, real scale) {
  CHECK_EQ(getHeight(), (size_t)1);
  CHECK_EQ(a.getWidth() % getWidth(), 0UL);
468 469
  hl_matrix_collect_shared_bias(
      getData(), a.getData(), getWidth(), a.getHeight(), a.getWidth(), scale);
470 471
}

Z
zhangjinchao01 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485
void GpuMatrix::sequenceAvgForward(Matrix& a,
                                   const IVector& startsPos,
                                   int mode) {
  size_t height = getHeight();
  size_t width = getWidth();
  CHECK_EQ(height, startsPos.getSize() - 1);
  CHECK_EQ(width, a.getWidth());
  real* dst = getData();
  real* src = a.getData();
  const int* starts = startsPos.getData();

  hl_sequence_avg_forward(dst, src, starts, height, width, mode);
}

L
Luo Tao 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499
void GpuMatrix::sequenceAvgBackward(Matrix& a,
                                    const IVector& startsPos,
                                    int mode) {
  size_t height = a.getHeight();
  size_t width = getWidth();
  CHECK_EQ(height, startsPos.getSize() - 1);
  CHECK_EQ(width, a.getWidth());
  real* dst = getData();
  real* src = a.getData();
  const int* starts = startsPos.getData();

  hl_sequence_avg_backward(dst, src, starts, height, width, mode);
}

Z
zhangjinchao01 已提交
500
/* this = scaleAB*(a*b) +  scaleT*this */
501 502 503
void GpuMatrix::mul(const GpuMatrix& a,
                    const GpuMatrix& b,
                    real scaleAB,
Z
zhangjinchao01 已提交
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
                    real scaleT) {
  CHECK(!isTransposed()) << "Not supported";

  if (!a.isTransposed() && !b.isTransposed()) {
    CHECK_EQ(width_, b.width_);
    CHECK_EQ(height_, a.height_);
    CHECK_EQ(a.width_, b.height_);
  } else if (a.isTransposed() && !b.isTransposed()) {
    CHECK_EQ(width_, b.width_);
    CHECK_EQ(height_, a.width_);
    CHECK_EQ(a.height_, b.height_);
  } else if (!a.isTransposed() && b.isTransposed()) {
    CHECK_EQ(width_, b.height_);
    CHECK_EQ(height_, a.height_);
    CHECK_EQ(a.width_, b.width_);
  } else {
    LOG(FATAL) << "Is not supported";
  }

  real* A_d = a.data_;
  real* B_d = b.data_;
  real* C_d = data_;
  int dimM = getHeight();
  int dimN = getWidth();
  int dimK = !a.isTransposed() ? a.width_ : a.height_;
  int lda = a.getStride();
  int ldb = b.getStride();
  int ldc = getStride();
  hl_trans_op_t transa = !a.isTransposed() ? HPPL_OP_N : HPPL_OP_T;
  hl_trans_op_t transb = !b.isTransposed() ? HPPL_OP_N : HPPL_OP_T;

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
  hl_matrix_mul(A_d,
                transa,
                B_d,
                transb,
                C_d,
                dimM,
                dimN,
                dimK,
                scaleAB,
                scaleT,
                lda,
                ldb,
                ldc);
}

void GpuMatrix::mul(const GpuSparseMatrix& a,
                    const GpuMatrix& b,
                    real scaleAB,
Z
zhangjinchao01 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569
                    real scaleT) {
  CHECK(isContiguous());
  CHECK(b.isContiguous());
  CHECK(b.useGpu_ == true) << "Matrix type are not equal";
  CHECK(!trans_ && !b.trans_) << "not supported";

  if (!a.trans_) {
    CHECK(width_ == b.width_ && height_ == a.height_ && a.width_ == b.height_)
        << "Matrix dimensions are not equal";
  } else {
    CHECK(width_ == b.width_ && height_ == a.width_ && a.height_ == b.height_)
        << "Matrix dimensions are not equal";
  }
  hl_trans_op_t transA = a.trans_ ? HPPL_OP_T : HPPL_OP_N;
  hl_sparse_matrix_s A_d = a.sMatrix_.get();
  real* B_d = b.data_;
  real* C_d = data_;
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
  hl_matrix_csr_mul_dense(A_d,
                          transA,
                          B_d,
                          HPPL_OP_N,
                          C_d,
                          height_,
                          width_,
                          b.height_,
                          scaleAB,
                          scaleT);
}

void GpuMatrix::mul(const GpuMatrix& a,
                    const GpuSparseMatrix& b,
                    real scaleAB,
Z
zhangjinchao01 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
                    real scaleT) {
  CHECK(isContiguous());
  CHECK(a.isContiguous());
  CHECK(a.useGpu_ == true) << "Matrix type are not equal";

  hl_sparse_matrix_s B_d = b.sMatrix_.get();
  real* A_d = a.data_;
  real* C_d = data_;
  hl_trans_op_t transB = b.trans_ ? HPPL_OP_T : HPPL_OP_N;
  if (!b.trans_) {
    CHECK(width_ == b.width_ && height_ == a.height_ && a.width_ == b.height_)
        << "Matrix dimensions are not equal";
  } else {
    CHECK(width_ == b.height_ && height_ == a.height_ && a.width_ == b.width_)
        << "Matrix dimensions are not equal";
  }
  if (b.format_ == SPARSE_CSC) {
602 603 604 605 606 607 608 609 610 611
    hl_matrix_dense_mul_csc(A_d,
                            HPPL_OP_N,
                            B_d,
                            transB,
                            C_d,
                            height_,
                            width_,
                            a.width_,
                            scaleAB,
                            scaleT);
Z
zhangjinchao01 已提交
612
  } else {
613 614 615 616 617 618 619 620 621 622
    hl_matrix_dense_mul_csr(A_d,
                            HPPL_OP_N,
                            B_d,
                            transB,
                            C_d,
                            height_,
                            width_,
                            a.width_,
                            scaleAB,
                            scaleT);
Z
zhangjinchao01 已提交
623 624 625 626
  }
}

/* this = a*b */
627
void GpuMatrix::mul(const Matrix& a, const Matrix& b) { mul(a, b, 1.0, 0.0); }
Z
zhangjinchao01 已提交
628

629 630
void GpuMatrix::mul(const Matrix& a,
                    const Matrix& b,
631
                    real scaleAB,
Z
zhangjinchao01 已提交
632
                    real scaleT) {
633 634 635 636
  const auto a_ptr = dynamic_cast<const GpuMatrix*>(&a);
  const auto b_ptr = dynamic_cast<const GpuMatrix*>(&b);
  const auto a_ptr_s = dynamic_cast<const GpuSparseMatrix*>(&a);
  const auto b_ptr_s = dynamic_cast<const GpuSparseMatrix*>(&b);
Z
zhangjinchao01 已提交
637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683

  if (a_ptr && b_ptr) {
    mul(*a_ptr, *b_ptr, scaleAB, scaleT);
  } else if (a_ptr_s && b_ptr) {
    mul(*a_ptr_s, *b_ptr, scaleAB, scaleT);
  } else if (a_ptr && b_ptr_s) {
    mul(*a_ptr, *b_ptr_s, scaleAB, scaleT);
  } else {
    LOG(FATAL) << "Not supported";
  }
}

/* this = this* b */
void GpuMatrix::rightMul(Matrix& b) { rightMul(b, 1.0, 0.0); }

/* this = scaleAB*(this*b) +  scaleT*this */
void GpuMatrix::rightMul(Matrix& b, real scaleAB, real scaleT) {
  CHECK(dynamic_cast<GpuMatrix*>(&b));
  CHECK(!isTransposed()) << "Not supported";
  CHECK(!b.isTransposed()) << "Not supported";
  mul(*this, *dynamic_cast<GpuMatrix*>(&b), scaleAB, scaleT);
}

/* this = a*this */
void GpuMatrix::leftMul(Matrix& a) { leftMul(a, 1.0, 0.0); }

/* this = scaleAB*(a*this) +  scaleT*this */
void GpuMatrix::leftMul(Matrix& a, real scaleAB, real scaleT) {
  CHECK(dynamic_cast<GpuMatrix*>(&a));
  CHECK(!isTransposed()) << "Not supported";
  CHECK(!a.isTransposed()) << "Not supported";
  mul(*dynamic_cast<GpuMatrix*>(&a), *this, scaleAB, scaleT);
}

void GpuMatrix::selectRows(Matrix& table, IVector& ids) {
#ifndef PADDLE_ONLY_CPU
  CHECK(dynamic_cast<GpuMatrix*>(&table));
  CHECK(table.useGpu());
  CHECK(ids.useGpu());
  CHECK_EQ(getHeight(), ids.getSize());
  CHECK_EQ(getWidth(), table.getWidth());
  size_t numSamples = getHeight();
  size_t dim = getWidth();
  real* a = getData();
  size_t tableSize = table.getHeight();
  int* index = ids.getData();

684 685 686 687 688 689 690 691
  hl_matrix_select_rows(a,
                        stride_,
                        table.getData(),
                        table.stride_,
                        index,
                        numSamples,
                        tableSize,
                        dim);
Z
zhangjinchao01 已提交
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
#endif
}

void GpuMatrix::addToRows(Matrix& table, IVector& ids) {
#ifndef PADDLE_ONLY_CPU
  CHECK(dynamic_cast<GpuMatrix*>(&table));
  CHECK(table.useGpu());
  CHECK(ids.useGpu());
  CHECK_EQ(getHeight(), ids.getSize());
  CHECK_EQ(getWidth(), table.getWidth());
  size_t numSamples = getHeight();
  size_t dim = getWidth();
  real* a = getData();
  size_t tableSize = table.getHeight();
  int* index = ids.getData();

708 709 710 711 712 713 714 715
  hl_matrix_add_to_rows(table.getData(),
                        table.stride_,
                        a,
                        stride_,
                        index,
                        numSamples,
                        tableSize,
                        dim);
Z
zhangjinchao01 已提交
716 717 718 719 720 721
#endif
}

void GpuMatrix::colMerge(Matrix& src) {
  CHECK(src.height_ == height_);
  if (!trans_ && !src.trans_) {
722
    sumRows(src, /* scaleSum= */ 1, /* scaleDest= */ 0);
Z
zhangjinchao01 已提交
723 724 725 726 727 728 729 730 731
  } else {
    LOG(FATAL) << "Is not supported";
  }
}

void GpuMatrix::rowSum(Matrix& sum) {
  CHECK_EQ(sum.getHeight(), getHeight());
  CHECK_EQ(sum.getWidth(), (size_t)1);

732
  sum.sumRows(*this, /* scaleSum= */ 1, /* scaleDest= */ 0);
Z
zhangjinchao01 已提交
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
}

void GpuMatrix::rowMax(Matrix& max) {
  CHECK_EQ(max.getHeight(), getHeight());
  CHECK_EQ(max.getWidth(), (size_t)1);

  max.maxRows(*this);
}

void GpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
#ifndef PADDLE_ONLY_CPU
  CHECK(maxIds.useGpu() && maxVal.useGpu()) << "Matrix type are not equal";
  size_t numSamples = getHeight();
  size_t beam = maxVal.getWidth();
  CHECK_EQ(maxIds.getSize(), numSamples * beam);
  CHECK_EQ(maxVal.getHeight(), numSamples);
L
Liang Zhao 已提交
749
  CHECK_EQ(maxVal.getWidth(), beam);
Z
zhangjinchao01 已提交
750

751 752 753 754 755 756 757
  hl_matrix_top_k(maxVal.getData(),
                  maxVal.getStride(),
                  maxIds.getData(),
                  this->getData(),
                  this->getStride(),
                  this->getWidth(),
                  beam,
Z
zhangjinchao01 已提交
758 759 760 761 762 763 764 765 766 767 768
                  numSamples);
#endif
}

void GpuMatrix::colMax(Matrix& max) {
  CHECK_EQ(max.getWidth(), getWidth());
  CHECK_EQ(max.getHeight(), (size_t)1);

  max.maxCols(*this);
}

769 770 771 772
void GpuMatrix::colMax(IVector& maxIds, Matrix& maxVal) {
  LOG(FATAL) << "Is not supported";
}

773 774 775
void GpuMatrix::maxoutForward(Matrix& a,
                              IVector& id,
                              size_t channels,
776 777 778 779 780 781 782
                              size_t groups) {
  CHECK(dynamic_cast<GpuMatrix*>(&a));
  CHECK(dynamic_cast<GpuIVector*>(&id));
  CHECK_EQ(a.getHeight(), getHeight());

  size_t size = getWidth();
  size_t batchSize = getHeight();
Q
qijun 已提交
783
  const real* input = a.getData();
784 785 786
  real* output = getData();
  int* idForGpu = id.getData();

787 788
  hl_maxout_forward(
      input, output, idForGpu, batchSize, size, size / channels, groups);
789 790
}

791 792 793
void GpuMatrix::maxoutBackward(Matrix& a,
                               IVector& id,
                               size_t channels,
794 795 796 797 798 799 800
                               size_t groups) {
  CHECK(dynamic_cast<GpuMatrix*>(&a));
  CHECK(dynamic_cast<GpuIVector*>(&id));
  CHECK_EQ(a.getHeight(), getHeight());

  size_t size = a.getWidth();
  size_t batchSize = getHeight();
Q
qijun 已提交
801
  real* input = getData();
802 803 804
  const real* output = a.getData();
  const int* idForGpu = id.getData();

805 806
  hl_maxout_backward(
      input, output, idForGpu, batchSize, size, size / channels, groups);
807 808
}

Z
zhangjinchao01 已提交
809
/*calulate the error of classification */
810 811 812 813 814 815 816 817 818 819 820 821 822
void GpuMatrix::classificationError(Matrix& output,
                                    IVector& label,
                                    size_t topkSize) {
  auto gpuOutput = dynamic_cast<GpuMatrix*>(&output);
  auto gpuLabel = dynamic_cast<GpuIVector*>(&label);
  size_t numSamples = this->getHeight();
  GpuMatrixPtr gpuTopVal = std::make_shared<GpuMatrix>(numSamples, topkSize);
  GpuIVectorPtr gpuTopIds = std::make_shared<GpuIVector>(numSamples * topkSize);

  CHECK(gpuOutput && gpuLabel) << "Invalid argument pointer";
  CHECK(gpuTopVal && gpuTopIds) << "Allocate GPU memory failed";
  CHECK(gpuLabel->getSize() == numSamples) << "Vector size is not equal";
  CHECK(numSamples == gpuOutput->getHeight() && this->getWidth() == 1)
Z
zhangjinchao01 已提交
823 824
      << "Matrix dimensions are not equal";

825 826 827 828 829 830 831 832 833 834 835
  size_t dim = gpuOutput->getWidth();
  hl_matrix_classification_error(gpuTopVal->getData(),
                                 gpuTopVal->getStride(),
                                 gpuTopIds->getData(),
                                 gpuOutput->getData(),
                                 gpuOutput->getStride(),
                                 dim,
                                 topkSize,
                                 numSamples,
                                 gpuLabel->getData(),
                                 this->getData());
Z
zhangjinchao01 已提交
836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
}

/* copy -log(output[i * width + label]) to this->data[i] */
void GpuMatrix::oneHotCrossEntropy(Matrix& output, IVector& label) {
  GpuMatrix* output_ptr = dynamic_cast<GpuMatrix*>(&output);
  GpuIVector* label_ptr = dynamic_cast<GpuIVector*>(&label);

  CHECK(output_ptr && label_ptr) << "Invalid argument pointer";

  CHECK(height_ == label.getSize() && width_ == 1 && height_ == output.height_)
      << "Matrix dimensions are not equal";

  real* A_d = output_ptr->data_;
  real* C_d = data_;
  int* label_d = label_ptr->getData();

  hl_matrix_cross_entropy(A_d, C_d, label_d, height_, output.width_);
}

/* calculate the error of outputV according to label */
void GpuMatrix::oneHotCrossEntropyBp(Matrix& outputV, IVector& label) {
  GpuMatrix* output_ptr = dynamic_cast<GpuMatrix*>(&outputV);
  GpuIVector* label_ptr = dynamic_cast<GpuIVector*>(&label);

  CHECK(output_ptr && label_ptr) << "Invalid argument pointer";

  CHECK(height_ == output_ptr->height_ && width_ == output_ptr->width_)
      << "Matrix dimensions are not equal";

  real* output_d = output_ptr->data_;
  real* grad_d = data_;
  int* label_d = label_ptr->getData();

  hl_matrix_cross_entropy_bp(grad_d, output_d, label_d, height_, width_);
}

872 873
void GpuMatrix::oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                               IVector& label,
Z
zhangjinchao01 已提交
874 875 876 877 878
                                               real alpha) {
  LOG(FATAL) << "Not implemented";
}

void GpuMatrix::oneHotCrossEntropyWithSelfNormBp(Matrix& outputV,
879 880
                                                 IVector& label,
                                                 real alpha) {
Z
zhangjinchao01 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
  LOG(FATAL) << "Not implemented";
}

void GpuMatrix::softmax(Matrix& output) {
  CHECK(output.useGpu()) << "Matrix type are not equal";

  size_t height = getHeight();
  size_t width = getWidth();
  CHECK(height == output.getHeight() && width == output.getWidth())
      << "Matrix dimensions are not equal";

  real* inputData = getData();
  real* outputData = output.getData();
  hl_matrix_softmax(inputData, outputData, height, width);
}

void GpuMatrix::sequenceSoftmax(Matrix& output, const IVector& index) {
  CHECK_EQ(getWidth(), 1UL);
  CHECK_EQ(output.getWidth(), 1UL);
  CHECK(isContiguous());

  real* inputData = getData();
  real* outputData = output.getData();
  auto starts = index.getData();
  int numSequences = index.getSize() - 1;
Q
qijun 已提交
906
  hl_sequence_softmax_forward(inputData, outputData, starts, numSequences);
Z
zhangjinchao01 已提交
907 908 909 910 911 912 913 914 915 916 917 918 919
}

void GpuMatrix::softmaxDerivative(Matrix& output, Matrix& sftmaxSum) {
  CHECK(output.useGpu_ == true && sftmaxSum.useGpu_ == true)
      << "Matrix type are not equal";

  CHECK(height_ == output.height_ && width_ == output.width_ &&
        height_ == sftmaxSum.height_)
      << "Matrix dimensions are not equal";

  real* output_d = output.data_;
  real* sftmaxSum_d = sftmaxSum.data_;
  real* grad_d = data_;
Q
qijun 已提交
920
  hl_matrix_softmax_derivative(grad_d, output_d, sftmaxSum_d, height_, width_);
Z
zhangjinchao01 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
}

void GpuMatrix::softmaxBackward(Matrix& outputV) {
  CHECK(outputV.useGpu()) << "Matrix type are not equal";

  size_t height = getHeight();
  size_t width = getWidth();
  CHECK(height == outputV.getHeight() && width == outputV.getWidth())
      << "Matrix dimensions are not equal";

  real* output_grad = getData();
  real* output_value = outputV.getData();
  hl_softmax_backward(output_value, output_grad, height, width);
}

void GpuMatrix::sumOfSquares(Matrix& output, Matrix& label) {
  CHECK_EQ(label.getHeight(), height_);
  CHECK_EQ(output.getHeight(), height_);
  CHECK_EQ(label.getWidth(), output.getWidth());
  CHECK_EQ((size_t)1, width_);

  auto labelptr = dynamic_cast<GpuSparseMatrix*>(&label);
  if (labelptr) {
    LOG(FATAL) << "not supported: GpuSparseMatrix as label";
  }

947 948 949 950
  BaseMatrix::sumOfSquaredDiffs(output,
                                label,
                                /* scaleSum= */ 1,
                                /* scaleDest= */ 1);
Z
zhangjinchao01 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
}

void GpuMatrix::sumOfSquaresBp(Matrix& outputV, Matrix& label) {
  add2(outputV, label, 1, 2, -2);
}

void GpuMatrix::tanh(Matrix& output) { BaseMatrix::tanh(output); }

void GpuMatrix::tanhDerivative(Matrix& output) {
  BaseMatrix::tanhDerivative(output);
}

void GpuMatrix::softrelu(Matrix& output) { BaseMatrix::softrelu(output); }

void GpuMatrix::softreluDerivative(Matrix& output) {
  BaseMatrix::softreluDerivative(output);
}

void GpuMatrix::scaledTanh(Matrix& output, real p1, real p2) {
  BaseMatrix::scaledTanh(output, p1, p2);
}

void GpuMatrix::randomizeUniform() {
  CHECK(isContiguous());
  real* data = data_;
  size_t size = height_ * width_;

  hl_rand(data, size);
}

void GpuMatrix::print(std::ostream& os) const {
  CHECK(isContiguous());
  CpuMatrix cpuMat(getHeight(), getWidth());
  cpuMat.copyFrom(*this);
  cpuMat.print(os);
}

void GpuMatrix::print(std::ostream& os, size_t height, size_t width) const {
  CHECK(isContiguous());
  CpuMatrix cpuMat(getHeight(), getWidth());
  cpuMat.copyFrom(*this);
  cpuMat.print(os, height, width);
}

void GpuMatrix::check(std::ostream& os, Matrix& refMat, bool printDiff) {
  CHECK(isContiguous());
  CHECK(height_ == refMat.getHeight());
  CHECK(width_ == refMat.getWidth());
  CpuMatrix cpuRef(height_, width_);
  GpuMatrix gpuRef(height_, width_);
  cpuRef.copyFrom(refMat);
  gpuRef.copyFrom(*this);
  size_t diffCnt = 0;
  for (size_t i = 0; i < height_; ++i) {
    for (size_t j = 0; j < width_; ++j) {
      real a = gpuRef.getElement(i, j);
      real b = cpuRef.getElement(i, j);
      if (fabs(a - b) > 0.00001) {
        ++diffCnt;
        if (printDiff) {
          os << "ref= " << a << "  check= " << b << std::endl;
        }
      }
    }
  }
  LOG(INFO) << "the  diffCnt is " << diffCnt;
}

1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029
void GpuMatrix::convExpand(Matrix& feature,
                           int feaImgHeight,
                           int feaImgWidth,
                           int channels,
                           int blockH,
                           int blockW,
                           int strideH,
                           int strideW,
                           int paddingH,
                           int paddingW,
                           int outputH,
Q
qijun 已提交
1030
                           int outputW) {
Z
zhangjinchao01 已提交
1031 1032 1033 1034 1035 1036 1037 1038 1039
  CHECK(feature.useGpu_ == true) << "Matrix type are not equal";

  CHECK_EQ(size_t(feaImgHeight * feaImgWidth * channels),
           feature.getHeight() * feature.getWidth())
      << "Matrix dimensions are not equal";

  size_t elemCnt = outputH * outputW * blockH * blockW * channels;
  CHECK_EQ(elemCnt, height_ * width_) << "Matrix dimensions are not equal";

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
  hl_expand_feature2col(feature.getData(),
                        channels,
                        feaImgHeight,
                        feaImgWidth,
                        blockH,
                        blockW,
                        strideH,
                        strideW,
                        paddingH,
                        paddingW,
                        outputH,
                        outputW,
                        getData());
}

void GpuMatrix::convShrink(Matrix& expandFeat,
                           int thisImgHeight,
                           int thisImgWidth,
                           int channels,
                           int blockH,
                           int blockW,
                           int strideH,
                           int strideW,
                           int paddingH,
                           int paddingW,
                           int outputH,
                           int outputW,
                           real alpha,
Q
qijun 已提交
1068
                           real beta) {
Z
zhangjinchao01 已提交
1069 1070 1071 1072 1073 1074 1075 1076
  CHECK(expandFeat.useGpu_ == true) << "Matrix type are not equal";
  CHECK_EQ(size_t(thisImgHeight * thisImgWidth * channels),
           getHeight() * getWidth())
      << "Matrix dimensions are not equal";

  size_t elemCnt = outputH * outputW * blockW * blockH * channels;
  CHECK(elemCnt == expandFeat.getHeight() * expandFeat.getWidth())
      << "Matrix dimensions are not equal";
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
  hl_shrink_col2feature(expandFeat.getData(),
                        channels,
                        thisImgHeight,
                        thisImgWidth,
                        blockH,
                        blockW,
                        strideH,
                        strideW,
                        paddingH,
                        paddingW,
                        outputH,
                        outputW,
                        getData(),
                        alpha,
Q
qijun 已提交
1091
                        beta);
Z
zhangjinchao01 已提交
1092 1093
}

1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104
void GpuMatrix::maxPoolForward(Matrix& inputMat,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               size_t channels,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               size_t paddingH,
Q
qijun 已提交
1105
                               size_t paddingW) {
Z
zhangjinchao01 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
  CHECK(inputMat.useGpu_ == true) << "Matrix type are not equal";

  real* inputData = inputMat.getData();
  size_t frameNum = inputMat.getHeight();
  size_t width = imgSizeW;
  size_t height = imgSizeH;
  CHECK(height * width * channels == inputMat.getWidth());
  CHECK(height_ == inputMat.getHeight());
  CHECK(width_ == outputH * outputW * channels);

1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
  hl_maxpool_forward(frameNum,
                     inputData,
                     channels,
                     height,
                     width,
                     outputH,
                     outputW,
                     sizeX,
                     sizeY,
                     strideH,
                     strideW,
                     paddingH,
                     paddingW,
                     data_,
                     getStride());
}

void GpuMatrix::maxPoolBackward(Matrix& inputMat,
                                size_t imgSizeH,
                                size_t imgSizeW,
                                Matrix& outGrad,
                                Matrix& outV,
                                size_t sizeX,
                                size_t sizeY,
                                size_t strideH,
                                size_t strideW,
                                size_t outputH,
                                size_t outputW,
                                real scaleTargets,
                                real scaleOutput,
                                size_t paddingH,
                                size_t paddingW) {
Z
zhangjinchao01 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
  CHECK(inputMat.useGpu_ == true && outGrad.useGpu_ == true &&
        outV.useGpu_ == true)
      << "Matrix type are not equal";

  real* inputData = inputMat.getData();
  real* outData = outV.getData();
  real* outDiff = outGrad.getData();
  size_t frameNum = inputMat.getHeight();
  size_t channels = outV.getWidth() / outputH / outputW;
  size_t width = imgSizeW;
  size_t height = imgSizeH;
  CHECK(height * width * channels == inputMat.getWidth());
  CHECK(height_ == inputMat.getHeight());
  CHECK(width_ == width * height * channels);
  CHECK(outGrad.getHeight() == outV.getHeight() &&
        outGrad.getWidth() == outV.getWidth());

1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
  hl_maxpool_backward(frameNum,
                      inputData,
                      outData,
                      outDiff,
                      channels,
                      height,
                      width,
                      outputH,
                      outputW,
                      sizeX,
                      sizeY,
                      strideH,
                      strideW,
                      paddingH,
                      paddingW,
                      scaleTargets,
                      scaleOutput,
                      data_,
Q
qijun 已提交
1183
                      outGrad.getStride());
Z
zhangjinchao01 已提交
1184 1185
}

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196
void GpuMatrix::avgPoolForward(Matrix& inputMat,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               size_t channels,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               size_t paddingH,
Q
qijun 已提交
1197
                               size_t paddingW) {
Z
zhangjinchao01 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
  CHECK(inputMat.useGpu_ == true) << "Matrix type are not equal";

  real* inputData = inputMat.getData();
  size_t frameNum = inputMat.getHeight();
  size_t height = imgSizeH;
  size_t width = imgSizeW;
  CHECK(height * width * channels == inputMat.getWidth());
  CHECK(height_ == inputMat.getHeight());
  CHECK(width_ == outputH * outputW * channels);

1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
  hl_avgpool_forward(frameNum,
                     inputData,
                     channels,
                     height,
                     width,
                     outputH,
                     outputW,
                     sizeX,
                     sizeY,
                     strideH,
                     strideW,
                     paddingH,
                     paddingW,
                     data_,
                     getStride());
}

void GpuMatrix::avgPoolBackward(Matrix& outGrad,
                                size_t imgSizeH,
                                size_t imgSizeW,
                                size_t sizeX,
                                size_t sizeY,
                                size_t strideH,
                                size_t strideW,
                                size_t outputH,
                                size_t outputW,
                                real scaleTargets,
                                real scaleOutput,
                                size_t paddingH,
Q
qijun 已提交
1237
                                size_t paddingW) {
Z
zhangjinchao01 已提交
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
  CHECK(outGrad.useGpu_ == true) << "Matrix type are not equal";

  real* outDiff = outGrad.getData();
  size_t frameNum = outGrad.getHeight();
  size_t channels = outGrad.getWidth() / outputH / outputW;
  size_t height = imgSizeH;
  size_t width = imgSizeW;
  CHECK(height * width * channels == width_);
  CHECK(height_ == outGrad.getHeight());
  CHECK(outGrad.getWidth() == outputH * outputW * channels);

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
  hl_avgpool_backward(frameNum,
                      outDiff,
                      channels,
                      height,
                      width,
                      outputH,
                      outputW,
                      sizeX,
                      sizeY,
                      strideH,
                      strideW,
                      paddingH,
                      paddingW,
                      scaleTargets,
                      scaleOutput,
                      data_,
Q
qijun 已提交
1265
                      outGrad.getStride());
Z
zhangjinchao01 已提交
1266 1267
}

1268 1269
void GpuMatrix::maxSequenceForward(Matrix& input,
                                   const IVector& sequence,
Z
zhangjinchao01 已提交
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
                                   IVector& index) {
  CHECK(dynamic_cast<GpuMatrix*>(&input));
  CHECK(dynamic_cast<const GpuIVector*>(&sequence));
  CHECK(dynamic_cast<GpuIVector*>(&index));

  real* outData = getData();
  real* inputData = input.getData();
  const int* starts = sequence.getData();
  int* maxIndex = index.getData();
  size_t numSequences = getHeight();
  size_t dim = getWidth();

  CHECK_EQ(dim, input.getWidth());
  CHECK_EQ(numSequences, sequence.getSize() - 1);
  CHECK_EQ(numSequences * dim, index.getSize());

1286 1287
  hl_max_sequence_forward(
      inputData, starts, outData, maxIndex, numSequences, dim);
Z
zhangjinchao01 已提交
1288 1289
}

1290 1291
void GpuMatrix::maxSequenceBackward(Matrix& outputGrad,
                                    const IVector& sequence,
Z
zhangjinchao01 已提交
1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
                                    IVector& index) {
  CHECK(dynamic_cast<GpuMatrix*>(&outputGrad));
  CHECK(dynamic_cast<const GpuIVector*>(&sequence));
  CHECK(dynamic_cast<GpuIVector*>(&index));

  real* inputGrad = getData();
  real* outGrad = outputGrad.getData();
  int* maxIndex = index.getData();
  size_t dim = getWidth();
  size_t numSequences = sequence.getSize() - 1;

  CHECK_EQ(dim, outputGrad.getWidth());
  CHECK_EQ(numSequences, outputGrad.getHeight());
  CHECK_EQ(numSequences * dim, index.getSize());

  hl_max_sequence_backward(outGrad, maxIndex, inputGrad, numSequences, dim);
}

void GpuMatrix::paramReluForward(Matrix& data, Matrix& W) {
  CHECK(data.useGpu_ == true && W.useGpu_ == true)
      << "Matrix type are not equal";
  real* input = data.getData();
  real* w = W.getData();
  size_t numElements = data.getWidth();
  size_t numSamples = data.getHeight();
H
hedaoyuan 已提交
1317 1318 1319
  size_t paraSize = W.getHeight() * W.getWidth();
  CHECK(!(numElements % paraSize));  // this check from ParameterReluLayer::init
  size_t partial_sum = numElements / paraSize;
Z
zhangjinchao01 已提交
1320
  real* output = getData();
Q
qijun 已提交
1321
  hl_param_relu_forward(output, input, w, numElements, numSamples, partial_sum);
Z
zhangjinchao01 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
}

void GpuMatrix::paramReluBackwardW(Matrix& oGrad, Matrix& data) {
  CHECK(oGrad.useGpu_ == true && data.useGpu_ == true)
      << "Matrix type are not equal";
  real* ograd = oGrad.getData();
  real* input = data.getData();
  real* wgrad = data_;
  size_t numElements = data.getWidth();
  size_t numSamples = data.getHeight();
H
hedaoyuan 已提交
1332 1333 1334
  size_t paraSize = this->getHeight() * this->getWidth();
  CHECK(!(numElements % paraSize));  // this check from ParameterReluLayer::init
  size_t partial_sum = numElements / paraSize;
1335 1336
  hl_param_relu_backward_w(
      wgrad, ograd, input, numElements, numSamples, partial_sum);
Z
zhangjinchao01 已提交
1337 1338 1339 1340 1341 1342 1343 1344 1345
}

void GpuMatrix::paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W) {
  real* diff = data_;
  real* input = data.getData();
  real* ograd = oGrad.getData();
  real* w = W.getData();
  size_t numElements = data.getWidth();
  size_t numSamples = data.getHeight();
H
hedaoyuan 已提交
1346 1347 1348
  size_t paraSize = W.getHeight() * W.getWidth();
  CHECK(!(numElements % paraSize));  // this check from ParameterReluLayer::init
  size_t partial_sum = numElements / paraSize;
1349 1350
  hl_param_relu_backward_diff(
      ograd, input, w, diff, numElements, numSamples, partial_sum);
Z
zhangjinchao01 已提交
1351 1352 1353 1354 1355 1356
}

void GpuMatrix::addColumnVector(const Matrix& b) {
  BaseMatrix::addColVector(const_cast<Matrix&>(b));
}

L
liaogang 已提交
1357 1358 1359 1360 1361
void GpuMatrix::bilinearForward(const Matrix& in,
                                const size_t inImgH,
                                const size_t inImgW,
                                const size_t outImgH,
                                const size_t outImgW,
L
liaogang 已提交
1362 1363 1364
                                const size_t numChannels,
                                const real ratioH,
                                const real ratioW) {
L
liaogang 已提交
1365 1366 1367 1368 1369 1370 1371 1372
  CHECK(dynamic_cast<const GpuMatrix*>(&in));

  const size_t outputW = getWidth();
  const size_t outputH = getHeight();
  const size_t inputW = in.getWidth();
  const size_t inputH = in.getHeight();

  real* outData = getData();
1373
  const real* inData = in.getData();
L
liaogang 已提交
1374 1375 1376 1377

  if (inImgH == outImgW && inImgW == outImgW) {
    this->copyFrom(in);
  } else {
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390
    hl_bilinear_forward(inData,
                        inImgH,
                        inImgW,
                        inputH,
                        inputW,
                        outData,
                        outImgH,
                        outImgW,
                        outputH,
                        outputW,
                        numChannels,
                        ratioH,
                        ratioW);
L
liaogang 已提交
1391 1392 1393 1394 1395 1396 1397 1398
  }
}

void GpuMatrix::bilinearBackward(const Matrix& out,
                                 const size_t outImgH,
                                 const size_t outImgW,
                                 const size_t inImgH,
                                 const size_t inImgW,
L
liaogang 已提交
1399 1400 1401
                                 const size_t numChannels,
                                 const real ratioH,
                                 const real ratioW) {
L
liaogang 已提交
1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
  CHECK(dynamic_cast<const GpuMatrix*>(&out));

  const size_t inputW = getWidth();
  const size_t inputH = getHeight();
  const size_t outputW = out.getWidth();
  const size_t outputH = out.getHeight();

  real* inGrad = getData();
  const real* outGrad = out.getData();

  if (outImgH == inImgH && outImgW == inImgW) {
L
liaogang 已提交
1413
    this->add(const_cast<Matrix&>(out));
L
liaogang 已提交
1414
  } else {
1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
    hl_bilinear_backward(inGrad,
                         inImgH,
                         inImgW,
                         inputH,
                         inputW,
                         outGrad,
                         outImgH,
                         outImgW,
                         outputH,
                         outputW,
                         numChannels,
                         ratioH,
                         ratioW);
L
liaogang 已提交
1428 1429 1430
  }
}

1431
void GpuMatrix::multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label) {
1432 1433 1434 1435 1436 1437 1438 1439 1440
  GpuMatrix* outputPtr = dynamic_cast<GpuMatrix*>(&output);
  auto labelPtr = dynamic_cast<GpuSparseMatrix*>(&label);

  CHECK(outputPtr && labelPtr) << "Invalid argument pointer";
  CHECK(labelPtr->format_ == SPARSE_CSR) << "Matrix format not supported";
  CHECK(height_ == outputPtr->height_ && width_ == 1 &&
        outputPtr->width_ == labelPtr->getWidth() &&
        outputPtr->height_ == labelPtr->getHeight())
      << "Matrix dimensions are not equal";
1441

1442 1443 1444 1445 1446
  real* output_d = outputPtr->data_;
  real* entropy_d = data_;
  hl_sparse_matrix_s mat_d = labelPtr->sMatrix_.get();
  hl_matrix_multi_binary_cross_entropy(
      output_d, entropy_d, mat_d, height_, outputPtr->width_);
1447 1448
}

1449 1450 1451
void GpuMatrix::multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) {
  GpuMatrix* outputPtr = dynamic_cast<GpuMatrix*>(&output);
  auto labelPtr = dynamic_cast<GpuSparseMatrix*>(&label);
H
Haonan 已提交
1452

1453 1454 1455 1456 1457 1458
  CHECK(outputPtr && labelPtr) << "Invalid argument pointer";
  CHECK(labelPtr->format_ == SPARSE_CSR) << "Matrix format not supported";
  CHECK(height_ == outputPtr->height_ && width_ == outputPtr->width_ &&
        outputPtr->width_ == labelPtr->getWidth() &&
        outputPtr->height_ == labelPtr->getHeight())
      << "Matrix dimensions are not equal";
1459

1460 1461 1462 1463 1464
  real* output_d = outputPtr->data_;
  real* grad_d = data_;
  hl_sparse_matrix_s mat_d = labelPtr->sMatrix_.get();
  hl_matrix_multi_binary_cross_entropy_bp(
      output_d, grad_d, mat_d, height_, width_);
1465 1466
}

Z
zhangjinchao01 已提交
1467 1468 1469 1470 1471 1472
/**
 * CpuMatrix
 */

CpuMatrix::CpuMatrix(size_t height, size_t width, bool trans)
    : Matrix(std::make_shared<CpuMemoryHandle>(height * width * sizeof(real)),
1473 1474 1475 1476
             height,
             width,
             trans,
             false) {}
Z
zhangjinchao01 已提交
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497

CpuMatrix::~CpuMatrix() {}

void CpuMatrix::zeroMem() {
  CHECK(data_ != NULL);
  if (isContiguous()) {
    memset(data_, 0, height_ * width_ * sizeof(real));
  } else {
    BaseMatrix::zero();
  }
}
void CpuMatrix::resetOne() {
  CHECK(data_ != NULL);
  BaseMatrix::one();
}

void CpuMatrix::copyFrom(const Matrix& src) {
  CHECK(isContiguous());
  if (typeid(src) == typeid(GpuMatrix)) {
    CHECK(src.isContiguous());
    CHECK(elementCnt_ == src.getElementCnt());
1498 1499
    hl_memcpy_device2host(
        data_, const_cast<real*>(src.getData()), sizeof(real) * elementCnt_);
1500 1501
  } else if (typeid(src) == typeid(CpuMatrix) ||
             typeid(src) == typeid(SharedCpuMatrix)) {
Z
zhangjinchao01 已提交
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
    CHECK(src.isContiguous());
    CHECK(elementCnt_ == src.getElementCnt());
    memcpy(data_, src.getData(), sizeof(real) * elementCnt_);
  } else if (typeid(src) == typeid(CpuSparseMatrix)) {
    CHECK_GE(elementCnt_, src.getElementCnt());
    copyFrom(dynamic_cast<CpuSparseMatrix&>(const_cast<Matrix&>(src)));
  } else {
    LOG(FATAL) << "Wrong";
  }
}

void CpuMatrix::copyFrom(CpuSparseMatrix& src) {
  CHECK(isContiguous());
  CHECK(height_ == src.getHeight());
  CHECK(width_ == src.getWidth());
  memset(data_, 0, sizeof(real) * height_ * width_);
  if (src.getValueType() == FLOAT_VALUE) {
    if (src.getFormat() == SPARSE_CSC) {
      int* rows = src.getRows();
      real* vals = src.getValue();
      for (size_t i = 0; i < width_; i++) {
        for (size_t j = src.getColStartIdx(i); j < src.getColStartIdx(i + 1);
             j++) {
          data_[rows[j] * width_ + i] = vals[j];
        }
      }
    } else {
      int* cols = src.getCols();
      real* vals = src.getValue();
      for (size_t i = 0; i < height_; i++) {
        for (size_t j = src.getRowStartIdx(i); j < src.getRowStartIdx(i + 1);
             j++) {
          data_[i * width_ + cols[j]] = vals[j];
        }
      }
    }
  } else {
    if (src.getFormat() == SPARSE_CSC) {
      int* rows = src.getRows();
      for (size_t i = 0; i < width_; i++) {
        for (size_t j = src.getColStartIdx(i); j < src.getColStartIdx(i + 1);
             j++) {
          data_[rows[j] * width_ + i] = 1.0;
        }
      }
    } else {
      int* cols = src.getCols();
      for (size_t i = 0; i < height_; i++) {
        for (size_t j = src.getRowStartIdx(i); j < src.getRowStartIdx(i + 1);
             j++) {
          data_[i * width_ + cols[j]] = 1.0;
        }
      }
    }
  }
}

void CpuMatrix::copyFrom(const Matrix& src, hl_stream_t stream) {
  CHECK(isContiguous());
  CHECK(src.isContiguous());
  CHECK(elementCnt_ == src.getElementCnt());
  if (typeid(src) == typeid(GpuMatrix)) {
1564 1565 1566 1567
    hl_memcpy_async(this->getData(),
                    const_cast<real*>(src.getData()),
                    sizeof(real) * elementCnt_,
                    stream);
Z
zhangjinchao01 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
  } else if (typeid(src) == typeid(CpuMatrix)) {
    memcpy(data_, src.getData(), sizeof(real) * elementCnt_);
  } else {
    LOG(FATAL) << "Wrong";
  }
}

void CpuMatrix::copyFrom(const real* cpuSrc, size_t size) {
  CHECK(isContiguous());
  CHECK(size <= elementCnt_);
  memcpy(data_, cpuSrc, sizeof(real) * size);
}

void CpuMatrix::copyFrom(const real* cpuSrc, const int64_t* seq) {
  CHECK(isContiguous());
  for (size_t i = 0; i < height_; i++) {
    memcpy(data_ + i * width_, cpuSrc + seq[i] * width_, sizeof(real) * width_);
  }
}

void CpuMatrix::copyFrom(const IVector& src) {
  CHECK(isContiguous());
  CHECK(elementCnt_ == src.getSize())
      << "the src and dst should have same size.";
  const int* cpuSrc = NULL;
  IVectorPtr tmp;
  if (src.useGpu()) {
    CpuIVector tmp(src.getSize());
    tmp.copyFrom(src);
    cpuSrc = tmp.getData();
  } else {
    cpuSrc = src.getData();
  }
  for (size_t i = 0; i < elementCnt_; ++i) {
    data_[i] = cpuSrc[i];
  }
}

1606
void CpuMatrix::copyByRowIndex(Matrix& b, const IVector& rowIndex) {
Z
zhangjinchao01 已提交
1607 1608 1609
  size_t height = getHeight();
  size_t width = getWidth();
  CHECK_EQ(b.getWidth(), width);
1610
  const int* index = rowIndex.getData();
Z
zhangjinchao01 已提交
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
  for (size_t i = 0; i < height; i++) {
    CHECK_LT(static_cast<size_t>(index[i]), b.getHeight());
    real* src = b.getData() + index[i] * width;
    real* dst = getData() + i * width;
    memcpy(dst, src, sizeof(real) * width);
  }
}

MatrixPtr CpuMatrix::clone(size_t height, size_t width, bool useGpu) {
  CHECK(isContiguous());

  if (height == 0 && width == 0) {
    height = height_;
    width = width_;
  }

  CHECK(width && height);

  if (useGpu) {
    return std::make_shared<GpuMatrix>(height, width);
  } else {
    return std::make_shared<CpuMatrix>(height, width);
  }
}

void CpuMatrix::resize(size_t newHeight, size_t newWidth) {
  size_t newSize = newHeight * newWidth;
  if (NULL == memoryHandle_.get() ||
      newSize * sizeof(real) > memoryHandle_->getAllocSize()) {
    memoryHandle_ = std::make_shared<CpuMemoryHandle>(newSize * sizeof(real));
    data_ = reinterpret_cast<real*>(memoryHandle_->getBuf());
  }

  height_ = newHeight;
  width_ = newWidth;
  elementCnt_ = newSize;
  stride_ = width_;
}

real CpuMatrix::getElement(size_t x, size_t y) const {
  return data_[x * stride_ + y];
}

real CpuMatrix::getSum() {
  CHECK(isContiguous());
  double sum = 0;
  for (size_t i = 0; i < height_; ++i) {
    for (size_t j = 0; j < width_; ++j) {
      sum += data_[i * width_ + j];
    }
  }
  return sum;
}

void CpuMatrix::accumulateColSum(Matrix& src) {
  CHECK_EQ(getWidth(), src.getWidth());
  CHECK_EQ(getHeight(), (size_t)1);

1669
  sumCols(src, /* scaleSum= */ 1, /* scaleDest= */ 1);
Z
zhangjinchao01 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
}

real CpuMatrix::getAbsSum() {
  CHECK(isContiguous());
  double sum = 0;
  for (size_t i = 0; i < height_; ++i) {
    for (size_t j = 0; j < width_; ++j) {
      sum += fabs(data_[i * width_ + j]);
    }
  }
  return sum;
}

MatrixPtr CpuMatrix::getTranspose() {
  if (memoryHandle_.get() != NULL) {
    return std::make_shared<CpuMatrix>(
1686 1687 1688 1689
        std::dynamic_pointer_cast<CpuMemoryHandle>(memoryHandle_),
        height_,
        width_,
        true);
Z
zhangjinchao01 已提交
1690 1691 1692 1693 1694 1695
  } else {
    MatrixPtr copy_T(new CpuMatrix(data_, height_, width_, true));
    return copy_T;
  }
}

1696
void CpuMatrix::transpose(MatrixPtr& matTrans, bool memAlloc) {
Z
zhangjinchao01 已提交
1697 1698 1699 1700
  if (memAlloc) {
    matTrans = std::make_shared<CpuMatrix>(width_, height_);
  } else {
    CHECK(matTrans != NULL);
H
Haonan 已提交
1701 1702
    CHECK_EQ(matTrans->getHeight(), width_);
    CHECK_EQ(matTrans->getWidth(), height_);
Z
zhangjinchao01 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715
  }
  real* dataTrans = matTrans->getData();
  real* data = getData();
  int lda = getStride();
  int ldc = matTrans->getStride();

  for (size_t i = 0; i < height_; i++) {
    for (size_t j = 0; j < width_; j++) {
      dataTrans[j * ldc + i] = data[i * lda + j];
    }
  }
}

1716 1717 1718 1719 1720
void CpuMatrix::rotate(MatrixPtr& matRot, bool memAlloc, bool clockWise) {
  if (memAlloc) {
    matRot = std::make_shared<CpuMatrix>(width_, height_);
  } else {
    CHECK(matRot != NULL);
H
Haonan 已提交
1721 1722
    CHECK_EQ(matRot->getHeight(), width_);
    CHECK_EQ(matRot->getWidth(), height_);
1723 1724 1725 1726 1727 1728 1729
  }
  real* dataRot = matRot->getData();
  real* data = getData();

  for (size_t i = 0; i < height_; i++) {
    for (size_t j = 0; j < width_; j++) {
      if (clockWise) {
H
Haonan 已提交
1730
        dataRot[j * height_ + i] = data[(height_ - i - 1) * width_ + j];
1731
      } else {
H
Haonan 已提交
1732
        dataRot[j * height_ + i] = data[i * width_ + (width_ - j - 1)];
1733 1734 1735 1736 1737
      }
    }
  }
}

L
lzhao4ever 已提交
1738 1739 1740 1741 1742 1743
MatrixPtr CpuMatrix::getInverse() {
  MatrixPtr matInv;
  inverse(matInv, true);
  return matInv;
}

1744
void CpuMatrix::inverse(MatrixPtr& matInv, bool memAlloc) {
L
lzhao4ever 已提交
1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777
  CHECK_EQ(height_, width_);

  if (memAlloc) {
    matInv = std::make_shared<CpuMatrix>(height_, width_);
  } else {
    CHECK(matInv != NULL);
  }

  CHECK_EQ(height_, matInv->getHeight());
  CHECK_EQ(width_, matInv->getWidth());
  matInv->copyFrom(*this);

  real* data = getData();
  real* dataInv = matInv->getData();
  int ldc = matInv->getStride();

  if (height_ == 1) {
    CHECK_NE(*data, 0);
    *dataInv = 1.0 / (*data);
    return;
  }

  /* Compute the LU decomposition of the matrix */
  std::vector<int> ipiv(height_);
  CBLAS_ORDER order = (matInv->isTransposed() ? CblasColMajor : CblasRowMajor);
  int info = getrf<real>(order, height_, height_, dataInv, ldc, ipiv.data());
  CHECK_EQ(info, 0);

  /* Compute the inverse of the matrix given its LU decompsotion */
  info = getri<real>(order, height_, dataInv, ldc, ipiv.data());
  CHECK_EQ(info, 0);
}

1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788
void CpuMatrix::convExpand(Matrix& feature,
                           int feaImgHeight,
                           int feaImgWidth,
                           int channels,
                           int blockH,
                           int blockW,
                           int strideH,
                           int strideW,
                           int paddingH,
                           int paddingW,
                           int outputH,
Q
qijun 已提交
1789
                           int outputW) {
Z
zhangjinchao01 已提交
1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
  CHECK(feature.useGpu_ == false) << "Matrix type are not equal";

  CHECK_EQ(size_t(feaImgHeight * feaImgWidth * channels),
           feature.getHeight() * feature.getWidth())
      << "Matrix dimensions are not equal";

  size_t elemCnt = outputH * outputW * blockH * blockW * channels;
  CHECK_EQ(elemCnt, height_ * width_) << "Matrix dimensions are not equal";

  int channelsCol = channels * blockH * blockW;
  real* srcData = feature.getData();
  for (int c = 0; c < channelsCol; ++c) {
    int wOffset = c % blockW;
    int hOffset = (c / blockW) % blockH;
    int c_im = c / blockH / blockW;
    for (int h = 0; h < outputH; ++h) {
      for (int w = 0; w < outputW; ++w) {
        // no c_im*height to Exclude the channel number
        int imgRowIdx = h * strideH + hOffset;
        int imgColIdx = w * strideW + wOffset;
        if ((imgRowIdx - paddingH) < 0 ||
            (imgRowIdx - paddingH) >= feaImgHeight ||
            (imgColIdx - paddingW) < 0 ||
            (imgColIdx - paddingW) >= feaImgWidth) {
          data_[(c * outputH + h) * outputW + w] = 0;
        } else {
          imgRowIdx += c_im * feaImgHeight - paddingH;
          imgColIdx -= paddingW;
          data_[(c * outputH + h) * outputW + w] =
              srcData[imgRowIdx * feaImgWidth + imgColIdx];
        }
      }
    }
  }
}

1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
void CpuMatrix::convShrink(Matrix& expandFeat,
                           int thisImgHeight,
                           int thisImgWidth,
                           int channels,
                           int blockH,
                           int blockW,
                           int strideH,
                           int strideW,
                           int paddingH,
                           int paddingW,
                           int outputH,
                           int outputW,
                           real alpha,
Q
qijun 已提交
1839
                           real beta) {
Z
zhangjinchao01 已提交
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
  CHECK(expandFeat.useGpu_ == false) << "Matrix type are not equal";
  CHECK_EQ(size_t(thisImgHeight * thisImgWidth * channels),
           getHeight() * getWidth())
      << "Matrix dimensions are not equal";

  size_t elemCnt = outputH * outputW * blockH * blockW * channels;

  CHECK(elemCnt == expandFeat.getHeight() * expandFeat.getWidth())
      << "Matrix dimensions are not equal";

  real* expandData = expandFeat.getData();
  int channelsCol = channels * blockH * blockW;
  for (int c = 0; c < channelsCol; ++c) {
    int wOffset = c % blockW;
    int hOffset = (c / blockW) % blockH;
    int c_im = c / blockW / blockH;
    for (int h = 0; h < outputH; ++h) {
      for (int w = 0; w < outputW; ++w) {
        int imRowIdx = h * strideH + hOffset;
        int imColIdx = w * strideW + wOffset;
        if ((imRowIdx - paddingH) >= 0 &&
            (imRowIdx - paddingH) < thisImgHeight &&
            (imColIdx - paddingW) >= 0 &&
            (imColIdx - paddingW) < thisImgWidth) {
          imRowIdx += c_im * thisImgHeight - paddingH;
          imColIdx -= paddingW;
          data_[imRowIdx * thisImgWidth + imColIdx] =
              alpha * expandData[(c * outputH + h) * outputW + w] +
              beta * data_[imRowIdx * thisImgWidth + imColIdx];
        }
      }
    }
  }
}

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
void CpuMatrix::maxPoolForward(Matrix& inputMat,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               size_t channels,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               size_t paddingH,
Q
qijun 已提交
1886
                               size_t paddingW) {
Z
zhangjinchao01 已提交
1887 1888 1889 1890 1891 1892
  real* inputData = inputMat.getData();
  real* outData = data_;
  size_t num = inputMat.getHeight();
  size_t inWidth = imgSizeW;
  size_t inHeight = imgSizeH;
  CHECK(inHeight * inWidth == inputMat.getWidth() / channels);
1893
  CHECK_EQ(num, this->getHeight());
Q
qijun 已提交
1894
  CHECK_EQ(channels * outputH * outputW, this->getWidth());
Q
qijun 已提交
1895
  size_t outStride = getStride();
Z
zhangjinchao01 已提交
1896 1897

  /* initialize the data_ */
Q
qijun 已提交
1898 1899
  for (size_t i = 0; i < height_; i++) {
    for (size_t j = 0; j < width_; j++) {
Q
qijun 已提交
1900
      outData[i * outStride + j] = -(real)FLT_MAX;
Q
qijun 已提交
1901
    }
Z
zhangjinchao01 已提交
1902 1903 1904
  }

  /* pool max one by one */
Q
qijun 已提交
1905 1906
  for (size_t n = 0; n < num; ++n) {  // frame by frame
    if (!isContiguous()) {
Q
qijun 已提交
1907
      outData = data_ + n * outStride;
Q
qijun 已提交
1908
    }
Z
zhangjinchao01 已提交
1909 1910 1911
    for (size_t c = 0; c < channels; ++c) {  // channel by channel
      for (size_t ph = 0; ph < outputH; ++ph) {
        for (size_t pw = 0; pw < outputW; ++pw) {
1912 1913 1914 1915 1916 1917 1918 1919
          int hstart = ph * strideH - paddingH;
          int wstart = pw * strideW - paddingW;
          int hend = std::min(hstart + sizeY, inHeight);
          int wend = std::min(wstart + sizeX, inWidth);
          hstart = std::max(hstart, 0);
          wstart = std::max(wstart, 0);
          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
Z
zhangjinchao01 已提交
1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932
              outData[ph * outputW + pw] = std::max(outData[ph * outputW + pw],
                                                    inputData[h * inWidth + w]);
            }
          }
        }
      }
      // compute offset
      inputData += inHeight * inWidth;
      outData += outputH * outputW;
    }
  }
}

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
void CpuMatrix::maxPoolBackward(Matrix& image,
                                size_t imgSizeH,
                                size_t imgSizeW,
                                Matrix& outGrad,
                                Matrix& outV,
                                size_t sizeX,
                                size_t sizeY,
                                size_t strideH,
                                size_t strideW,
                                size_t outputH,
                                size_t outputW,
                                real scaleTargets,
                                real scaleOutput,
                                size_t paddingH,
                                size_t paddingW) {
Z
zhangjinchao01 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
  size_t num = image.getHeight();
  size_t channels = size_t(width_ / imgSizeH / imgSizeW);
  CHECK(image.getWidth() == imgSizeH * imgSizeW * channels);
  CHECK(image.getHeight() == height_ && image.getWidth() == width_);
  CHECK(outV.getHeight() == outGrad.getHeight() &&
        outV.getWidth() == outGrad.getWidth());

  real* tgtGrad = data_;
  real* inData = image.getData();
  real* otData = outV.getData();
  real* otGrad = outGrad.getData();
Q
qijun 已提交
1959 1960 1961 1962 1963

  size_t outStride = outV.getStride();
  real* origOutData = otData;
  real* origOutGrad = otGrad;

Z
zhangjinchao01 已提交
1964
  for (size_t n = 0; n < num; ++n) {
Q
qijun 已提交
1965
    if (!outV.isContiguous()) {
Q
qijun 已提交
1966 1967
      otData = origOutData + n * outStride;
      otGrad = origOutGrad + n * outStride;
Q
qijun 已提交
1968
    }
Z
zhangjinchao01 已提交
1969 1970 1971
    for (size_t c = 0; c < channels; ++c) {
      for (size_t ph = 0; ph < outputH; ++ph) {
        for (size_t pw = 0; pw < outputW; ++pw) {
1972 1973 1974 1975 1976 1977 1978 1979
          int hstart = ph * strideH - paddingH;
          int wstart = pw * strideW - paddingW;
          int hend = std::min(hstart + sizeY, imgSizeH);
          int wend = std::min(wstart + sizeX, imgSizeW);
          hstart = std::max(hstart, 0);
          wstart = std::max(wstart, 0);
          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
Z
zhangjinchao01 已提交
1980 1981 1982
              tgtGrad[h * imgSizeW + w] =
                  scaleTargets * tgtGrad[h * imgSizeW + w] +
                  scaleOutput * otGrad[ph * outputW + pw] *
1983
                      (inData[h * imgSizeW + w] == otData[ph * outputW + pw]);
Z
zhangjinchao01 已提交
1984 1985 1986 1987 1988 1989 1990
            }
          }
        }
      }
      // offset
      inData += imgSizeH * imgSizeW;
      tgtGrad += imgSizeH * imgSizeW;
1991
      otData += outputH * outputW;
Z
zhangjinchao01 已提交
1992 1993 1994 1995 1996
      otGrad += outputH * outputW;
    }
  }
}

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
void CpuMatrix::avgPoolForward(Matrix& input,
                               size_t imgSizeH,
                               size_t imgSizeW,
                               size_t channels,
                               size_t sizeX,
                               size_t sizeY,
                               size_t strideH,
                               size_t strideW,
                               size_t outputH,
                               size_t outputW,
                               size_t paddingH,
Q
qijun 已提交
2008
                               size_t paddingW) {
Z
zhangjinchao01 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
  // The main loop
  size_t num = input.getHeight();
  size_t inHeight = imgSizeH;
  size_t inWidth = imgSizeW;
  CHECK(inHeight * inWidth * channels == input.getWidth());
  CHECK(outputH * outputW * channels * num == height_ * width_);
  real* tgtData = data_;
  real* inData = input.getData();

  for (size_t n = 0; n < num; ++n) {
Q
qijun 已提交
2019 2020 2021
    if (!isContiguous()) {
      tgtData = data_ + n * getStride();
    }
Z
zhangjinchao01 已提交
2022 2023 2024
    for (size_t c = 0; c < channels; ++c) {
      for (size_t ph = 0; ph < outputH; ++ph) {
        for (size_t pw = 0; pw < outputW; ++pw) {
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
          int hstart = ph * strideH - paddingH;
          int wstart = pw * strideW - paddingW;
          int hend = std::min(hstart + sizeY, inHeight + paddingH);
          int wend = std::min(wstart + sizeX, inWidth + paddingW);
          int poolSize = (hend - hstart) * (wend - wstart);
          hstart = std::max(hstart, 0);
          wstart = std::max(wstart, 0);
          hend = std::min(hend, static_cast<int>(inHeight));
          wend = std::min(wend, static_cast<int>(inWidth));

          CHECK(poolSize);
Z
zhangjinchao01 已提交
2036
          tgtData[ph * outputW + pw] = 0;  // clear
2037 2038
          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
Z
zhangjinchao01 已提交
2039 2040 2041
              tgtData[ph * outputW + pw] += inData[h * inWidth + w];
            }
          }
2042
          tgtData[ph * outputW + pw] /= poolSize;
Z
zhangjinchao01 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051
        }
      }
      // compute offset
      inData += inHeight * inWidth;
      tgtData += outputH * outputW;
    }
  }
}

2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064
void CpuMatrix::avgPoolBackward(Matrix& input,
                                size_t imgSizeH,
                                size_t imgSizeW,
                                size_t sizeX,
                                size_t sizeY,
                                size_t strideH,
                                size_t strideW,
                                size_t outputH,
                                size_t outputW,
                                real scaleTargets,
                                real scaleOutput,
                                size_t paddingH,
                                size_t paddingW) {
Z
zhangjinchao01 已提交
2065 2066 2067 2068 2069 2070 2071
  size_t num = input.getHeight();
  size_t channels = input.getWidth() / outputH / outputW;
  CHECK(imgSizeH * imgSizeW * channels == getWidth());
  real* inData = input.getData();
  real* outData = getData();

  for (size_t n = 0; n < num; ++n) {
Q
qijun 已提交
2072 2073 2074
    if (!input.isContiguous()) {
      inData = input.getData() + n * input.getStride();
    }
Z
zhangjinchao01 已提交
2075 2076 2077
    for (size_t c = 0; c < channels; ++c) {
      for (size_t ph = 0; ph < outputH; ++ph) {
        for (size_t pw = 0; pw < outputW; ++pw) {
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091
          int hstart = ph * strideH - paddingH;
          int wstart = pw * strideW - paddingW;
          int hend = std::min(hstart + sizeY, imgSizeH + paddingH);
          int wend = std::min(wstart + sizeX, imgSizeW + paddingW);
          int poolSize = (hend - hstart) * (wend - wstart);
          hstart = std::max(hstart, 0);
          wstart = std::max(wstart, 0);
          hend = std::min(hend, static_cast<int>(imgSizeH));
          wend = std::min(wend, static_cast<int>(imgSizeW));
          CHECK(poolSize);

          for (int h = hstart; h < hend; ++h) {
            for (int w = wstart; w < wend; ++w) {
              outData[h * imgSizeW + w] += inData[ph * outputW + pw] / poolSize;
Z
zhangjinchao01 已提交
2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107
            }
          }
        }
      }
      // offset
      outData += imgSizeH * imgSizeW;
      inData += outputH * outputW;
    }
  }
}

/**
 * Input: one or more sequences. Each sequence contains some instances.
 * Output: output size is the number of input sequences (NOT input instances).
 * output[i] is set to max_{for each instance in this sequence}{input[i]}
 */
2108 2109
void CpuMatrix::maxSequenceForward(Matrix& input,
                                   const IVector& sequence,
Z
zhangjinchao01 已提交
2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
                                   IVector& index) {
  CHECK(dynamic_cast<CpuMatrix*>(&input));
  CHECK(dynamic_cast<const CpuIVector*>(&sequence));
  CHECK(dynamic_cast<CpuIVector*>(&index));

  real* outData = getData();
  real* inputData = input.getData();
  const int* starts = sequence.getData();
  int* maxIndex = index.getData();
  size_t numSequences = getHeight();
  size_t dim = getWidth();

  CHECK_EQ(dim, input.getWidth());
  CHECK_EQ(numSequences, sequence.getSize() - 1);
  CHECK_EQ(starts[numSequences], (int)input.getHeight());
  CHECK_EQ(numSequences * dim, index.getSize());

  for (size_t sequenceId = 0; sequenceId < numSequences; ++sequenceId) {
    // current sequence, loop for each input instance
    // (1) first instance: do not need compare, copy value to outV directly
    for (size_t k = 0; k < dim; ++k) {
      outData[sequenceId * dim + k] = inputData[starts[sequenceId] * dim + k];
      maxIndex[sequenceId * dim + k] = starts[sequenceId];
    }
    // (2) other instance in same sequence
    for (int insId = starts[sequenceId] + 1; insId < starts[sequenceId + 1];
         ++insId) {
      // insId is the index on all instances
      for (size_t k = 0; k < dim; ++k) {
        // for each dim
        if (inputData[insId * dim + k] > outData[sequenceId * dim + k]) {
          // update max value and record index
          outData[sequenceId * dim + k] = inputData[insId * dim + k];
          maxIndex[sequenceId * dim + k] = insId;
        }
      }
    }
  }
}

2150 2151
void CpuMatrix::maxSequenceBackward(Matrix& outputGrad,
                                    const IVector& sequence,
Z
zhangjinchao01 已提交
2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188
                                    IVector& index) {
  CHECK(dynamic_cast<CpuMatrix*>(&outputGrad));
  CHECK(dynamic_cast<const CpuIVector*>(&sequence));
  CHECK(dynamic_cast<CpuIVector*>(&index));

  real* inputGrad = getData();
  real* outGrad = outputGrad.getData();
  int* maxIndex = index.getData();
  size_t dim = getWidth();
  size_t numSequences = sequence.getSize() - 1;

  CHECK_EQ(dim, outputGrad.getWidth());
  CHECK_EQ(numSequences, outputGrad.getHeight());
  CHECK_EQ(numSequences * dim, index.getSize());

  for (size_t sequenceId = 0; sequenceId < numSequences; ++sequenceId) {
    // current sequence
    for (size_t j = 0; j < dim; ++j) {
      // each dim
      int insId = maxIndex[sequenceId * dim + j];
      inputGrad[insId * dim + j] += outGrad[sequenceId * dim + j];
    }
  }
}

inline void vecAddTo(real* a, const real* b, size_t len) {
  for (unsigned int i = 0; i < len; ++i) {
    a[i] += b[i];
  }
}

inline void vecAddTo(real* a, const real* b, real scaleB, size_t len) {
  for (unsigned int i = 0; i < len; ++i) {
    a[i] += scaleB * b[i];
  }
}

2189 2190
inline void colVecAddTo(
    real* a, const real* b, size_t len, size_t aWidth, size_t bWidth) {
Z
zhangjinchao01 已提交
2191 2192 2193 2194 2195
  for (unsigned int i = 0; i < len; ++i) {
    a[i * aWidth] += b[i * bWidth];
  }
}

2196 2197
inline void colVecAddTo(
    real* a, real* b, real c, size_t len, size_t aWidth, size_t bWidth) {
Z
zhangjinchao01 已提交
2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
  for (unsigned int i = 0; i < len; ++i) {
    a[i * aWidth] += b[i * bWidth] * c;
  }
}

void CpuMatrix::addBias(Matrix& b, real scale) {
  CHECK(b.useGpu_ == false) << "Matrix type are not equal";

  CHECK_EQ(b.getHeight(), (size_t)1);
  CHECK_EQ(width_, b.getWidth());
  real* aData = getData();
  real* bData = b.getData();
  size_t numSamples = getHeight();
  size_t dim = getWidth();

  if (scale == 1 && getStride() % 32 == 0) {  // use libaddto
    // @TODO(yuyang18) Make input addr can be unaligned.
    // So merge this if and else
    CHECK_EQ((size_t)aData % 32, 0UL);
    CHECK_EQ((size_t)bData % 32, 0UL);
    for (size_t i = 0; i < numSamples; i++) {
      simd::addTo(aData + i * getStride(), bData, dim);
    }
  } else {
    for (size_t i = 0; i < numSamples; i++) {
      for (size_t j = 0; j < dim; j++) {
        aData[i * getStride() + j] += scale * bData[j];
      }
    }
  }
}

2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
void CpuMatrix::addSharedBias(Matrix& b, real scale) {
  CHECK_EQ(b.getHeight(), (size_t)1);
  real* aData = getData();
  real* bData = b.getData();
  size_t numSamples = getHeight();
  size_t channel = b.getWidth();
  CHECK_EQ(getWidth() % channel, 0UL);
  size_t dim = getWidth() / channel;

  for (size_t i = 0; i < numSamples; i++) {
    for (size_t c = 0; c < channel; c++) {
      for (size_t j = 0; j < dim; j++) {
        aData[i * getStride() + c * dim + j] += scale * bData[c];
      }
    }
  }
}

Z
zhangjinchao01 已提交
2248 2249 2250 2251 2252
void CpuMatrix::collectBias(Matrix& a, real scale) {
  CHECK_EQ(getHeight(), (size_t)1);
  CHECK_EQ(width_, a.getWidth());
  CpuSparseMatrix* aptr = dynamic_cast<CpuSparseMatrix*>(&a);
  if (!aptr) {
2253
    sumCols(a, /* scaleSum= */ scale, /* scaleDest= */ 1);
Z
zhangjinchao01 已提交
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
  } else {
    size_t nnz = aptr->getElementCnt();
    int* cols = aptr->getCols();
    real* A = aptr->getValue();
    real* B = getData();
    for (size_t i = 0; i < nnz; i++) {
      B[cols[i]] += scale * A[i];
    }
  }
}

2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281
void CpuMatrix::collectSharedBias(Matrix& a, real scale) {
  CHECK_EQ(getHeight(), (size_t)1);
  real* B = getData();
  real* A = a.getData();
  size_t numSamples = a.getHeight();
  size_t channel = getWidth();
  CHECK_EQ(a.getWidth() % channel, 0UL);
  size_t dim = a.getWidth() / channel;
  for (size_t i = 0; i < numSamples; i++) {
    for (size_t c = 0; c < channel; c++) {
      for (size_t j = 0; j < dim; j++) {
        B[c] += scale * A[i * channel * dim + c * dim + j];
      }
    }
  }
}

Z
zhangjinchao01 已提交
2282 2283 2284 2285 2286 2287 2288 2289 2290 2291
void CpuMatrix::sequenceAvgForward(Matrix& a,
                                   const IVector& startsPos,
                                   int mode) {
  size_t height = getHeight();
  size_t width = getWidth();
  CHECK_EQ(height, startsPos.getSize() - 1);
  CHECK_EQ(width, a.getWidth());
  real* dst = getData();
  real* src = a.getData();
  const int* starts = startsPos.getData();
X
xuwei06 已提交
2292
  MatrixPtr outMtx = Matrix::create(nullptr, 1, width, false, false);
Z
zhangjinchao01 已提交
2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
  MatrixPtr dataMtx = Matrix::create(nullptr, 1, width, false, false);
  for (size_t i = 0; i < height; i++) {
    int sequenceLength = starts[i + 1] - starts[i];
    if (0 == sequenceLength) {
      // empty sequence
      continue;
    }
    outMtx->setData(dst + i * width);
    dataMtx->setData(src + starts[i] * width, sequenceLength, width);
    if (mode == 0) {
      // plain average
2304 2305 2306
      outMtx->sumCols(*dataMtx,
                      (real)1 / (real)sequenceLength,
                      /* scaleDest= */ 1);
Z
zhangjinchao01 已提交
2307 2308
    } else if (mode == 1) {
      // sum instead of average
2309
      outMtx->sumCols(*dataMtx, /* scaleSum= */ 1, /* scaleDest= */ 1);
Z
zhangjinchao01 已提交
2310 2311
    } else if (mode == 2) {
      // divide by square root of sequenceLength
2312 2313 2314
      outMtx->sumCols(*dataMtx,
                      (real)1 / std::sqrt(sequenceLength),
                      /* scaleDest= */ 1);
Z
zhangjinchao01 已提交
2315 2316 2317 2318 2319 2320
    } else {
      LOG(FATAL) << "should not reach here";
    }
  }
}

L
Luo Tao 已提交
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
void CpuMatrix::sequenceAvgBackward(Matrix& a,
                                    const IVector& startsPos,
                                    int mode) {
  size_t height = a.getHeight();
  size_t width = getWidth();
  CHECK_EQ(height, startsPos.getSize() - 1);
  CHECK_EQ(width, a.getWidth());
  real* dst = getData();
  real* src = a.getData();
  const int* starts = startsPos.getData();
  MatrixPtr outMtx = Matrix::create(nullptr, 1, width, false, false);
  MatrixPtr dataMtx = Matrix::create(nullptr, 1, width, false, false);
  for (size_t i = 0; i < height; ++i) {
    int sequenceLength = starts[i + 1] - starts[i];
    if (0 == sequenceLength) {
      // empty sequence
      continue;
    }
    outMtx->setData(dst + starts[i] * width, sequenceLength, width);
    dataMtx->setData(src + i * width);
    if (mode == 0) {
      // plain average
      outMtx->addBias(*dataMtx, 1.0f / sequenceLength);
    } else if (mode == 1) {
      // sum instead of average
      outMtx->addBias(*dataMtx, 1.0f);
    } else if (mode == 2) {
      // divide by square root of sequenceLength
      outMtx->addBias(*dataMtx, 1.0f / std::sqrt(sequenceLength));
    } else {
      LOG(FATAL) << "should not reach here";
    }
  }
}

Z
zhangjinchao01 已提交
2356
/* this = scaleAB*(a*b) + scaleT*this*/
2357 2358
void CpuMatrix::mul(const Matrix& a,
                    const Matrix& b,
2359
                    real scaleAB,
Z
zhangjinchao01 已提交
2360 2361
                    real scaleT) {
  CHECK(!isTransposed()) << "Not supported";
2362 2363 2364 2365
  const auto a_ptr = dynamic_cast<const CpuMatrix*>(&a);
  const auto b_ptr = dynamic_cast<const CpuMatrix*>(&b);
  const auto a_ptr_s = dynamic_cast<const CpuSparseMatrix*>(&a);
  const auto b_ptr_s = dynamic_cast<const CpuSparseMatrix*>(&b);
Z
zhangjinchao01 已提交
2366

2367 2368 2369 2370 2371 2372
  if (a_ptr && b_ptr) {
    mul((CpuMatrix*)a_ptr, (CpuMatrix*)b_ptr, scaleAB, scaleT);
  } else if (a_ptr_s && b_ptr) {
    mul((CpuSparseMatrix*)a_ptr_s, (CpuMatrix*)b_ptr, scaleAB, scaleT);
  } else if (a_ptr && b_ptr_s) {
    mul((CpuMatrix*)a_ptr, (CpuSparseMatrix*)b_ptr_s, scaleAB, scaleT);
Z
zhangjinchao01 已提交
2373 2374 2375 2376 2377
  } else {
    LOG(FATAL) << "Not supported";
  }
}

2378 2379 2380
void CpuMatrix::mul(CpuSparseMatrix* a,
                    CpuMatrix* b,
                    real scaleAB,
Z
zhangjinchao01 已提交
2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428
                    real scaleT) {
  if (dynamic_cast<CacheRowCpuMatrix*>(b)) {
    return mul(a, dynamic_cast<CacheRowCpuMatrix*>(b), this, scaleAB, scaleT);
  } else if (dynamic_cast<SparseRowCpuMatrix*>(b)) {
    return mul(a, dynamic_cast<SparseRowCpuMatrix*>(b), this, scaleAB, scaleT);
  } else {
    return mul(a, b, this, scaleAB, scaleT);
  }
}

void CpuMatrix::mul(CpuMatrix* a, CpuMatrix* b, real scaleAB, real scaleT) {
  CHECK(!isTransposed()) << "Not supported";

  size_t a_col, b_col, a_row, b_row;
  CBLAS_TRANSPOSE a_trans, b_trans;
  if (!a->isTransposed()) {
    a_col = a->getWidth();
    a_row = a->getHeight();
    a_trans = CblasNoTrans;
  } else {
    a_col = a->getHeight();
    a_row = a->getWidth();
    a_trans = CblasTrans;
  }
  if (!b->isTransposed()) {
    b_col = b->getWidth();
    b_row = b->getHeight();
    b_trans = CblasNoTrans;
  } else {
    b_col = b->getHeight();
    b_row = b->getWidth();
    b_trans = CblasTrans;
  }

  CHECK_EQ(a_col, b_row);
  CHECK_EQ(a_row, getHeight());
  CHECK_EQ(b_col, getWidth());

  real* A = a->getData();
  real* B = b->getData();
  real* C = getData();

  int M = getHeight();
  int N = getWidth();
  int K = a_col;
  int lda = a->getStride();
  int ldb = b->getStride();
  int ldc = getStride();
L
Liu Yiqun 已提交
2429 2430
  gemm<real>(
      a_trans, b_trans, M, N, K, scaleAB, A, lda, B, ldb, scaleT, C, ldc);
Z
zhangjinchao01 已提交
2431 2432
}

2433 2434
void CpuMatrix::mul(
    CpuMatrix* a, CpuMatrix* b, CpuSparseMatrix* c, real scaleAB, real scaleT) {
Z
zhangjinchao01 已提交
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
  CHECK(!c->isTransposed()) << "Not supported";
  CHECK_EQ(c->getValueType(), FLOAT_VALUE);

  real* A = a->getData();
  real* B = b->getData();
  real* C = c->getValue();
  int* rows = c->getRows();
  int* cols = c->getCols();
  size_t height = c->getHeight();
  size_t width = c->getWidth();
  if (scaleT == 0) {
    c->zeroMem();
  }

  if (!a->isTransposed() && !b->isTransposed()) {
    size_t m = a->getWidth();
    CHECK_EQ(b->getHeight(), m);
    CHECK_EQ(a->getHeight(), height);
    CHECK_EQ(b->getWidth(), width);
    if (c->getFormat() == SPARSE_CSC) {
      for (size_t i = 0; i < width; i++) {
        size_t start = c->getColStartIdx(i);
        size_t end = c->getColStartIdx(i + 1);
        for (size_t j = start; j < end; j++) {
          real sum = 0;
          size_t rowIdx = rows[j];
          for (size_t k = 0; k < m; k++) {
            sum += A[rowIdx * m + k] * B[k * width + i];
          }
          C[j] = scaleAB * sum + scaleT * C[j];
        }
      }
    } else {
      for (size_t i = 0; i < height; i++) {
        size_t start = c->getRowStartIdx(i);
        size_t end = c->getRowStartIdx(i + 1);
        for (size_t j = start; j < end; j++) {
          real sum = 0;
          size_t colIdx = cols[j];
          for (size_t k = 0; k < m; k++) {
            sum += A[i * m + k] * B[k * width + colIdx];
          }
          C[j] = scaleAB * sum + scaleT * C[j];
        }
      }
    }
  } else if (a->isTransposed() && !b->isTransposed()) {
    size_t m = a->getHeight();
    CHECK_EQ(m, b->getHeight());
    CHECK_EQ(b->getWidth(), width);
    CHECK_EQ(a->getWidth(), height);

    if (c->getFormat() == SPARSE_CSC) {
      for (size_t i = 0; i < width; i++) {
        size_t start = c->getColStartIdx(i);
        size_t end = c->getColStartIdx(i + 1);
        for (size_t j = start; j < end; j++) {
          real sum = 0;
          size_t rowIdx = rows[j];
          for (size_t k = 0; k < m; k++) {
            sum += A[k * height + rowIdx] * B[k * width + i];
          }
          C[j] = scaleAB * sum + scaleT * C[j];
        }
      }
    } else {
      for (size_t i = 0; i < height; i++) {
        int start = c->getRowStartIdx(i);
        int end = c->getRowStartIdx(i + 1);
        for (int j = start; j < end; j++) {
          real sum = 0;
          size_t colIdx = cols[j];
          for (size_t k = 0; k < m; k++) {
            sum += A[k * height + i] * B[k * width + colIdx];
          }
          C[j] = scaleAB * sum + scaleT * C[j];
        }
      }
    }
  } else if (!a->isTransposed() && b->isTransposed()) {
    size_t m = a->getWidth();
    CHECK_EQ(b->getWidth(), m);
    CHECK_EQ(a->getHeight(), height);
    CHECK_EQ(b->getHeight(), width);
    if (c->getFormat() == SPARSE_CSR) {
      for (size_t i = 0; i < height; i++) {
        size_t start = c->getRowStartIdx(i);
        size_t end = c->getRowStartIdx(i + 1);
        for (size_t j = start; j < end; j++) {
          real sum = 0;
          size_t colIdx = cols[j];
          for (size_t k = 0; k < m; k++) {
            sum += A[i * m + k] * B[colIdx * m + k];
          }
          C[j] = scaleAB * sum + scaleT * C[j];
        }
      }
    } else {
      LOG(FATAL) << "Not supported csc format "
                    "when a is not trans and b is trans";
    }
  } else {
    LOG(FATAL) << "Not supported";
  }
}

2541 2542 2543
void CpuMatrix::mul(CpuMatrix* a,
                    CpuSparseMatrix* b,
                    real scaleAB,
Z
zhangjinchao01 已提交
2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580
                    real scaleT) {
  CHECK(!trans_) << "Not supported";
  CHECK(!a->isTransposed()) << "Not supported";
  CHECK(scaleT == 0 || scaleT == 1);

  // TODO(yuyang18): Maybe bug implementation here
  CHECK_EQ(scaleAB, static_cast<real>(1.0));

  real* A = a->getData();
  real* B = b->getValue();
  real* C = getData();
  int* rows = b->getRows();
  int* cols = b->getCols();

  if (scaleT == 0) {
    zeroMem();
  }
  if (b->getFormat() == SPARSE_CSC) {
    if (!b->isTransposed()) {
      size_t m = a->getWidth();
      CHECK_EQ(b->getHeight(), m);
      CHECK_EQ(a->getHeight(), height_);
      CHECK_EQ(b->getWidth(), width_);

      if (b->getValueType() == NO_VALUE) {
        for (size_t j = 0; j < b->getWidth(); ++j) {
          int start = b->getColStartIdx(j);
          int end = b->getColStartIdx(j + 1);
          for (int i = start; i < end; ++i) {
            colVecAddTo(C + j, A + rows[i], height_, width_, a->getWidth());
          }
        }
      } else if (b->getValueType() == FLOAT_VALUE) {
        for (size_t j = 0; j < b->getWidth(); ++j) {
          int start = b->getColStartIdx(j);
          int end = b->getColStartIdx(j + 1);
          for (int i = start; i < end; ++i) {
2581 2582
            colVecAddTo(
                C + j, A + rows[i], B[i], height_, width_, a->getWidth());
Z
zhangjinchao01 已提交
2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603
          }
        }
      }
    } else /*if (b->isTransposed())*/ {
      size_t m = a->getWidth();
      CHECK_EQ(b->getHeight(), width_);
      CHECK_EQ(a->getHeight(), height_);
      CHECK_EQ(b->getWidth(), m);
      if (b->getValueType() == NO_VALUE) {
        for (size_t i = 0; i < b->getWidth(); ++i) {
          int start = b->getColStartIdx(i);
          int end = b->getColStartIdx(i + 1);
          for (int j = start; j < end; ++j) {
            colVecAddTo(C + rows[j], A + i, height_, width_, a->getWidth());
          }
        }
      } else if (b->getValueType() == FLOAT_VALUE) {
        for (size_t i = 0; i < b->getWidth(); ++i) {
          int start = b->getColStartIdx(i);
          int end = b->getColStartIdx(i + 1);
          for (int j = start; j < end; ++j) {
2604 2605
            colVecAddTo(
                C + rows[j], A + i, B[j], height_, width_, a->getWidth());
Z
zhangjinchao01 已提交
2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629
          }
        }
      }
    }
  } else {
    if (!b->isTransposed()) {
      size_t m = a->getWidth();
      CHECK_EQ(b->getHeight(), m);
      CHECK_EQ(a->getHeight(), height_);
      CHECK_EQ(b->getWidth(), width_);

      if (b->getValueType() == NO_VALUE) {
        for (size_t j = 0; j < b->getHeight(); ++j) {
          int start = b->getRowStartIdx(j);
          int end = b->getRowStartIdx(j + 1);
          for (int i = start; i < end; ++i) {
            colVecAddTo(C + cols[i], A + j, height_, width_, a->getWidth());
          }
        }
      } else if (b->getValueType() == FLOAT_VALUE) {
        for (size_t j = 0; j < b->getHeight(); ++j) {
          int start = b->getRowStartIdx(j);
          int end = b->getRowStartIdx(j + 1);
          for (int i = start; i < end; ++i) {
2630 2631
            colVecAddTo(
                C + cols[i], A + j, B[i], height_, width_, a->getWidth());
Z
zhangjinchao01 已提交
2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652
          }
        }
      }
    } else /*if (b->isTransposed())*/ {
      size_t m = a->getWidth();
      CHECK_EQ(b->getHeight(), width_);
      CHECK_EQ(a->getHeight(), height_);
      CHECK_EQ(b->getWidth(), m);
      if (b->getValueType() == NO_VALUE) {
        for (size_t i = 0; i < b->getHeight(); ++i) {
          int start = b->getRowStartIdx(i);
          int end = b->getRowStartIdx(i + 1);
          for (int j = start; j < end; ++j) {
            colVecAddTo(C + i, A + cols[j], height_, width_, a->getWidth());
          }
        }
      } else if (b->getValueType() == FLOAT_VALUE) {
        for (size_t i = 0; i < b->getHeight(); ++i) {
          int start = b->getRowStartIdx(i);
          int end = b->getRowStartIdx(i + 1);
          for (int j = start; j < end; ++j) {
2653 2654
            colVecAddTo(
                C + i, A + cols[j], B[j], height_, width_, a->getWidth());
Z
zhangjinchao01 已提交
2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
          }
        }
      }
    }
  }
}

void CpuMatrix::selectRows(Matrix& table, IVector& ids) {
  if (dynamic_cast<CacheRowCpuMatrix*>(&table)) {
    selectRowsImp(*dynamic_cast<CacheRowCpuMatrix*>(&table), ids);
  } else if (dynamic_cast<SparseRowCpuMatrix*>(&table)) {
    selectRowsImp(*dynamic_cast<SparseRowCpuMatrix*>(&table), ids);
  } else {
    CHECK(table.isContiguous());
    selectRowsImp(*dynamic_cast<CpuMatrix*>(&table), ids);
  }
}

void CpuMatrix::selectElements(Matrix& table, IVector& ids) {
  CHECK_EQ(table.getHeight(), ids.getSize());
  CHECK_EQ(getHeight(), ids.getSize());
  CHECK_EQ(getWidth(), 1U);
  real* tableData = table.getData();
  int* idsData = ids.getData();
  for (size_t i = 0; i < table.getHeight(); i++) {
    data_[i] += tableData[i * table.getWidth() + idsData[i]];
  }
}

void CpuMatrix::addElements(Matrix& table, IVector& ids) {
  CHECK_EQ(table.getHeight(), ids.getSize());
  CHECK_EQ(getHeight(), ids.getSize());
  CHECK_EQ(getWidth(), 1U);
  real* tableData = table.getData();
  int* idsData = ids.getData();
  for (size_t i = 0; i < table.getHeight(); i++) {
    tableData[i * table.getWidth() + idsData[i]] += data_[i];
  }
}

// this.row[i] += table.row[ids[i]]
template <typename TableMatType>
void CpuMatrix::selectRowsImp(TableMatType& table, IVector& ids) {
  CHECK(!table.useGpu());
  CHECK(!ids.useGpu());
  CHECK_EQ(getHeight(), ids.getSize());
  CHECK_EQ(getWidth(), table.getWidth());
  size_t numSamples = getHeight();
  size_t dim = getWidth();
  real* a = getData();
  size_t tableSize = table.getHeight();
  int* index = ids.getData();

  for (size_t i = 0; i < numSamples; ++i) {
    if (index[i] == -1) continue;
    CHECK_LT(index[i], (int)tableSize);
    CHECK_GE(index[i], 0);
    vecAddTo(a + i * stride_, table.getRow(index[i]), dim);
  }
}

void CpuMatrix::addToRows(Matrix& table, IVector& ids) {
  if (dynamic_cast<CacheRowCpuMatrix*>(&table)) {
    addToRowsImp(*dynamic_cast<CacheRowCpuMatrix*>(&table), ids);
  } else if (dynamic_cast<SparseAutoGrowRowCpuMatrix*>(&table)) {
    addToRowsImp(*dynamic_cast<SparseAutoGrowRowCpuMatrix*>(&table), ids);
  } else if (dynamic_cast<SparseRowCpuMatrix*>(&table)) {
    addToRowsImp(*dynamic_cast<SparseRowCpuMatrix*>(&table), ids);
  } else {
    CHECK(table.isContiguous());
    addToRowsImp(*dynamic_cast<CpuMatrix*>(&table), ids);
  }
}

// table.row[ids[i]] += this.row[i]
template <typename TableMatType>
void CpuMatrix::addToRowsImp(TableMatType& table, IVector& ids) {
  CHECK(!table.useGpu());
  CHECK(!ids.useGpu());
  CHECK_EQ(getHeight(), ids.getSize());
  CHECK_EQ(getWidth(), table.getWidth());
  size_t numSamples = getHeight();
  size_t dim = getWidth();
  real* a = getData();
  size_t tableSize = table.getHeight();
  int* index = ids.getData();

  for (size_t i = 0; i < numSamples; ++i) {
    if (index[i] == -1) continue;
    CHECK_LT(index[i], (int)tableSize);
    CHECK_GE(index[i], 0);
    vecAddTo(table.getRow(index[i]), a + i * stride_, dim);
  }
}

static ThreadLocal<std::vector<const real*>> threadLocalColArray;

template <typename MatBType, typename MatCType>
2753 2754
void CpuMatrix::mul(
    CpuSparseMatrix* a, MatBType* b, MatCType* c, real scaleAB, real scaleT) {
Z
zhangjinchao01 已提交
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
  CHECK(!c->isTransposed()) << "Not supported";
  CHECK(!b->isTransposed()) << "Not supported";
  // TODO(yuyang18): Maybe bug implementation here.
  CHECK(scaleAB == 1) << "Not supported";
  CHECK(scaleT == 0 || scaleT == 1) << "Not supported";
  CHECK_EQ(a->getFormat(), SPARSE_CSR) << "Not supported";

  real* B = b->getData();
  real* C = c->getData();
  size_t height = c->getHeight();
  size_t width = c->getWidth();
  int* cols = a->getCols();
  real* values = a->getValue();

  if (scaleT == 0) {
    c->zeroMem();
  }

  if (!a->isTransposed()) {
    size_t m = a->getWidth();
    CHECK_EQ(b->getHeight(), m);
    CHECK_EQ(a->getHeight(), height);
    CHECK_EQ(b->getWidth(), width);

    if (a->getValueType() == NO_VALUE) {
      if (width % 32 == 0) {  // use libaddto
        // @TODO(yuyang18) Make input addr can be unaligned.
        // So merge this if and else
        CHECK_EQ((size_t)B % 32, 0UL);
        CHECK_EQ((size_t)C % 32, 0UL);
        auto& colArray = *threadLocalColArray;
        for (size_t i = 0; i < a->getHeight(); ++i) {
          const int start = a->getRowStartIdx(i);
          const int end = a->getRowStartIdx(i + 1);
          size_t colNum = end - start;
          colArray.resize(colNum);
          for (int j = 0; j < end - start; ++j) {
            colArray[j] = b->getRow(cols[j + start]);
          }
          simd::batchAddTo(c->getRow(i), &colArray[0], colNum, width);
        }

      } else {
        for (size_t i = 0; i < a->getHeight(); ++i) {
          const int start = a->getRowStartIdx(i);
          const int end = a->getRowStartIdx(i + 1);
          for (int j = start; j < end; ++j) {
            vecAddTo(c->getRow(i), b->getRow(cols[j]), width);
          }
        }
      }
    } else if (a->getValueType() == FLOAT_VALUE) {
      for (size_t i = 0; i < a->getHeight(); ++i) {
        const int start = a->getRowStartIdx(i);
        const int end = a->getRowStartIdx(i + 1);
        for (int j = start; j < end; ++j) {
          vecAddTo(c->getRow(i), b->getRow(cols[j]), values[j], width);
        }
      }
    }
  } else /*if (a->isTransposed())*/ {
    size_t m = a->getHeight();
    CHECK_EQ(b->getHeight(), m);
    CHECK_EQ(a->getWidth(), height);
    CHECK_EQ(b->getWidth(), width);
    if (a->getValueType() == NO_VALUE) {
      if (width % 32 == 0) {  // use libaddto
        // @TODO(yuyang18) Make input addr can be unaligned.
        // So merge this if and else
        CHECK_EQ((size_t)B % 32, 0UL);
        CHECK_EQ((size_t)C % 32, 0UL);
        for (size_t i = 0; i < a->getHeight(); ++i) {
          const int start = a->getRowStartIdx(i);
          const int end = a->getRowStartIdx(i + 1);
          for (int j = start; j < end; ++j) {
            simd::addTo(c->getRow(cols[j]), b->getRow(i), width);
          }
        }

      } else {
        for (size_t i = 0; i < a->getHeight(); ++i) {
          const int start = a->getRowStartIdx(i);
          const int end = a->getRowStartIdx(i + 1);
          for (int j = start; j < end; ++j) {
            vecAddTo(c->getRow(cols[j]), b->getRow(i), width);
          }
        }
      }
    } else if (a->getValueType() == FLOAT_VALUE) {
      for (size_t i = 0; i < a->getHeight(); ++i) {
        const int start = a->getRowStartIdx(i);
        const int end = a->getRowStartIdx(i + 1);
        for (int j = start; j < end; ++j) {
          vecAddTo(c->getRow(cols[j]), b->getRow(i), values[j], width);
        }
      }
    }
  }
}

// instantiation mul() called in SparseRowMatrix.cpp
template void CpuMatrix::mul<CpuMatrix, SparseRowCpuMatrix>(
2857 2858 2859 2860
    CpuSparseMatrix* a,
    CpuMatrix* b,
    SparseRowCpuMatrix* c,
    real scaleAB,
Z
zhangjinchao01 已提交
2861 2862
    real scaleT);
template void CpuMatrix::mul<CpuMatrix, SparseAutoGrowRowCpuMatrix>(
2863 2864 2865 2866 2867
    CpuSparseMatrix* a,
    CpuMatrix* b,
    SparseAutoGrowRowCpuMatrix* c,
    real scaleAB,
    real scaleT);
Z
zhangjinchao01 已提交
2868 2869 2870 2871 2872 2873
template void CpuMatrix::mul<CpuMatrix, CacheRowCpuMatrix>(CpuSparseMatrix* a,
                                                           CpuMatrix* b,
                                                           CacheRowCpuMatrix* c,
                                                           real scaleAB,
                                                           real scaleT);

2874 2875 2876
void SharedCpuMatrix::mul(CpuSparseMatrix* a,
                          CpuMatrix* b,
                          real scaleAB,
Z
zhangjinchao01 已提交
2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
                          real scaleT) {
  CHECK(!isTransposed()) << "Not supported";
  CHECK(!b->isTransposed()) << "Not supported";
  CHECK_EQ(scaleAB, 1) << "Not supported";
  CHECK_EQ(scaleT, 1) << "Not supported";
  CHECK_EQ(a->getFormat(), SPARSE_CSR) << "not supported";

  real* B = b->getData();
  real* C = getData();
  size_t height = getHeight();
  size_t width = getWidth();

  // get real trans
  MatrixPtr aTrans;
  if (a->isTransposed()) {
    aTrans = a->getTmpSparseMatrix(a->getWidth(), a->getHeight());
    a->transpose(aTrans, false);
  }
  a = dynamic_cast<CpuSparseMatrix*>(aTrans.get());

  size_t m = a->getWidth();
  CHECK_EQ(b->getHeight(), m);
  CHECK_EQ(a->getHeight(), height);
  CHECK_EQ(b->getWidth(), width);

  size_t blockSize = (height / blockNum_) + 1;
  CpuMatrixPtr localBuf = *localBuf_;
  if (!localBuf) {
    localBuf = std::make_shared<CpuMatrix>(blockSize, width);
  } else {
    localBuf->resize(blockSize, width);
  }
  localBuf->zeroMem();
  real* localC = localBuf->getData();
  std::vector<int>& blockSeq = *blockSeq_;
  if (blockSeq.size() == 0) {
    for (int k = 0; k < blockNum_; ++k) {
      blockSeq.push_back(k);
    }
2916 2917
    std::shuffle(
        blockSeq.begin(), blockSeq.end(), ThreadLocalRandomEngine::get());
Z
zhangjinchao01 已提交
2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
  }
  std::vector<int>& localBufRows = *localBufRows_;
  int* cols = a->getCols();
  real* value = a->getValue();

  for (int k = 0; k < blockNum_; ++k) {
    int blockId = blockSeq[k];
    size_t blockBegin = blockId * blockSize;
    size_t blockEnd = (blockId + 1) * blockSize;
    if (blockId == blockNum_ - 1) {
      blockEnd = height;
    }
    if (a->getValueType() == NO_VALUE) {
      for (size_t i = blockBegin; i < blockEnd; ++i) {
        int start = a->getRowStartIdx(i);
        int end = a->getRowStartIdx(i);
        size_t colNum = a->getColNum(i);
        if (colNum == 0) {
          continue;
        }  // skip empty row
        localBufRows.push_back(i);
        size_t bufPos = localBufRows.size() - 1;
        for (int j = start; j < end; ++j) {
          vecAddTo(localC + bufPos * width, B + cols[j] * width, width);
        }
      }
    } else if (a->getValueType() == FLOAT_VALUE) {
      for (size_t i = blockBegin; i < blockEnd; ++i) {
        int start = a->getRowStartIdx(i);
        int end = a->getRowStartIdx(i);
        size_t colNum = a->getColNum(i);
        if (colNum == 0) {
          continue;
        }  // skip empty row
        localBufRows.push_back(i);
        size_t bufPos = localBufRows.size() - 1;
        for (int j = start; j < end; ++j) {
2955 2956
          vecAddTo(
              localC + bufPos * width, B + cols[j] * width, value[j], width);
Z
zhangjinchao01 已提交
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
        }
      }
    }

    {
      std::lock_guard<std::mutex> guard(*blockLocks_[blockId]);
      for (size_t i = 0; i < localBufRows.size(); ++i) {
        vecAddTo(C + localBufRows[i] * width, localC + i * width, width);
      }
    }
    memset(localC, 0, localBufRows.size() * width * sizeof(real));
    localBufRows.clear();
  }

  VLOG(2) << " B[0]=" << B[0] << " B[1]=" << B[1] << " C[0]=" << C[0]
          << " C[1]=" << C[1];
}

void SharedCpuMatrix::add(Matrix& b, real p1, real p2) {
  CHECK_EQ(blockNum_, 1);
  std::lock_guard<std::mutex> guard(*blockLocks_[0]);
  CpuMatrix::add(b, p1, p2);
}

void SharedCpuMatrix::add(real p1, real p2) {
  CHECK_EQ(blockNum_, 1);
  std::lock_guard<std::mutex> guard(*blockLocks_[0]);
  CpuMatrix::add(p1, p2);
}

void SharedCpuMatrix::initShared(int blockNum) {
  CHECK_GT(height_ * width_, 1UL * 1024 * 1024)
      << "should not share small matrix";
  initBlock(blockNum);
}

void SharedCpuMatrix::initBlock(int blockNum) {
  CHECK_LE(blockNum, 200) << "should not use large block number";
  blockNum_ = blockNum;
  blockLocks_.resize(blockNum);
  for (auto& locker : blockLocks_) {
    locker.reset(new std::mutex);
  }
}

/* Add a (column) vector b to matrix a, column by column */
void CpuMatrix::addColumnVector(const Matrix& b) {
  BaseMatrix::addColVector(const_cast<Matrix&>(b));
}

/* this = a*b */
3008
void CpuMatrix::mul(const Matrix& a, const Matrix& b) {
Z
zhangjinchao01 已提交
3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
  return mul(a, b, 1.0, 0.0);
}

/* this = scaleAB*(this*b) +  scaleT*this */
void CpuMatrix::rightMul(Matrix& b, real scaleAB, real scaleT) {
  (void)b;
  (void)scaleAB;
  (void)scaleT;
  LOG(FATAL) << "Not implemented";
}

/* this = this* b */
void CpuMatrix::rightMul(Matrix& b) { return rightMul(b, 1.0, 0.0); }

/* this = scaleAB*(a*this) +  scaleT*this */
void CpuMatrix::leftMul(Matrix& a, real scaleAB, real scaleT) {
  (void)a;
  (void)scaleAB;
  (void)scaleT;
  LOG(FATAL) << "Not implemented";
}

/* this = a*this) */
void CpuMatrix::leftMul(Matrix& a) { return leftMul(a, 1.0, 0.0); }

void CpuMatrix::colMerge(Matrix& src) { src.rowSum(*this); }

void CpuMatrix::rowSum(Matrix& sum) {
  CHECK_EQ(sum.getHeight(), getHeight());
  CHECK_EQ(sum.getWidth(), (size_t)1);

3040
  sum.sumRows(*this, /* scaleSum= */ 1, /* scaleDest= */ 0);
Z
zhangjinchao01 已提交
3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071
}

void CpuMatrix::rowMaxId(IVector& maxIds) {
  CHECK(!maxIds.useGpu()) << "Matrix type are not equal";

  size_t numSamples = getHeight();
  CHECK_EQ(maxIds.getSize(), numSamples);

  real* a = getData();
  int* s = maxIds.getData();
  size_t dim = getWidth();

  for (size_t i = 0; i < numSamples; i++) {
    real sm = a[i * dim];
    int maxId = 0;
    for (size_t j = 1; j < dim; j++) {
      if (a[i * dim + j] > sm) {
        maxId = j;
        sm = a[i * dim + j];
      }
    }
    s[i] = maxId;
  }
}

void CpuMatrix::rowMax(Matrix& max) {
  CHECK_EQ(max.getHeight(), getHeight());
  CHECK_EQ(max.getWidth(), (size_t)1);
  max.maxRows(*this);
}

L
Liang Zhao 已提交
3072
/* Get the top k elements of each row of this matrix */
Z
zhangjinchao01 已提交
3073 3074 3075 3076 3077 3078 3079
void CpuMatrix::rowMax(IVector& maxIds, Matrix& maxVal) {
  CHECK(isContiguous());
  CHECK(!maxIds.useGpu() && !maxVal.useGpu()) << "Matrix type are not equal";
  size_t numSamples = getHeight();
  size_t beam = maxVal.getWidth();
  CHECK_EQ(maxIds.getSize(), numSamples * beam);
  CHECK_EQ(maxVal.getHeight(), numSamples);
L
Liang Zhao 已提交
3080
  CHECK_EQ(maxVal.getWidth(), beam);
Z
zhangjinchao01 已提交
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092

  real* a = getData();
  int* s = maxIds.getData();
  real* t = maxVal.getData();
  size_t dim = getWidth();
  for (size_t i = 0; i < numSamples; i++) {
    std::vector<std::pair<real, size_t>> vec;
    for (size_t j = 0; j < dim; j++) {
      vec.push_back(std::pair<real, size_t>(a[i * dim + j], j));
    }

    std::partial_sort(
3093 3094 3095
        vec.begin(),
        vec.begin() + beam,
        vec.end(),
Z
zhangjinchao01 已提交
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
        [](const std::pair<real, size_t>& l, const std::pair<real, size_t>& r) {
          return l.first > r.first;
        });
    for (size_t j = 0; j < beam; j++) {
      t[i * beam + j] = vec[j].first;
      s[i * beam + j] = vec[j].second;
    }
  }
}

void CpuMatrix::colMax(Matrix& max) {
  CHECK_EQ(max.getWidth(), getWidth());
  CHECK_EQ(max.getHeight(), (size_t)1);
  max.maxCols(*this);
}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130
void CpuMatrix::colMax(IVector& maxIds, Matrix& maxVal) {
  CHECK(isContiguous());
  CHECK(!maxIds.useGpu() && !maxVal.useGpu()) << "Matrix type are not equal";
  size_t numSamples = getWidth();
  size_t beam = maxVal.getHeight();
  CHECK_EQ(maxIds.getSize(), numSamples * beam);
  CHECK_EQ(maxVal.getWidth(), numSamples);

  real* a = getData();
  int* s = maxIds.getData();
  real* t = maxVal.getData();
  size_t dim = getHeight();
  for (size_t i = 0; i < numSamples; i++) {
    std::vector<std::pair<real, size_t>> vec;
    for (size_t j = 0; j < dim; j++) {
      vec.push_back(std::pair<real, size_t>(a[i + j * numSamples], j));
    }

    std::partial_sort(
3131 3132 3133
        vec.begin(),
        vec.begin() + beam,
        vec.end(),
3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
        [](const std::pair<real, size_t>& l, const std::pair<real, size_t>& r) {
          return l.first > r.first;
        });
    for (size_t j = 0; j < beam; j++) {
      t[i + j * numSamples] = vec[j].first;
      s[i + j * numSamples] = vec[j].second;
    }
  }
}

3144 3145 3146
void CpuMatrix::maxoutForward(Matrix& a,
                              IVector& id,
                              size_t channels,
3147 3148 3149 3150 3151 3152 3153 3154
                              size_t groups) {
  CHECK(dynamic_cast<CpuMatrix*>(&a));
  CHECK(dynamic_cast<CpuIVector*>(&id));
  CHECK_EQ(a.getHeight(), getHeight());

  size_t size = getWidth();
  size_t batchSize = getHeight();
  size_t featLen = size / channels;
Q
qijun 已提交
3155
  const real* input = a.getData();
3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
  int* idForCpu = id.getData();

  MatrixPtr maxInMat, maxOutMat;
  Matrix::resizeOrCreate(maxInMat, groups, size, false, false);
  Matrix::resizeOrCreate(maxOutMat, 1, size, false, false);

  for (size_t batch_idx = 0; batch_idx < batchSize; ++batch_idx) {
    size_t newIndex = batch_idx * size;
    IVectorPtr tmpId = IVector::create(idForCpu + newIndex, size, false);

    for (size_t i = 0; i < channels; ++i) {
      size_t newFeatLen = i * featLen;
      for (size_t j = 0; j < groups; ++j) {
        maxInMat->subMatrix(j, j + 1, newFeatLen, newFeatLen + featLen)
            ->copyFrom(input + (newIndex + newFeatLen) * groups + j * featLen,
                       featLen);
      }
    }
    maxInMat->colMax(*tmpId, *maxOutMat);
    this->subRowMatrix(batch_idx, batch_idx + 1)->copyFrom(*maxOutMat);
  }
}

3179 3180 3181
void CpuMatrix::maxoutBackward(Matrix& a,
                               IVector& id,
                               size_t channels,
3182 3183 3184 3185 3186 3187 3188 3189 3190
                               size_t groups) {
  CHECK(dynamic_cast<CpuMatrix*>(&a));
  CHECK(dynamic_cast<CpuIVector*>(&id));
  CHECK_EQ(a.getHeight(), getHeight());

  size_t size = a.getWidth();
  size_t batchSize = getHeight();
  size_t featLen = size / channels;
  size_t newFeatLen = groups * featLen;
Q
qijun 已提交
3191 3192
  real* inputG = getData();
  const real* outG = a.getData();
3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
  int* idForCpu = id.getData();

  for (size_t batch_idx = 0; batch_idx < batchSize; ++batch_idx) {
    size_t newIndex = batch_idx * size;
    int* idData = idForCpu + newIndex;

    for (size_t i = 0; i < size; ++i) {
      int gradIdx =
          idData[i] * featLen + (i / featLen) * newFeatLen + i % featLen;
      (inputG + newIndex * groups)[gradIdx] += (outG + newIndex)[i];
    }
  }
}

Z
zhangjinchao01 已提交
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
void CpuMatrix::rowNormalizeL1(Matrix& out) {
  CHECK(!out.useGpu());

  size_t numSamples = getHeight();
  size_t dim = getWidth();
  CHECK_EQ(out.getHeight(), numSamples);
  CHECK_EQ(out.getWidth(), dim);
  real* a = getData();
  real* b = out.getData();
  for (size_t i = 0; i < numSamples; ++i) {
    real s = 0;
    for (size_t j = 0; j < dim; ++j) {
      s += a[i * dim + j];
    }
    // Right now, we just bet that sum won't be zero. If this really happens,
    // we will figure out what should be done then.
    CHECK_GT(s, 0);
    s = 1 / s;
    for (size_t j = 0; j < dim; ++j) {
      b[i * dim + j] = s * a[i * dim + j];
    }
  }
}

/* calulate classification error */
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
void CpuMatrix::classificationError(Matrix& output,
                                    IVector& label,
                                    size_t topkSize) {
  size_t numSamples = this->getHeight();
  auto cpuOutput = dynamic_cast<CpuMatrix*>(&output);
  auto cpuLabel = dynamic_cast<CpuIVector*>(&label);
  IVectorPtr cpuTopIds = std::make_shared<CpuIVector>(numSamples * topkSize);
  MatrixPtr cpuTopVal = std::make_shared<CpuMatrix>(numSamples, topkSize);

  CHECK(cpuOutput && cpuLabel) << "Invalid argument pointer";
  CHECK(cpuTopIds && cpuTopVal) << "Allocate cpu memory failed";
  CHECK(cpuLabel->getSize() == numSamples) << "Vector size is not equal";
  CHECK(cpuOutput->getHeight() == numSamples && this->getWidth() == 1)
      << "Matrix dimensions are not equal";
Z
zhangjinchao01 已提交
3246

3247 3248
  // top k matrix classification
  cpuOutput->rowMax(*cpuTopIds, *cpuTopVal);
Z
zhangjinchao01 已提交
3249

3250 3251 3252 3253
  size_t dim = cpuOutput->getWidth();
  real* result = this->getData();
  int* ids = cpuTopIds->getData();
  int* lbl = cpuLabel->getData();
Z
zhangjinchao01 已提交
3254 3255 3256
  for (size_t i = 0; i < numSamples; ++i) {
    CHECK_GE(lbl[i], 0);
    CHECK_LT((size_t)lbl[i], dim);
3257 3258 3259 3260 3261

    for (size_t j = 0; j < topkSize; ++j) {
      if (ids[j + i * topkSize] == lbl[i]) {
        result[i] = 0;
        break;
Z
zhangjinchao01 已提交
3262
      }
3263
      result[i] = 1.0f;
Z
zhangjinchao01 已提交
3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
    }
  }
}

/* copy -log(output[label]) to this->data[i] */
void CpuMatrix::oneHotCrossEntropy(Matrix& output, IVector& label) {
  CHECK(dynamic_cast<CpuMatrix*>(&output));
  CHECK(dynamic_cast<CpuIVector*>(&label));

  size_t numSamples = getHeight();
  size_t dim = output.getWidth();
  CHECK_EQ(label.getSize(), numSamples);
  CHECK_EQ(output.getHeight(), numSamples);
  CHECK_EQ(getWidth(), (size_t)1);

  real* out = output.getData();
  real* cost = getData();
  int* lbl = label.getData();
  for (size_t i = 0; i < numSamples; ++i, out += dim) {
    CHECK_GE(lbl[i], 0);
    CHECK_LT((size_t)lbl[i], dim);
    cost[i] = -std::log(out[lbl[i]]);
  }
}

/* calculate the error of outputV according to label */
void CpuMatrix::oneHotCrossEntropyBp(Matrix& output, IVector& label) {
  CHECK(dynamic_cast<CpuMatrix*>(&output));
  CHECK(dynamic_cast<CpuIVector*>(&label));
  size_t numSamples = getHeight();
  size_t dim = getWidth();
  CHECK_EQ(output.getWidth(), dim);
  real* out = output.getData();
  real* grad = getData();
  int* lbl = label.getData();
  for (size_t i = 0; i < numSamples; ++i, out += dim, grad += dim) {
    grad[lbl[i]] -= 1 / out[lbl[i]];
  }
}

/*
    We implement the matrix functionality in CostLayer.cpp,
    but we define the scalar function here for sanity check
    deletion of the function does not affect anything neverthelss
*/
3309 3310
void CpuMatrix::oneHotCrossEntropyWithSelfNorm(Matrix& output,
                                               IVector& label,
Z
zhangjinchao01 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340
                                               real alpha) {
  CHECK(dynamic_cast<CpuMatrix*>(&output));
  CHECK(dynamic_cast<CpuIVector*>(&label));

  size_t numSamples = getHeight();
  size_t dim = output.getWidth();
  CHECK_EQ(label.getSize(), numSamples);
  CHECK_EQ(output.getHeight(), numSamples);
  CHECK_EQ(getWidth(), (size_t)1);

  real* out = output.getData();
  real* cost = getData();
  int* lbl = label.getData();
  for (size_t i = 0; i < numSamples; ++i, out += dim) {
    CHECK_GE(lbl[i], 0);
    CHECK_LT((size_t)lbl[i], dim);
    real sum = 0;
    for (size_t j = 0; j < dim; ++j) {
      sum += out[j];
    }
    sum = _safelog(sum);
    cost[i] = -_safelog(out[lbl[i]]) + sum + alpha * _square(sum);
  }
}

/*
    We implement the matrix functionality in CostLayer.cpp,
    but we define the scalar function here for sanity check
    deletion of the function does not affect anything neverthelss
*/
3341 3342
void CpuMatrix::oneHotCrossEntropyWithSelfNormBp(Matrix& output,
                                                 IVector& label,
Z
zhangjinchao01 已提交
3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422
                                                 real alpha) {
  CHECK(dynamic_cast<CpuMatrix*>(&output));
  CHECK(dynamic_cast<CpuIVector*>(&label));
  size_t numSamples = getHeight();
  size_t dim = getWidth();
  CHECK_EQ(output.getWidth(), dim);
  real* out = output.getData();
  real* grad = getData();
  int* lbl = label.getData();

  for (size_t i = 0; i < numSamples; ++i, out += dim, grad += dim) {
    grad[lbl[i]] -= 1 / out[lbl[i]];
    real sum = 0;
    for (size_t j = 0; j < dim; ++j) {
      sum += out[j];
    }
    for (size_t j = 0; j < dim; ++j) {
      if (j == (size_t)lbl[i]) {
        grad[j] += -1 / out[j];
      }
      grad[j] += 1 / sum + 2 * alpha * _safelog(sum) / sum;
    }
  }
}

#define FORWARD_LOOP()                      \
  size_t numSamples = getHeight();          \
  size_t dim = getWidth();                  \
  CHECK_EQ(output.getHeight(), numSamples); \
  CHECK_EQ(output.getWidth(), dim);         \
  const real* in = getData();               \
  real* out = output.getData();             \
  for (size_t i = 0; i < numSamples; ++i, in += dim, out += dim)

#define BACKWARD_LOOP()                     \
  size_t numSamples = getHeight();          \
  size_t dim = getWidth();                  \
  CHECK_EQ(output.getHeight(), numSamples); \
  CHECK_EQ(output.getWidth(), dim);         \
  real* grad = getData();                   \
  real* out = output.getData();             \
  for (size_t i = 0; i < numSamples; ++i, grad += dim, out += dim)

void CpuMatrix::softmax(Matrix& output) {
  CHECK(!output.useGpu());

  const float THRESHOLD = -64.0;

  FORWARD_LOOP() {
    real max = -1.0e20;
    for (size_t j = 0; j < dim; ++j) {
      if (in[j] > max) {
        max = in[j];
      }
    }
    for (size_t j = 0; j < dim; ++j) {
      real a = in[j] - max;
      if (a < THRESHOLD) {
        a = THRESHOLD;
      }
      out[j] = a;
    }
    vExp(dim, out, out);

    real sum = 0;
    for (size_t j = 0; j < dim; ++j) {
      sum += out[j];
    }
    sum = 1 / sum;
    for (size_t j = 0; j < dim; ++j) {
      out[j] *= sum;
    }
  }
}

void CpuMatrix::sequenceSoftmax(Matrix& output, const IVector& index) {
  CHECK_EQ(getWidth(), 1UL);
  CHECK_EQ(output.getWidth(), 1UL);
  CHECK(isContiguous());

3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
  MatrixPtr inTmp = Matrix::create(nullptr,
                                   /* height= */ 1,
                                   1,
                                   /* trans= */ false,
                                   false);
  MatrixPtr outTmp = Matrix::create(nullptr,
                                    /* height= */ 1,
                                    1,
                                    /* trans= */ false,
                                    false);
Z
zhangjinchao01 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
  size_t numSequences = index.getSize() - 1;
  auto starts = index.getData();
  for (size_t i = 0; i < numSequences; ++i) {
    size_t offset = starts[i];
    size_t size = starts[i + 1] - starts[i];
    inTmp->setData(getData() + offset, 1UL, size);
    outTmp->setData(output.getData() + offset, 1UL, size);
    inTmp->softmax(*outTmp);
  }
}

void CpuMatrix::softmaxDerivative(Matrix& output, Matrix& sftmaxSum) {
  CHECK(output.useGpu_ == false) << "Matrix type are not equal";
  CHECK_EQ(getHeight(), sftmaxSum.getHeight());

  real* sums = sftmaxSum.getData();

  BACKWARD_LOOP() {
    real sum = sums[i];
    for (size_t j = 0; j < dim; ++j) {
      grad[j] = out[j] * (grad[j] - sum);
    }
  }
}

void CpuMatrix::sumOfSquares(Matrix& output, Matrix& label) {
  CHECK(output.useGpu_ == false && label.useGpu_ == false)
      << "Matrix type are not equal";

  size_t numSamples = getHeight();
  size_t dim = output.getWidth();
  CHECK_EQ(label.getHeight(), numSamples);
  CHECK_EQ(output.getHeight(), numSamples);
  CHECK_EQ(label.getWidth(), dim);
  CHECK_EQ(getWidth(), (size_t)1);
  real* out = output.getData();
  real* cost = getData();

  auto labelptr = dynamic_cast<CpuSparseMatrix*>(&label);
  if (labelptr) {
    // it is a CpuSparseMatrix
    if (labelptr->getFormat() == SPARSE_CSR) {
      // treat label as a SparseMatrix
      for (size_t i = 0; i < numSamples; ++i) {
        for (size_t j = 0; j < dim; ++j) {
          cost[i] += _square(out[i * dim + j]);
        }
      }
      if (labelptr->getValueType() == NO_VALUE) {
        int* cols = labelptr->getCols();
        for (size_t i = 0; i < numSamples; ++i) {
          for (size_t j = labelptr->getRowStartIdx(i);
3485 3486
               j < labelptr->getRowStartIdx(i + 1);
               ++j) {
Z
zhangjinchao01 已提交
3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
            cost[i] += 1.0 - 2.0 * out[i * dim + cols[j]];
            /*
             * explanation of above line: original codes are follows:
             * cost[i] -= _square(out[i * dim + feature.col]);
             * cost[i] += _square(1.0 - out[i * dim + feature.col]);
             */
          }
        }
      } else if (labelptr->getValueType() == FLOAT_VALUE) {
        int* cols = labelptr->getCols();
        real* values = labelptr->getValue();
        for (size_t i = 0; i < numSamples; ++i) {
          real sum1 = 0;
          real sum2 = 0;
          for (size_t j = labelptr->getRowStartIdx(i);
3502 3503
               j < labelptr->getRowStartIdx(i + 1);
               ++j) {
Z
zhangjinchao01 已提交
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524
            sum1 += values[j] * values[j];
            sum2 += values[j] * out[i * dim + cols[j]];
            /*
             * explanation of above line: original codes are follows:
             * cost[i] -= _square(out[i * dim + feature.col]);
             * cost[i] += _square(value.col - out[i * dim + feature.col]);
             */
          }
          cost[i] += sum1 - 2.0 * sum2;
        }
      } else {
        LOG(FATAL) << "unsupported sparse matrix value type in sumOfSquares";
        return;
      }
      return;
    } else {
      LOG(FATAL) << "unsupported sparse matrix format in sumOfSquares";
      return;
    }
  }

3525 3526 3527 3528
  BaseMatrix::sumOfSquaredDiffs(output,
                                label,
                                /* scaleSum= */ 1,
                                /* scaleDest= */ 1);
Z
zhangjinchao01 已提交
3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
}

/* calculate the error of outputV according to label */
void CpuMatrix::sumOfSquaresBp(Matrix& output, Matrix& label) {
  CHECK(output.useGpu_ == false && label.useGpu_ == false)
      << "Matrix type are not equal";

  size_t numSamples = getHeight();
  size_t dim = getWidth();
  CHECK_EQ(output.getWidth(), dim);
  CHECK_EQ(label.getWidth(), dim);

  real* out = output.getData();
  real* grad = getData();

  auto labelptr = dynamic_cast<CpuSparseMatrix*>(&label);
  if (labelptr) {
    // it is a CpuSparseMatrix
    if (labelptr->getFormat() == SPARSE_CSR) {
      // treat label as a SparseMatrix
      for (size_t i = 0; i < numSamples; ++i) {
        for (size_t j = 0; j < dim; ++j) {
          grad[i * dim + j] += 2.0 * out[i * dim + j];
        }
      }
      if (labelptr->getValueType() == NO_VALUE) {
        int* cols = labelptr->getCols();
        for (size_t i = 0; i < numSamples; ++i) {
          for (size_t j = labelptr->getRowStartIdx(i);
3558 3559
               j < labelptr->getRowStartIdx(i + 1);
               ++j) {
Z
zhangjinchao01 已提交
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
            grad[i * dim + cols[j]] -= 2.0;
            /*
             * explanation of above line: original codes are follows:
             * grad[i * dim + feature.col] -= 2.0 * out[i * dim + feature.col];
             * grad[i * dim + feature.col] += 2.0 * (out[i * dim + feature.col]
             * - 1);
             */
          }
        }
      } else if (labelptr->getValueType() == FLOAT_VALUE) {
        int* cols = labelptr->getCols();
        real* values = labelptr->getValue();
        for (size_t i = 0; i < numSamples; ++i) {
          for (size_t j = labelptr->getRowStartIdx(i);
3574 3575
               j < labelptr->getRowStartIdx(i + 1);
               ++j) {
Z
zhangjinchao01 已提交
3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
            grad[i * dim + cols[j]] -= 2.0 * values[j];
            /*
             * explanation of above line: original codes are follows:
             * grad[i * dim + feature.col] -= 2.0 * out[i * dim + feature.col];
             * grad[i * dim + feature.col] += 2.0 * (out[i * dim + feature.col]
             * - value.col);
             */
          }
        }
      } else {
        LOG(FATAL) << "unsupported sparse matrix value type in sumOfSquares";
        return;
      }
      return;
    } else {
      LOG(FATAL) << "unsupported sparse matrix format in sumOfSquares";
      return;
    }
  }

  real* lbl = label.getData();
  size_t ld = getStride();
  size_t outLd = output.getStride();
  size_t lblLd = label.getStride();
  CHECK(lbl);
  for (size_t i = 0; i < numSamples;
       ++i, out += outLd, lbl += lblLd, grad += ld) {
    for (size_t j = 0; j < dim; ++j) {
      grad[j] += 2.0 * (out[j] - lbl[j]);  // positive gradient;
    }
  }
}

G
gaoyuan 已提交
3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657
void CpuMatrix::smoothL1(Matrix& output, Matrix& label) {
  CHECK(output.useGpu_ == false && label.useGpu_ == false)
      << "Matrix type are not equal";

  size_t numSamples = getHeight();
  size_t dim = output.getWidth();
  CHECK_EQ(label.getHeight(), numSamples);
  CHECK_EQ(output.getHeight(), numSamples);
  CHECK_EQ(label.getWidth(), dim);
  CHECK_EQ(getWidth(), (size_t)1);
  real* out = output.getData();
  real* cost = getData();
  real* lbl = label.getData();

  for (size_t i = 0; i < numSamples; ++i, out += dim, cost += dim, lbl += dim) {
    for (size_t j = 0; j < dim; ++j) {
      cost[j] = std::fabs(out[j] - lbl[j]);
      if (cost[j] < 1.0)
        cost[j] = 0.5 * cost[j] * cost[j];
      else
        cost[j] = cost[j] - 0.5;
    }
  }
}

void CpuMatrix::smoothL1Bp(Matrix& output, Matrix& label) {
  CHECK(output.useGpu_ == false && label.useGpu_ == false)
      << "Matrix type are not equal";

  size_t numSamples = getHeight();
  size_t dim = output.getWidth();
  CHECK_EQ(label.getHeight(), numSamples);
  CHECK_EQ(output.getHeight(), numSamples);
  CHECK_EQ(label.getWidth(), dim);
  CHECK_EQ(getWidth(), (size_t)1);
  real* out = output.getData();
  real* cost = getData();
  real* lbl = label.getData();

  // f'(x) = x         if |x| < 1
  //       = sign(x)   otherwise
  for (size_t i = 0; i < numSamples; ++i, out += dim, cost += dim, lbl += dim) {
    for (size_t j = 0; j < dim; ++j) {
      cost[j] = out[j] - lbl[j];
      if (std::fabs(cost[j]) >= 1) cost[j] = (0 < cost[j]) - (cost[j] < 0);
    }
  }
}

Z
zhangjinchao01 已提交
3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
void CpuMatrix::tanh(Matrix& output) {
  CHECK(isContiguous());
  CHECK(output.isContiguous());
  size_t numSamples = getHeight();
  size_t dim = getWidth();
  CHECK_EQ(output.getHeight(), numSamples);
  CHECK_EQ(output.getWidth(), dim);
  vTanh(numSamples * dim, getData(), output.getData());
}

void CpuMatrix::tanhDerivative(Matrix& output) {
  BaseMatrix::tanhDerivative(output);
}

void CpuMatrix::softrelu(Matrix& output) {
  CHECK(isContiguous());
  CHECK(output.isContiguous());
  const real THRESHOLD = 40.0;
  FORWARD_LOOP() {  // TODO(yuyang18): SIMD it?
    for (size_t j = 0; j < dim; ++j) {
      real x = in[j];
      if (x > THRESHOLD) {
        x = THRESHOLD;
      } else if (x < -THRESHOLD) {
        x = -THRESHOLD;
      }
      out[j] = x;
    }
  }
  vExp(numSamples * dim, output.getData(), output.getData());
  vLog1p(numSamples * dim, output.getData(), output.getData());
}

void CpuMatrix::softreluDerivative(Matrix& output) {
  CHECK(isContiguous());
  CHECK(output.isContiguous());
  size_t numSamples = getHeight();
  size_t dim = getWidth();
  size_t size = numSamples * dim;
  CHECK_EQ(output.getHeight(), numSamples);
  CHECK_EQ(output.getWidth(), dim);
  real* grad = getData();
  MatrixPtr tmpMat = Matrix::create(numSamples, dim);
  real* tmp = tmpMat->getData();

  vExp(size, output.getData(), tmpMat->getData());

  for (size_t i = 0; i < size; ++i) {
    grad[i] *= (1.0 - 1.0 / tmp[i]);
  }
}

void CpuMatrix::scaledTanh(Matrix& output, real p1, real p2) {
  CHECK(isContiguous());
  CHECK(output.isContiguous());
  size_t numSamples = getHeight();
  size_t dim = getWidth();
  CHECK_EQ(output.getHeight(), numSamples);
  CHECK_EQ(output.getWidth(), dim);

  const real* in = getData();
  real* out = output.getData();

  // out = p2*in
  for (size_t i = 0; i < numSamples * dim; ++i) {
    out[i] = p2 * in[i];
  }

  vTanh(numSamples * dim, out, out);

  // out = p1 * out
  for (size_t i = 0; i < numSamples * dim; ++i) {
    out[i] = p1 * out[i];
  }
}

/* uniform randomization, minimize precision = 1e-5 */
void CpuMatrix::randomizeUniform() {
  CHECK(isContiguous());
  real* data = getData();
  unsigned int* randSeed = ThreadLocalRand::getSeed();
  real recipRandMax = 1.0f / (real)RAND_MAX;
  for (size_t i = 0; i < elementCnt_; ++i) {
    *data++ = rand_r(randSeed) * recipRandMax;
  }
}

void CpuMatrix::print(std::ostream& os) const {
  CHECK(isContiguous());
  for (size_t i = 0; i < height_; ++i) {
    for (size_t j = 0; j < width_; ++j) {
      os << data_[i * width_ + j] << " ";
    }
    os << std::endl;
  }
}

void CpuMatrix::paramReluForward(Matrix& data, Matrix& W) {
  real* input = data.getData();
  real* w = W.getData();
  size_t numElements = data.getWidth();
  size_t numSamples = data.getHeight();
H
hedaoyuan 已提交
3760 3761 3762
  size_t paraSize = W.getHeight() * W.getWidth();
  CHECK(!(numElements % paraSize));  // this check from ParameterReluLayer::init
  size_t partial_sum = numElements / paraSize;
Z
zhangjinchao01 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
  for (size_t n = 0, k = 0; n < numSamples; ++n) {
    for (size_t i = 0; i < numElements; ++i, ++k) {
      data_[k] = input[k] > 0 ? input[k] : input[k] * w[i / partial_sum];
    }
  }
}

void CpuMatrix::paramReluBackwardW(Matrix& oGrad, Matrix& data) {
  real* ograd = oGrad.getData();
  real* input = data.getData();
  real* wgrad = data_;
  size_t numElements = data.getWidth();
  size_t numSamples = data.getHeight();
H
hedaoyuan 已提交
3776 3777 3778
  size_t paraSize = this->getHeight() * this->getWidth();
  CHECK(!(numElements % paraSize));  // this check from ParameterReluLayer::init
  size_t partial_sum = numElements / paraSize;
Z
zhangjinchao01 已提交
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792
  for (size_t n = 0, k = 0; n < numSamples; ++n) {
    for (size_t i = 0; i < numElements; ++i, ++k) {
      wgrad[i / partial_sum] += ograd[k] * (input[k] > 0 ? 0 : input[k]);
    }
  }
}

void CpuMatrix::paramReluBackwardDiff(Matrix& oGrad, Matrix& data, Matrix& W) {
  real* diff = data_;
  real* input = data.getData();
  real* ograd = oGrad.getData();
  real* w = W.getData();
  size_t numElements = data.getWidth();
  size_t numSamples = data.getHeight();
H
hedaoyuan 已提交
3793 3794 3795
  size_t paraSize = W.getHeight() * W.getWidth();
  CHECK(!(numElements % paraSize));  // this check from ParameterReluLayer::init
  size_t partial_sum = numElements / paraSize;
Z
zhangjinchao01 已提交
3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
  for (size_t n = 0, k = 0; n < numSamples; ++n) {
    for (size_t i = 0; i < numElements; ++i, ++k) {
      diff[k] += ograd[k] * (input[k] > 0 ? 1 : w[i / partial_sum]);
    }
  }
}

void CpuMatrix::print(std::ostream& os, size_t height, size_t width) const {
  CHECK(isContiguous());
  size_t h = height_ < height ? height_ : height;
  size_t w = width_ < width ? width_ : width;
  os.setf(std::ostream::scientific);
  os << "[";
  for (size_t i = 0; i < h; ++i) {
    for (size_t j = 0; j < w; ++j) {
      os << data_[i * width_ + j] << " ";
    }
    if (i == h - 1) {
      os << "]";
    }
    os << std::endl;
  }
}

void CpuMatrix::printOneRow(std::ostream& os, size_t idx) const {
  CHECK_LT(idx, height_);
  size_t offset = idx * stride_;
  os << data_[offset];
  for (size_t i = 1; i < width_; ++i) {
    os << " " << data_[offset + i];
  }
  os << ";";
}

void CpuMatrix::check(std::ostream& os, Matrix& refMat, bool printDiff) {
  CHECK(isContiguous());
  CHECK(height_ == refMat.getHeight());
  CHECK(width_ == refMat.getWidth());
  CpuMatrix cpuRef(height_, width_);
  cpuRef.copyFrom(refMat);
  size_t diffCnt = 0;
  for (size_t i = 0; i < height_; ++i) {
    for (size_t j = 0; j < width_; ++j) {
      real a = getElement(i, j);
      real b = cpuRef.getElement(i, j);
      if (fabs(a - b) > 0.00001) {
        ++diffCnt;
        if (printDiff) {
          os << "ref= " << a << "  check= " << b << std::endl;
        }
      }
    }
  }
  LOG(INFO) << "the  diffCnt is " << diffCnt;
}

real CpuMatrix::getMin() {
  size_t size = getHeight() * getWidth();
  real* data = getData();
  real res = data[0];
  for (size_t i = 1; i < size; ++i) {
    if (res > data[i]) {
      res = data[i];
    }
  }
  return res;
}

real CpuMatrix::getMax() {
  size_t size = getHeight() * getWidth();
  real* data = getData();
  real res = data[0];
  for (size_t i = 1; i < size; ++i) {
    if (res < data[i]) {
      res = data[i];
    }
  }
  return res;
}

void CpuMatrix::circularConv(Matrix& in0, Matrix& in1) {
  size_t height = this->getHeight();
  size_t width0 = this->getWidth();
  size_t width1 = in1.getWidth();

  CHECK_EQ(height, in0.getHeight());
  CHECK_EQ(width0, in0.getWidth());
  CHECK_EQ(height, in1.getHeight());

  CHECK_EQ(width1 % 2, 1U);

  real* outV = this->getData();
  real* inV0 = in0.getData();
  real* inV1 = in1.getData();

  int leftCtxLen = (width1 - 1) / 2;
  for (size_t x = 0; x < height;
       ++x, outV += width0, inV0 += width0, inV1 += width1) {
    for (size_t i = 0; i < width0; ++i) {  // each dimension of output
      for (size_t j = 0; j < width1; ++j) {
        // iterate over all dimentions of inV1
        int index = i + j - leftCtxLen;
        index = (index + width0) % width0;
        outV[i] += inV0[index] * inV1[j];
      }
    }
  }
}

3905 3906
void CpuMatrix::circularConvDerivative(
    Matrix& outG, Matrix& in0, Matrix& in1, Matrix& inG0, Matrix& inG1) {
Z
zhangjinchao01 已提交
3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925
  size_t height = in0.getHeight();
  size_t width0 = in0.getWidth();
  size_t width1 = in1.getWidth();

  CHECK_EQ(height, in1.getHeight());
  CHECK_EQ(height, inG0.getHeight());
  CHECK_EQ(width0, inG0.getWidth());
  CHECK_EQ(height, inG1.getHeight());
  CHECK_EQ(width1, inG1.getWidth());
  CHECK_EQ(height, outG.getHeight());
  CHECK_EQ(width0, outG.getWidth());

  real* outGV = outG.getData();
  real* inV0 = in0.getData();
  real* inV1 = in1.getData();
  real* inGV0 = inG0.getData();
  real* inGV1 = inG1.getData();

  int leftCtxLen = (width1 - 1) / 2;
3926 3927 3928 3929 3930 3931
  for (size_t x = 0; x < height; ++x,
              outGV += width0,
              inV0 += width0,
              inV1 += width1,
              inGV0 += width0,
              inGV1 += width1) {
Z
zhangjinchao01 已提交
3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
    for (size_t j = 0; j < width1; ++j) {  // iterate over width1
      for (size_t i = 0; i < width0; ++i) {
        // such over all dimensions of outG
        int index = i + j - leftCtxLen;
        index = (index + width0) % width0;
        inGV0[index] += outGV[i] * inV1[j];
        inGV1[j] += outGV[i] * inV0[index];
      }
    }
  }
}

void CpuMatrix::multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label) {
  CHECK(dynamic_cast<CpuMatrix*>(&output));
  auto labelPtr = dynamic_cast<CpuSparseMatrix*>(&label);
  CHECK(labelPtr);

  size_t numSamples = getHeight();
  size_t dim = output.getWidth();
  CHECK_EQ(numSamples, output.getHeight());
  CHECK_EQ(numSamples, labelPtr->getHeight());
  CHECK_EQ(dim, labelPtr->getWidth());

  real* out = output.getData();
  real* cost = getData();
  for (size_t i = 0; i < numSamples; ++i, out += dim) {
    for (size_t j = 0; j < dim; ++j) {
      CHECK(out[j] > 0 && out[j] < 1.0);
      cost[i] -= std::log(1 - out[j]);
    }

    const int* cols = labelPtr->getRowCols(i);
    for (size_t j = 0; j < labelPtr->getColNum(i); ++j) {
      CHECK_LT(size_t(cols[j]), dim);
      cost[i] -= std::log(out[cols[j]] / (1 - out[cols[j]]));
    }
  }
}

void CpuMatrix::multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) {
  CHECK(dynamic_cast<CpuMatrix*>(&output));
  auto labelPtr = dynamic_cast<CpuSparseMatrix*>(&label);
  CHECK(labelPtr);

  size_t numSamples = getHeight();
  size_t dim = getWidth();
  CHECK_EQ(numSamples, output.getHeight());
  CHECK_EQ(numSamples, labelPtr->getHeight());
  CHECK_EQ(dim, output.getWidth());
  CHECK_EQ(dim, labelPtr->getWidth());

  real* out = output.getData();
  real* grad = getData();
  for (size_t i = 0; i < numSamples; ++i, out += dim, grad += dim) {
    for (size_t j = 0; j < dim; ++j) {
      CHECK(out[j] > 0 && out[j] < 1.0);
      grad[j] += 1.0 / (1 - out[j]);
    }

    const int* cols = labelPtr->getRowCols(i);
    for (size_t j = 0; j < labelPtr->getColNum(i); ++j) {
      CHECK_LT(size_t(cols[j]), dim);
      grad[cols[j]] -= 1.0 / (out[cols[j]] * (1 - out[cols[j]]));
    }
  }
}

/* calculate the classification error for multi binary label */
4000 4001
void CpuMatrix::classificationErrorMulti(Matrix& output,
                                         Matrix& label,
Z
zhangjinchao01 已提交
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035
                                         real threshold) {
  CHECK(dynamic_cast<CpuMatrix*>(&output));
  auto labelPtr = dynamic_cast<CpuSparseMatrix*>(&label);
  CHECK(labelPtr);

  size_t numSamples = getHeight();
  size_t dim = output.getWidth();
  CHECK_EQ(numSamples, output.getHeight());
  CHECK_EQ(numSamples, labelPtr->getHeight());
  CHECK_EQ(dim, labelPtr->getWidth());

  real* out = output.getData();
  real* result = getData();
  for (size_t i = 0; i < numSamples; ++i, out += dim) {
    real sum = 0.0;
    for (size_t j = 0; j < dim; ++j) {
      if (out[j] >= threshold) {
        sum += 1.0;
      }
    }

    const int* cols = labelPtr->getRowCols(i);
    for (size_t j = 0; j < labelPtr->getColNum(i); ++j) {
      CHECK_LT(size_t(cols[j]), dim);
      if (out[cols[j]] < threshold) {
        sum += 1.0;
      } else {
        sum -= 1.0;
      }
    }
    result[i] = sum / dim;
  }
}

L
liaogang 已提交
4036 4037 4038 4039 4040
void CpuMatrix::bilinearForward(const Matrix& in,
                                const size_t inImgH,
                                const size_t inImgW,
                                const size_t outImgH,
                                const size_t outImgW,
L
liaogang 已提交
4041 4042 4043
                                const size_t numChannels,
                                const real ratioH,
                                const real ratioW) {
L
liaogang 已提交
4044 4045 4046
  CHECK(dynamic_cast<const CpuMatrix*>(&in));

  size_t outputW = getWidth();
L
liaogang 已提交
4047
  size_t batchSize = getHeight();
L
liaogang 已提交
4048 4049
  size_t inputW = in.getWidth();
  size_t inputH = in.getHeight();
L
liaogang 已提交
4050 4051
  size_t inPosOffset = inImgH * inImgW;
  size_t outPosOffset = outImgH * outImgW;
L
liaogang 已提交
4052
  (void)(inputH);
L
liaogang 已提交
4053 4054

  real* outData = getData();
4055
  const real* inData = in.getData();
L
liaogang 已提交
4056 4057 4058 4059

  if (inImgH == outImgH && inImgW == outImgW) {
    this->copyFrom(in);
  } else {
4060
    for (size_t k = 0; k < batchSize; ++k) {  // loop for batches
L
liaogang 已提交
4061 4062 4063
      for (size_t i = 0; i < outImgH; ++i) {  // loop for images
        size_t h = ratioH * i;
        size_t hid = (h < inImgH - 1) ? 1 : 0;
L
liaogang 已提交
4064 4065
        real h1lambda = ratioH * i - h;
        real h2lambda = 1 - h1lambda;
L
liaogang 已提交
4066

L
liaogang 已提交
4067 4068 4069
        for (size_t j = 0; j < outImgW; ++j) {
          size_t w = ratioW * j;
          size_t wid = (w < inImgW - 1) ? 1 : 0;
L
liaogang 已提交
4070 4071
          real w1lambda = ratioW * j - w;
          real w2lambda = 1 - w1lambda;
L
liaogang 已提交
4072 4073 4074
          // calculate four position for bilinear interpolation
          const real* inPos = &inData[k * inputW + h * inImgW + w];
          real* outPos = &outData[k * outputW + i * outImgW + j];
L
liaogang 已提交
4075
          for (size_t c = 0; c < numChannels; ++c) {  // loop for channels
L
liaogang 已提交
4076
            // bilinear interpolation
L
liaogang 已提交
4077
            outPos[0] =
4078 4079 4080
                h2lambda * (w2lambda * inPos[0] + w1lambda * inPos[wid]) +
                h1lambda * (w2lambda * inPos[hid * inImgW] +
                            w1lambda * inPos[hid * inImgW + wid]);
L
liaogang 已提交
4081 4082
            inPos += inPosOffset;
            outPos += outPosOffset;
L
liaogang 已提交
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094
          }
        }
      }
    }
  }
}

void CpuMatrix::bilinearBackward(const Matrix& out,
                                 const size_t outImgH,
                                 const size_t outImgW,
                                 const size_t inImgH,
                                 const size_t inImgW,
L
liaogang 已提交
4095 4096 4097
                                 const size_t numChannels,
                                 const real ratioH,
                                 const real ratioW) {
L
liaogang 已提交
4098 4099 4100 4101 4102
  CHECK(dynamic_cast<const CpuMatrix*>(&out));

  size_t inputW = getWidth();
  size_t inputH = getHeight();
  size_t outputW = out.getWidth();
L
liaogang 已提交
4103
  size_t batchSize = out.getHeight();
L
liaogang 已提交
4104 4105
  size_t inPosOffset = inImgH * inImgW;
  size_t outPosOffset = outImgH * outImgW;
L
liaogang 已提交
4106
  (void)(inputH);
L
liaogang 已提交
4107 4108 4109 4110 4111

  real* inGrad = getData();
  const real* outGrad = out.getData();

  if (inImgH == outImgH && inImgW == outImgW) {
L
liaogang 已提交
4112
    this->add(const_cast<Matrix&>(out));
L
liaogang 已提交
4113
  } else {
4114
    for (size_t k = 0; k < batchSize; ++k) {  // loop for batches
L
liaogang 已提交
4115 4116 4117
      for (size_t i = 0; i < outImgH; ++i) {  // loop for images
        size_t h = ratioH * i;
        size_t hid = (h < inImgH - 1) ? 1 : 0;
L
liaogang 已提交
4118 4119
        real h1lambda = ratioH * i - h;
        real h2lambda = 1 - h1lambda;
L
liaogang 已提交
4120 4121 4122
        for (size_t j = 0; j < outImgW; ++j) {
          size_t w = ratioW * j;
          size_t wid = (w < inImgW - 1) ? 1 : 0;
L
liaogang 已提交
4123 4124
          real w1lambda = ratioW * j - w;
          real w2lambda = 1 - w1lambda;
L
liaogang 已提交
4125 4126 4127

          real* inPos = &inGrad[k * inputW + h * inImgW + w];
          const real* outPos = &outGrad[k * outputW + i * outImgW + j];
L
liaogang 已提交
4128
          for (size_t c = 0; c < numChannels; ++c) {  // loop for channels
L
liaogang 已提交
4129 4130 4131 4132
            inPos[0] += h2lambda * w2lambda * outPos[0];
            inPos[wid] += h2lambda * w1lambda * outPos[0];
            inPos[hid * inImgW] += h1lambda * w2lambda * outPos[0];
            inPos[hid * inImgW + wid] += h1lambda * w1lambda * outPos[0];
L
liaogang 已提交
4133 4134
            inPos += inPosOffset;
            outPos += outPosOffset;
L
liaogang 已提交
4135 4136 4137 4138 4139 4140 4141
          }
        }
      }
    }
  }
}

Z
zhangjinchao01 已提交
4142 4143 4144 4145 4146 4147 4148 4149
////////////////////////////////////////////////////////////////
//               functions executed via cpu                   //
////////////////////////////////////////////////////////////////

void GpuMatrix::selectElements(Matrix& table, IVector& ids) {
  execViaCpu2(&CpuMatrix::selectElements, *this, table, ids);
}
}  // namespace paddle