base.py 29.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
S
songyouwei 已提交
15
import decorator
16
import contextlib
17 18
import functools
import inspect
19
import sys
20 21 22
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
H
hong 已提交
23
from paddle.fluid.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
24
from .tracer import Tracer
Z
Zeng Jinle 已提交
25
import logging
26
from ..data_feeder import convert_dtype
L
Leo Chen 已提交
27
import warnings
28 29 30 31
from ..framework import (
    _get_paddle_place,
    _in_eager_without_dygraph_check,
)
32
import paddle
33
import warnings
34

35
__all__ = [
36 37 38 39 40 41 42 43
    'no_grad',
    'no_grad_',
    'grad',
    'guard',
    'enable_dygraph',
    'disable_dygraph',
    'enabled',
    'to_variable',
44
]
45

H
hjyp 已提交
46
# Flag that indicates whether running code under `@to_static`
47 48 49 50 51
_in_declarative_mode_ = False


def in_declarative_mode():
    """
H
hjyp 已提交
52
    Return a bool value that indicates whether running code under `@to_static`
53 54 55 56

    """
    return _in_declarative_mode_

57

58 59 60
def declarative_unsupport_argument_warning(
    func_name, input_names, inputs, support_values
):
61 62 63 64 65 66 67 68
    """
    Warning if inputs do not elementwisely equals to support_values.
    It's a utility function for dy2static when dygraph interface have
    more inputs than static interface such as paddle.grad.

    """
    for name, inp, sup in zip(input_names, inputs, support_values):
        if inp != sup:
69 70 71 72
            warnings.warn(
                f"{func_name} has unsupported parameter in jit: "
                + f"{name}, jit will discard it"
            )
73 74


75 76 77 78 79 80 81 82 83 84 85
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


86 87 88 89 90 91 92 93 94 95
@signature_safe_contextmanager
def _switch_declarative_mode_guard_(is_declarative=True):

    global _in_declarative_mode_
    original_val = _in_declarative_mode_
    _in_declarative_mode_ = is_declarative
    yield
    _in_declarative_mode_ = original_val


96 97 98 99 100 101
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
102 103 104 105 106
    try:
        yield
    finally:
        if tracer:
            tracer._enable_program_desc_tracing = original_val
107 108


109 110 111
_functional_dygraph_context_manager = None


112 113
@signature_safe_contextmanager
def param_guard(parameters):
114
    # Note: parameters is a reference of self._parameters or self._buffers
姜永久 已提交
115
    if in_declarative_mode() and not framework.in_dygraph_mode() and parameters:
116 117
        origin_parameters = parameters.copy()
        for name, var_base in parameters.items():
118 119 120 121 122
            if isinstance(var_base, list):
                new_var = [_convert_into_variable(var) for var in var_base]
            else:
                new_var = _convert_into_variable(var_base)
            parameters[name] = new_var
123 124 125 126 127 128
        yield
        parameters.update(origin_parameters)
    else:
        yield


J
Jiabin Yang 已提交
129
def _convert_into_variable(tensor):
130 131 132
    """
    Convert Varbase into Variable.
    """
J
Jiabin Yang 已提交
133
    if isinstance(tensor, (core.eager.Tensor, core.VarBase)):
134
        # Check whether has been created before.
J
Jiabin Yang 已提交
135
        new_var = tensor.block._find_var_recursive(tensor.name)
136 137 138
        if new_var is not None:
            assert isinstance(new_var, framework.Variable)
        # Convert ParamBase into Parameter with same attributes in dy2stat.
139 140 141
        elif isinstance(
            tensor, (framework.EagerParamBase, framework.ParamBase)
        ):
J
Jiabin Yang 已提交
142
            new_var = tensor._to_static_var(to_parameter=True)
143 144 145 146 147 148 149 150 151
        else:
            # Note(Aurelius84): Convert VarBase in self._buffers into Variable with
            # same attributes and set persistable=True to allow saving this var.
            # Because users can create a VarBase in `__init__`  like a
            # `mask` Tensor or `hidden_0` in RNN layers, which is equivalent to a Parameter
            # and necessary for inferring. It will be pruned if it's not necessary for inferring.

            # But if its shape is empty while created from `create_variable()`, we consider this buffer
            # non-persistable. See case of `drop_state` in lstm api.
J
Jiabin Yang 已提交
152
            is_persistable = len(tensor.shape) > 0
153

154 155 156
            new_var = tensor._to_static_var(
                to_parameter=False, persistable=is_persistable
            )
157 158 159 160 161 162 163 164 165 166 167 168
        # add param into parameter recorder to collect all the params used in this program.
        if new_var.persistable is True:
            # TODO(@xiongkun): 0d-tensor may be affected at present,
            # but there is no particularly good method to identify whether 0d-tensor
            # is used as buffer or "drop_out_state" in LSTM buffer variable.
            from paddle.jit.dy2static.program_translator import (
                ProgramTranslator,
            )

            ProgramTranslator.get_instance()._params_recorder.add(
                tensor.block.program, tensor
            )
169 170
        return new_var
    else:
J
Jiabin Yang 已提交
171
        return tensor
172 173


174
def enabled():
175 176 177
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
178 179
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable_dygraph`
    and :ref:`api_fluid_dygraph_disable_dygraph` api .
180 181

    **Note**:
J
Jiabin Yang 已提交
182 183
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use for now.
184 185 186 187 188 189 190 191 192 193 194 195 196 197

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
J
Jiabin Yang 已提交
198
    # TODO(jiabin): Make this check as in_dygraph_mode when we support default eager mode.
姜永久 已提交
199
    return framework.in_dygraph_mode()
200 201


202 203
def enable_dygraph(place=None):
    """
204 205 206 207 208

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn OFF static graph mode. You can turn ON static graph mode by `enable_static <./disable_dygraph_en.html>`_ .
209 210

    Parameters:
211
        place(paddle.CPUPlace|paddle.CUDAPlace|str, optional): Place to run dynamic graph. Default: None. Which means that the running place will be
212 213
            determined according to the way of paddle compilation. If ``place`` is string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
            index of the GPUs.
214 215 216 217 218 219 220

    return:
        None

    Examples:
        .. code-block:: python

221 222 223 224
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
225
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
226 227 228

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
229 230 231

    """
    global _functional_dygraph_context_manager
S
songyouwei 已提交
232
    if _functional_dygraph_context_manager is None:
233
        _functional_dygraph_context_manager = guard(
234 235
            place=_get_paddle_place(place)
        )
S
songyouwei 已提交
236
        _functional_dygraph_context_manager.__enter__()
237

H
hong 已提交
238 239 240
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

241 242 243

def disable_dygraph():
    """
244 245 246 247 248

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn ON static graph mode. You can turn ON static graph mode by `disable_static <./enable_dygraph_en.html>`_ .
249 250 251 252 253 254 255

    return:
        None

    Examples:
        .. code-block:: python

256 257 258 259
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
260
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
261 262 263

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
264 265 266 267 268 269 270 271

    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


272 273 274 275
@signature_safe_contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
276 277
        has_grad = tracer._has_grad
        tracer._has_grad = is_train
278 279 280
        try:
            yield
        finally:
281
            tracer._has_grad = has_grad
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
    else:
        yield


def no_grad(func=None):
    """
    :api_attr: imperative

    Create a context which disables dygraph gradient calculation.
    In this mode, the result of every computation will have `stop_gradient=True`.

    Also functions as a decorator. (Make sure to instantiate without parenthesis.)

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)  # l0.weight.gradient() is None
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                # l1.weight.stop_gradient is False
                tmp = l1.weight * 2  # tmp.stop_gradient is True
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()
            print(tmp.gradient() is None)  # True
            print(l0.weight.gradient() is None)  # False

        # use as decorator

        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
                inp = np.ones([3, 1024], dtype='float32')
                t = fluid.dygraph.base.to_variable(inp)
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)

        test_layer()

    """
333 334 335 336
    if in_declarative_mode():
        warnings.warn(
            "paddle.no_grad is only supported for inference model, and not supported for training under @to_static."
        )
337 338 339 340 341 342 343 344 345 346 347 348 349
    if func is None:
        return _switch_tracer_mode_guard_(is_train=False)
    else:

        @decorator.decorator
        def __impl__(func, *args, **kwargs):
            with _switch_tracer_mode_guard_(is_train=False):
                return func(*args, **kwargs)

        return __impl__(func)


class no_grad_:
350
    """
351 352
    :api_attr: imperative

353
    Create a context which disables dygraph gradient calculation.
354 355
    In this mode, the result of every computation will have `stop_gradient` set
    to `True`.
356

357
    Also functions as a decorator. (Make sure to use an instance.)
358 359 360 361 362 363

    Examples:

     .. code-block:: python

        import numpy as np
364
        import paddle
365

366 367 368
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
369 370 371
        l0 = paddle.nn.Linear(2, 2)  # l0.weight.gradient() is None
        l1 = paddle.nn.Linear(2, 2)
        with paddle.no_grad():
372 373
            # l1.weight.stop_gradient is False
            tmp = l1.weight * 2  # tmp.stop_gradient is True
374
        x = paddle.to_tensor(data)
375 376 377 378 379
        y = l0(x) + tmp
        o = l1(y)
        o.backward()
        print(tmp.gradient() is None)  # True
        print(l0.weight.gradient() is None)  # False
380 381 382

        # use as decorator

383
        @paddle.no_grad()
384
        def test_layer():
385
            inp = np.ones([3, 1024], dtype='float32')
386 387 388
            t = paddle.to_tensor(inp)
            linear1 = paddle.nn.Linear(1024, 4, bias_attr=False)
            linear2 = paddle.nn.Linear(4, 4)
389 390
            ret = linear1(t)
            dy_ret = linear2(ret)
391 392 393 394

        test_layer()
    """

395
    def __call__(self, func):
S
songyouwei 已提交
396
        @decorator.decorator
397 398
        def _decorate_function(func, *args, **kwargs):
            with self:
399
                return func(*args, **kwargs)
400

401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
        @decorator.decorator
        def _decorate_generator(func, *args, **kwargs):
            gen = func(*args, **kwargs)
            with self:
                for x in gen:
                    yield x

        if inspect.isgeneratorfunction(func):
            return _decorate_generator(func)
        else:
            return _decorate_function(func)

    def __enter__(self):
        tracer = framework._dygraph_tracer()
        if tracer:
416 417
            self.orig = tracer._has_grad
            tracer._has_grad = False
418 419 420 421

    def __exit__(self, *args):
        tracer = framework._dygraph_tracer()
        if tracer:
422
            tracer._has_grad = self.orig
423 424


S
rename  
sneaxiy 已提交
425
@signature_safe_contextmanager
P
Paddle CI 已提交
426
def guard(place=None):
427
    """
428 429
    :api_attr: imperative

430
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
431

432
    Parameters:
433
        place(fluid.CPUPlace| fluid.CUDAPlace|str, optional): Place to execute dygraph.
434 435 436
            If None, the running place will be determined according to the way of paddle compilation.
            If ``place`` is string, It can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None
437 438 439 440 441 442 443 444 445 446 447 448

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
449
            inp = np.ones([3, 1024], dtype='float32')
450
            t = fluid.dygraph.base.to_variable(inp)
451 452 453 454
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
455 456

    """
457 458
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
459
    tracer = Tracer()
460
    VarBase = core.VarBase
M
minqiyang 已提交
461

462
    if place is not None:
463
        expected_place = _get_paddle_place(place)
464 465
    else:
        expected_place = framework._current_expected_place()
M
minqiyang 已提交
466

467 468
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
469
            with framework._dygraph_guard(tracer):
470
                with framework._dygraph_place_guard(expected_place):
P
Paddle CI 已提交
471
                    yield
472 473


474
@framework.non_static_only
475 476 477 478 479 480 481 482 483 484
def grad(
    outputs,
    inputs,
    grad_outputs=None,
    retain_graph=None,
    create_graph=False,
    only_inputs=True,
    allow_unused=False,
    no_grad_vars=None,
):
485
    '''
Z
Zeng Jinle 已提交
486
    .. note::
487
        **This API is ONLY available in imperative mode.**
Z
Zeng Jinle 已提交
488 489 490 491

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
492
        outputs (Tensor|list(Tensor)|tuple(Tensor)): the output Tensor or
493
            Tensor list/tuple of the graph to compute gradients.
494
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or
495
            Tensor list/tuple of the graph to compute gradients. The returned
496 497 498 499 500
            values of this API are the gradients of `inputs` .
        grad_outputs (Tensor|list(Tensor|None)|tuple(Tensor|None), optional):
            initial gradient values of `outputs` . If `grad_outputs` is None,
            the initial gradient values of `outputs` would be Tensors filled with 1;
            if `grad_outputs` is not None, it must have the same length as `outputs` ,
Z
Zeng Jinle 已提交
501
            and in this case, the initial gradient value of the i-th `outputs` would
502
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs`
Z
Zeng Jinle 已提交
503
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
504
            `grad_outputs` is a Tensor. Default None.
505 506 507
        retain_graph (bool, optional): whether to retain the forward graph which
            is used to calculate the gradient. When it is True, the graph would
            be retained, in which way users can calculate backward twice for the
Z
Zeng Jinle 已提交
508
            same graph. When it is False, the graph would be freed. Default None,
509
            which means it is equal to `create_graph` .
Z
Zeng Jinle 已提交
510 511 512 513 514
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
515 516
            `inputs` . If it is False, the gradients of all remaining leaf
            Tensors in the graph would be also computed and accumulated.
Z
Zeng Jinle 已提交
517 518
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
519 520 521 522
            not supported yet.
        allow_unused (bool, optional): whether to raise error or return None if some
            Tensors of `inputs` are unreachable in the graph. If some Tensors of
            `inputs` are unreachable in the graph (i.e., their gradients are None),
Z
Zeng Jinle 已提交
523 524
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
525
        no_grad_vars (Tensor|list(Tensor)|tuple(Tensor)|set(Tensor), optional):
526
            the Tensors whose gradients are not needed to compute. Default None.
Z
Zeng Jinle 已提交
527 528

    Returns:
529 530
        list: a list of Tensors, whose length is the same as the Tensor number
        inside `inputs`, and the i-th returned Tensor is the sum of gradients of
Z
Zeng Jinle 已提交
531 532
        `outputs` with respect to the i-th `inputs`.

533
    Examples:
Z
Zeng Jinle 已提交
534
        .. code-block:: python
535
            :name: code-example-1
Z
Zeng Jinle 已提交
536

537
            import paddle
Z
Zeng Jinle 已提交
538 539

            def test_dygraph_grad(create_graph):
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
                x = paddle.ones(shape=[1], dtype='float32')
                x.stop_gradient = False
                y = x * x

                # Since y = x * x, dx = 2 * x
                dx = paddle.grad(
                        outputs=[y],
                        inputs=[x],
                        create_graph=create_graph,
                        retain_graph=True)[0]

                z = y + dx

                # If create_graph = False, the gradient of dx
                # would not be backpropagated. Therefore,
                # z = x * x + dx, and x.gradient() = 2 * x = 2.0

                # If create_graph = True, the gradient of dx
                # would be backpropagated. Therefore,
                # z = x * x + dx = x * x + 2 * x, and
                # x.gradient() = 2 * x + 2 = 4.0

                z.backward()
                return x.gradient()

            print(test_dygraph_grad(create_graph=False)) # [2.]
Z
Zeng Jinle 已提交
566 567 568
            print(test_dygraph_grad(create_graph=True)) # [4.]

        .. code-block:: python
569
            :name: code-example-2
Z
Zeng Jinle 已提交
570

571
            import paddle
Z
Zeng Jinle 已提交
572 573

            def test_dygraph_grad(grad_outputs=None):
574
                x = paddle.to_tensor(2.0)
Z
Zeng Jinle 已提交
575 576 577
                x.stop_gradient = False

                y1 = x * x
578
                y2 = x * 3
Z
Zeng Jinle 已提交
579 580 581 582 583 584 585 586 587 588 589

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

590
                dx = paddle.grad(
591
                    outputs=[y1, y2],
Z
Zeng Jinle 已提交
592 593 594 595 596
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

597
            grad_value = paddle.to_tensor(4.0)
Z
Zeng Jinle 已提交
598 599 600 601
            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
602
            print(test_dygraph_grad([None, grad_value])) # [16.]
Z
Zeng Jinle 已提交
603 604

            # dy1 = [4], dy2 = [1]
605
            print(test_dygraph_grad([grad_value, None])) # [19.]
Z
Zeng Jinle 已提交
606 607

            # dy1 = [3], dy2 = [4]
608
            grad_y1 = paddle.to_tensor(3.0)
609
            print(test_dygraph_grad([grad_y1, grad_value])) # [24.]
610
    '''
611 612 613 614
    if in_declarative_mode():
        # In dy2static context, we call static interface `gradients`
        # to calculate grads.
        from paddle.static import gradients
615

616 617 618 619
        declarative_unsupport_argument_warning(
            "paddle.grad",
            ["retain_graph", "create_grad", "only_inputs", "allow_unused"],
            [retain_graph, create_graph, only_inputs, allow_unused],
620 621
            [None, False, True, False],
        )
622
        return gradients(outputs, inputs, grad_outputs, no_grad_vars)
Z
Zeng Jinle 已提交
623

624 625 626 627 628 629
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
J
Jiabin Yang 已提交
630
                if _in_eager_without_dygraph_check():
631
                    assert isinstance(
632 633
                        each_var, core.eager.Tensor
                    ), "Elements of {} must be Tensor".format(name)
634 635
                else:
                    assert isinstance(
636 637
                        each_var, core.VarBase
                    ), "Elements of {} must be Variable".format(name)
638 639
            return in_out_list
        else:
J
Jiabin Yang 已提交
640
            if _in_eager_without_dygraph_check():
641
                assert isinstance(
642 643
                    in_out_list, core.eager.Tensor
                ), "{} must be Tensor or list of Tensor".format(name)
644 645 646 647
            else:
                assert isinstance(
                    in_out_list, core.VarBase
                ), "{} must be Variable or list of Variable".format(name)
648 649 650 651 652 653 654 655 656 657 658
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
J
Jiabin Yang 已提交
659
                if _in_eager_without_dygraph_check():
660 661 662 663 664 665 666
                    assert isinstance(
                        each_var, core.eager.Tensor
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
                else:
                    assert isinstance(
                        each_var, core.VarBase
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
667 668 669 670 671
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
672 673
            outputs
        ), "The length of grad_outputs must be equal to outputs"
674

Z
Zeng Jinle 已提交
675 676
    if no_grad_vars is None:
        no_grad_vars = []
H
hong 已提交
677
    elif isinstance(no_grad_vars, (core.VarBase, core.eager.Tensor)):
Z
Zeng Jinle 已提交
678
        no_grad_vars = [no_grad_vars]
679 680
    elif isinstance(no_grad_vars, core.eager.Tensor):
        no_grad_vars = [no_grad_vars]
Z
Zeng Jinle 已提交
681 682 683
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
J
Jiabin Yang 已提交
684
            if _in_eager_without_dygraph_check():
685
                assert isinstance(
686 687
                    var, core.eager.Tensor
                ), "no_grad_vars can only contains Tensor"
688 689
            else:
                assert isinstance(
690 691
                    var, core.VarBase
                ), "no_grad_vars can only contains Variable"
692
    else:
J
Jiabin Yang 已提交
693
        if _in_eager_without_dygraph_check():
694
            raise AssertionError(
695 696
                "no_grad_vars must be None, Tensor or list/tuple/set of Tensors"
            )
697 698 699 700
        else:
            raise AssertionError(
                "no_grad_vars must be None, Variable or list/tuple/set of Variables"
            )
701 702 703

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
704 705 706
    if retain_graph is None:
        retain_graph = create_graph

707 708 709
    assert isinstance(
        retain_graph, bool
    ), "retain_graph must be None, True or False"
Z
Zeng Jinle 已提交
710 711 712 713 714 715

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

J
Jiabin Yang 已提交
716
    if _in_eager_without_dygraph_check():
717 718 719 720 721 722 723 724 725 726
        return core.eager.run_partial_grad(
            outputs,
            inputs,
            grad_outputs,
            retain_graph,
            create_graph,
            only_inputs,
            allow_unused,
            no_grad_vars,
        )
J
Jiabin Yang 已提交
727 728 729
    else:
        place = core.Place()
        place.set_place(framework._current_expected_place())
730 731 732 733 734 735 736 737 738 739 740
        return core.dygraph_partial_grad(
            inputs,
            outputs,
            grad_outputs,
            no_grad_vars,
            place,
            create_graph,
            retain_graph,
            allow_unused,
            only_inputs,
        )
741 742


743
@framework.dygraph_only
744
def to_variable(value, name=None, zero_copy=None, dtype=None):
745
    r"""
746 747
    :api_attr: imperative

748
    The API will create a ``Variable`` object from
C
chentianyu03 已提交
749
    tuple, list, numpy\.ndarray or Variable object.
750

751
    Parameters:
752
        value(tuple|list|ndarray|Variable|Tensor): Initial data.
C
chentianyu03 已提交
753
            Can be a list, tuple, NumPy ndarray, Variable, Tensor.
754 755
            The shape can be multi-dimensional. The data type is one of
            numpy\.{float16, float32, float64, int16, int32, int64,
756
            uint8, uint16, complex64, complex128}.
757 758 759 760 761
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name` .
        zero_copy(bool, optional): Whether to share memory with the input numpy
            array. This parameter only works with CPUPlace and will be set to
L
Leo Chen 已提交
762
            True when it is None. Default: None. (Note: zero_copy is discarded temporally for some reason.)
763
        dtype(str, optional): The desired data type of returned ``Variable`` .
764
            Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' ,
765
            'int32' , 'int64' , 'uint8' . Default: None.
766

767
    Returns:
768 769 770
        Variable : If ``value`` is a tuple/list/numpy\.ndarray object,
            return ``Tensor`` created from the corresponding numpy\.ndarray object, which has
            same data type and shape with ``value``.
771

772 773 774 775 776 777 778 779

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

780
        with fluid.dygraph.guard(fluid.CPUPlace()):
781
            x = np.ones([2, 2], np.float32)
782 783 784
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
785
            y = fluid.dygraph.to_variable(x)
786 787
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
788 789 790 791
            c = np.array([2+1j, 2])
            z = fluid.dygraph.to_variable(c)
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
792 793 794 795 796 797 798

            y = fluid.dygraph.to_variable([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
            y.shape     # [3L, 2L]

            y = fluid.dygraph.to_variable(((0.1, 1.2), (2.2, 3.1), (4.9, 5.2)), dtype='int32')
            y.shape     # [3L, 2L]

799
    """
800 801 802 803 804 805 806 807 808 809
    support_type = (
        list,
        tuple,
        np.ndarray,
        core.eager.Tensor,
        core.VarBase,
        framework.Variable,
        core.Tensor,
        core.LoDTensor,
    )
810 811 812
    if not isinstance(value, support_type):
        raise TypeError(
            "The type of 'value' in fluid.dygraph.to_variable must be %s, but received %s."
813 814
            % (support_type, type(value))
        )
H
hong 已提交
815
    if isinstance(value, (core.eager.Tensor, core.VarBase, framework.Variable)):
816 817 818 819
        return value
    elif isinstance(value, (core.Tensor, core.LoDTensor)):
        return core.VarBase(value)
    else:
820 821 822 823
        if isinstance(
            framework._current_expected_place(), framework.core.CPUPlace
        ):
            # TODO(zhiqiu): we found two problems when enable zero_copy on CPUPlace.
824
            # (1): eigen requires 16-bytes alignments, but the data of numpy array may not statisfy.
L
Leo Chen 已提交
825 826 827 828 829 830 831 832 833
            # Details: https://eigen.tuxfamily.org/dox/group__TopicUnalignedArrayAssert.html
            # (2): when used in flask framework, it may result in hang.
            # Details: https://github.com/PaddlePaddle/Paddle/issues/26635
            # So, we temporally diable the zero_copy strategy.
            if zero_copy == True:
                warnings.warn(
                    "Currently, zero_copy is not supported, and it will be discarded."
                )
                zero_copy = False
834
        else:
835 836 837
            assert (
                not zero_copy
            ), "zero_copy mode can only be used with CPUPlace"
838 839 840 841 842 843 844 845 846

        if not isinstance(value, np.ndarray):
            value = np.array(value)

        if dtype is not None:
            dtype = convert_dtype(dtype)
            if value.dtype != dtype:
                value = value.astype(dtype)

J
Jiabin Yang 已提交
847
        if _in_eager_without_dygraph_check():
848 849 850 851 852 853 854 855
            return core.eager.Tensor(
                value,
                framework._current_expected_place(),
                False,
                zero_copy,
                name if name else None,
                True,
            )
856
        else:
857 858 859 860 861 862 863
            py_var = core.VarBase(
                value=value,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name if name else '',
            )
864
            return py_var