inplace_abn_op.cu 8.2 KB
Newer Older
K
Kaipeng Deng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/inplace_abn_op.h"
16
#include "paddle/fluid/operators/batch_norm_op.h"
H
hong 已提交
17 18
#include "paddle/phi/kernels/batch_norm_grad_kernel.h"
#include "paddle/phi/kernels/batch_norm_kernel.h"
19 20 21
#include "paddle/phi/kernels/gpu/sync_batch_norm_utils.h"
#include "paddle/phi/kernels/sync_batch_norm_grad_kernel.h"
#include "paddle/phi/kernels/sync_batch_norm_kernel.h"
K
Kaipeng Deng 已提交
22 23 24 25 26

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
27
class InplaceABNKernel : public framework::OpKernel<T> {
K
Kaipeng Deng 已提交
28 29
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
30 31
    auto* y = ctx.Output<phi::DenseTensor>("Y");
    auto* x = ctx.Input<phi::DenseTensor>("X");
32 33
    PADDLE_ENFORCE_EQ(x,
                      y,
34 35
                      platform::errors::InvalidArgument(
                          "X and Y not inplaced in inplace mode"));
K
Kaipeng Deng 已提交
36 37 38 39
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();

40 41 42 43
    auto* scale = ctx.Input<phi::DenseTensor>("Scale");
    auto* bias = ctx.Input<phi::DenseTensor>("Bias");
    auto* mean = ctx.Input<phi::DenseTensor>("Mean");
    auto* variance = ctx.Input<phi::DenseTensor>("Variance");
44 45 46 47 48 49 50 51

    auto momentum = ctx.Attr<float>("momentum");
    auto epsilon = ctx.Attr<float>("epsilon");
    auto data_layout = ctx.Attr<std::string>("data_layout");
    auto is_test = ctx.Attr<bool>("is_test");
    auto use_global_stats = ctx.Attr<bool>("use_global_stats");
    auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");

52 53 54 55 56
    auto* mean_out = ctx.Output<phi::DenseTensor>("MeanOut");
    auto* variance_out = ctx.Output<phi::DenseTensor>("VarianceOut");
    auto* saved_mean = ctx.Output<phi::DenseTensor>("SavedMean");
    auto* saved_variance = ctx.Output<phi::DenseTensor>("SavedVariance");
    auto* reserve_space = ctx.Output<phi::DenseTensor>("ReserveSpace");
57

K
Kaipeng Deng 已提交
58
    if (ctx.Attr<bool>("use_sync_bn")) {
59 60 61 62 63 64 65
      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::SyncBatchNormKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
          *x,
          *mean,
          *variance,
66 67 68
          *scale,
          *bias,
          is_test,
69 70 71 72 73 74 75 76 77 78 79
          momentum,
          epsilon,
          data_layout,
          use_global_stats,
          trainable_statistics,
          y,
          mean_out,
          variance_out,
          saved_mean,
          saved_variance,
          reserve_space);
K
Kaipeng Deng 已提交
80
    } else {
H
hong 已提交
81 82 83 84
      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::BatchNormKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
85 86 87
          *x,
          *mean,
          *variance,
88 89 90
          *scale,
          *bias,
          is_test,
91 92 93 94 95 96 97 98 99 100 101
          momentum,
          epsilon,
          data_layout,
          use_global_stats,
          trainable_statistics,
          y,
          mean_out,
          variance_out,
          saved_mean,
          saved_variance,
          reserve_space);
K
Kaipeng Deng 已提交
102 103 104 105 106 107 108 109 110 111 112
    }

    auto cur_y = EigenVector<T>::Flatten(*y);
    InplaceABNActivation<DeviceContext, T> functor;
    functor.Compute(ctx, activation, place, cur_y, cur_y);
  }
};

// Deriving the Gradient for the Backward Pass of Batch Normalization
// https://kevinzakka.github.io/2016/09/14/batch_normalization/
template <typename DeviceContext, typename T>
113
class InplaceABNGradKernel : public framework::OpKernel<T> {
K
Kaipeng Deng 已提交
114 115
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
116 117 118
    const auto* y = ctx.Input<phi::DenseTensor>("Y");
    auto* d_y = ctx.Input<phi::DenseTensor>(framework::GradVarName("Y"));
    auto* d_x = ctx.Output<phi::DenseTensor>(framework::GradVarName("X"));
119 120
    PADDLE_ENFORCE_EQ(d_x,
                      d_y,
K
Kaipeng Deng 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134
                      platform::errors::InvalidArgument(
                          "X@GRAD and Y@GRAD not inplaced in inplace mode"));
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
    auto activation =
        GetInplaceABNActivationType(ctx.Attr<std::string>("activation"));

    auto py = *y;
    auto pd_y = *d_y;
    auto cur_y = EigenVector<T>::Flatten(py);
    auto cur_dy = EigenVector<T>::Flatten(pd_y);

    InplaceABNActivation<DeviceContext, T> functor;
    functor.GradCompute(ctx, activation, place, cur_y, cur_y, cur_dy, cur_dy);

135 136 137 138
    auto* scale = ctx.Input<phi::DenseTensor>("Scale");
    auto* bias = ctx.Input<phi::DenseTensor>("Bias");
    auto* saved_mean = ctx.Input<phi::DenseTensor>("SavedMean");
    auto* saved_variance = ctx.Input<phi::DenseTensor>("SavedVariance");
139 140 141 142 143 144 145 146

    auto momentum = ctx.Attr<float>("momentum");
    auto epsilon = ctx.Attr<float>("epsilon");
    auto data_layout = ctx.Attr<std::string>("data_layout");
    auto is_test = ctx.Attr<bool>("is_test");
    auto use_global_stats = ctx.Attr<bool>("use_global_stats");
    auto trainable_statistics = ctx.Attr<bool>("trainable_statistics");

147 148 149 150
    auto* scale_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Scale"));
    auto* bias_grad =
        ctx.Output<phi::DenseTensor>(framework::GradVarName("Bias"));
151

152 153 154
    auto* reserve_space = ctx.Input<phi::DenseTensor>("ReserveSpace");
    auto* mean = ctx.Input<phi::DenseTensor>("ReserveSpace");
    auto* variance = ctx.Input<phi::DenseTensor>("ReserveSpace");
155

K
Kaipeng Deng 已提交
156
    if (ctx.Attr<bool>("use_sync_bn")) {
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::SyncBatchNormGradFunctor<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
          nullptr,
          y,
          *scale,
          *bias,
          *saved_mean,
          *saved_variance,
          *d_y,
          epsilon,
          data_layout,
          d_x,
          scale_grad,
          bias_grad);
K
Kaipeng Deng 已提交
173
    } else {
174 175 176
      paddle::optional<phi::DenseTensor> space_opt;
      paddle::optional<phi::DenseTensor> mean_opt;
      paddle::optional<phi::DenseTensor> variance_opt;
H
hong 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

      if (reserve_space != nullptr) {
        space_opt = *reserve_space;
      }

      if (mean != nullptr) {
        mean_opt = *mean;
      }

      if (variance != nullptr) {
        variance_opt = *variance;
      }

      auto& dev_ctx = ctx.device_context<DeviceContext>();
      phi::BatchNormGradRawKernel<T>(
          static_cast<const typename framework::ConvertToPhiContext<
              DeviceContext>::TYPE&>(dev_ctx),
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
          *y,
          *scale,
          *bias,
          mean_opt,
          variance_opt,
          *saved_mean,
          *saved_variance,
          space_opt,
          *d_y,
          momentum,
          epsilon,
          data_layout,
          is_test,
          use_global_stats,
          trainable_statistics,
          true,
          d_x,
          scale_grad,
          bias_grad);
K
Kaipeng Deng 已提交
213 214 215 216 217 218 219 220 221
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;
222 223 224
#ifdef PADDLE_WITH_HIP
// MIOPEN do not support double
REGISTER_OP_CUDA_KERNEL(inplace_abn,
L
Leo Chen 已提交
225 226 227
                        ops::InplaceABNKernel<phi::GPUContext, float>);
REGISTER_OP_CUDA_KERNEL(inplace_abn_grad,
                        ops::InplaceABNGradKernel<phi::GPUContext, float>);
228
#else
K
Kaipeng Deng 已提交
229
REGISTER_OP_CUDA_KERNEL(inplace_abn,
L
Leo Chen 已提交
230 231 232 233 234
                        ops::InplaceABNKernel<phi::GPUContext, float>,
                        ops::InplaceABNKernel<phi::GPUContext, double>);
REGISTER_OP_CUDA_KERNEL(inplace_abn_grad,
                        ops::InplaceABNGradKernel<phi::GPUContext, float>,
                        ops::InplaceABNGradKernel<phi::GPUContext, double>);
235
#endif