base.py 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
S
songyouwei 已提交
15
import decorator
16
import contextlib
17 18
import functools
import inspect
19
import sys
20 21 22
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
H
hong 已提交
23
from paddle.fluid.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
24
from .tracer import Tracer
Z
Zeng Jinle 已提交
25
import logging
26
from ..data_feeder import convert_dtype
L
Leo Chen 已提交
27
import warnings
J
Jiabin Yang 已提交
28
from ..framework import _get_paddle_place, _in_legacy_dygraph, _in_eager_without_dygraph_check
29
import paddle
30

31
__all__ = [
32 33
    'no_grad', 'no_grad_', 'grad', 'guard', 'enable_dygraph', 'disable_dygraph',
    'enabled', 'to_variable'
34
]
35

36 37 38 39 40 41 42 43 44 45 46
# Flag that indicates whether running code under `@declarative`
_in_declarative_mode_ = False


def in_declarative_mode():
    """
    Return a bool value that indicates whether running code under `@declarative`

    """
    return _in_declarative_mode_

47

48 49 50 51 52 53 54 55 56 57 58
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


59 60 61 62 63 64 65 66 67 68
@signature_safe_contextmanager
def _switch_declarative_mode_guard_(is_declarative=True):

    global _in_declarative_mode_
    original_val = _in_declarative_mode_
    _in_declarative_mode_ = is_declarative
    yield
    _in_declarative_mode_ = original_val


69 70 71 72 73 74
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
75 76 77 78 79
    try:
        yield
    finally:
        if tracer:
            tracer._enable_program_desc_tracing = original_val
80 81


82 83 84
_functional_dygraph_context_manager = None


85 86
@signature_safe_contextmanager
def param_guard(parameters):
87
    # Note: parameters is a reference of self._parameters or self._buffers
J
Jiabin Yang 已提交
88 89
    if in_declarative_mode() and not framework._non_static_mode(
    ) and parameters:
90 91
        origin_parameters = parameters.copy()
        for name, var_base in parameters.items():
92 93 94 95 96
            if isinstance(var_base, list):
                new_var = [_convert_into_variable(var) for var in var_base]
            else:
                new_var = _convert_into_variable(var_base)
            parameters[name] = new_var
97 98 99 100 101 102
        yield
        parameters.update(origin_parameters)
    else:
        yield


J
Jiabin Yang 已提交
103
def _convert_into_variable(tensor):
104 105 106
    """
    Convert Varbase into Variable.
    """
J
Jiabin Yang 已提交
107
    if isinstance(tensor, (core.eager.Tensor, core.VarBase)):
108
        # Check whether has been created before.
J
Jiabin Yang 已提交
109
        new_var = tensor.block._find_var_recursive(tensor.name)
110 111 112
        if new_var is not None:
            assert isinstance(new_var, framework.Variable)
        # Convert ParamBase into Parameter with same attributes in dy2stat.
J
Jiabin Yang 已提交
113 114 115
        elif isinstance(tensor,
                        (framework.EagerParamBase, framework.ParamBase)):
            new_var = tensor._to_static_var(to_parameter=True)
116 117 118 119 120 121 122 123 124
        else:
            # Note(Aurelius84): Convert VarBase in self._buffers into Variable with
            # same attributes and set persistable=True to allow saving this var.
            # Because users can create a VarBase in `__init__`  like a
            # `mask` Tensor or `hidden_0` in RNN layers, which is equivalent to a Parameter
            # and necessary for inferring. It will be pruned if it's not necessary for inferring.

            # But if its shape is empty while created from `create_variable()`, we consider this buffer
            # non-persistable. See case of `drop_state` in lstm api.
J
Jiabin Yang 已提交
125
            is_persistable = len(tensor.shape) > 0
126

J
Jiabin Yang 已提交
127
            new_var = tensor._to_static_var(
128 129 130
                to_parameter=False, persistable=is_persistable)
        return new_var
    else:
J
Jiabin Yang 已提交
131
        return tensor
132 133


134
def enabled():
135 136 137
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
138 139
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable_dygraph`
    and :ref:`api_fluid_dygraph_disable_dygraph` api .
140 141

    **Note**:
J
Jiabin Yang 已提交
142 143
        ``fluid.dygraph.enabled`` is the alias of ``fluid._non_static_mode``, and
        ``fluid._non_static_mode`` is recommended to use.
144 145 146 147 148 149 150 151 152 153 154 155 156 157

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
J
Jiabin Yang 已提交
158
    return framework._non_static_mode()
159 160


161 162
def enable_dygraph(place=None):
    """
163 164 165 166 167

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn OFF static graph mode. You can turn ON static graph mode by `enable_static <./disable_dygraph_en.html>`_ .
168 169

    Parameters:
170 171 172
        place(paddle.CPUPlace|paddle.CUDAPlace|str, optional): Place to run dynamic graph. Default: None. Which means that the running place will be 
            determined according to the way of paddle compilation. If ``place`` is string, It can be ``cpu``, and ``gpu:x``, where ``x`` is the
            index of the GPUs.
173 174 175 176 177 178 179

    return:
        None

    Examples:
        .. code-block:: python

180 181 182 183 184 185 186 187
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
188 189 190

    """
    global _functional_dygraph_context_manager
S
songyouwei 已提交
191
    if _functional_dygraph_context_manager is None:
192 193
        _functional_dygraph_context_manager = guard(
            place=_get_paddle_place(place))
S
songyouwei 已提交
194
        _functional_dygraph_context_manager.__enter__()
195

H
hong 已提交
196 197 198
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

199 200 201

def disable_dygraph():
    """
202 203 204 205 206

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn ON static graph mode. You can turn ON static graph mode by `disable_static <./enable_dygraph_en.html>`_ .
207 208 209 210 211 212 213

    return:
        None

    Examples:
        .. code-block:: python

214 215 216 217 218 219 220 221
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
222 223 224 225 226 227 228 229

    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


230 231 232 233
@signature_safe_contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
234 235
        has_grad = tracer._has_grad
        tracer._has_grad = is_train
236 237 238
        try:
            yield
        finally:
239
            tracer._has_grad = has_grad
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    else:
        yield


def no_grad(func=None):
    """
    :api_attr: imperative

    Create a context which disables dygraph gradient calculation.
    In this mode, the result of every computation will have `stop_gradient=True`.

    Also functions as a decorator. (Make sure to instantiate without parenthesis.)

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)  # l0.weight.gradient() is None
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                # l1.weight.stop_gradient is False
                tmp = l1.weight * 2  # tmp.stop_gradient is True
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()
            print(tmp.gradient() is None)  # True
            print(l0.weight.gradient() is None)  # False

        # use as decorator

        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
                inp = np.ones([3, 1024], dtype='float32')
                t = fluid.dygraph.base.to_variable(inp)
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)

        test_layer()

    """
    if func is None:
        return _switch_tracer_mode_guard_(is_train=False)
    else:

        @decorator.decorator
        def __impl__(func, *args, **kwargs):
            with _switch_tracer_mode_guard_(is_train=False):
                return func(*args, **kwargs)

        return __impl__(func)


class no_grad_:
304
    """
305 306
    :api_attr: imperative

307
    Create a context which disables dygraph gradient calculation.
308 309
    In this mode, the result of every computation will have `stop_gradient` set
    to `True`.
310

311
    Also functions as a decorator. (Make sure to use an instance.)
312 313 314 315 316 317

    Examples:

     .. code-block:: python

        import numpy as np
318
        import paddle
319

320 321 322
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
323 324 325
        l0 = paddle.nn.Linear(2, 2)  # l0.weight.gradient() is None
        l1 = paddle.nn.Linear(2, 2)
        with paddle.no_grad():
326 327
            # l1.weight.stop_gradient is False
            tmp = l1.weight * 2  # tmp.stop_gradient is True
328
        x = paddle.to_tensor(data)
329 330 331 332 333
        y = l0(x) + tmp
        o = l1(y)
        o.backward()
        print(tmp.gradient() is None)  # True
        print(l0.weight.gradient() is None)  # False
334 335 336

        # use as decorator

337
        @paddle.no_grad()
338
        def test_layer():
339
            inp = np.ones([3, 1024], dtype='float32')
340 341 342
            t = paddle.to_tensor(inp)
            linear1 = paddle.nn.Linear(1024, 4, bias_attr=False)
            linear2 = paddle.nn.Linear(4, 4)
343 344
            ret = linear1(t)
            dy_ret = linear2(ret)
345 346 347 348

        test_layer()
    """

349
    def __call__(self, func):
S
songyouwei 已提交
350
        @decorator.decorator
351 352
        def _decorate_function(func, *args, **kwargs):
            with self:
353
                return func(*args, **kwargs)
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
        @decorator.decorator
        def _decorate_generator(func, *args, **kwargs):
            gen = func(*args, **kwargs)
            with self:
                for x in gen:
                    yield x

        if inspect.isgeneratorfunction(func):
            return _decorate_generator(func)
        else:
            return _decorate_function(func)

    def __enter__(self):
        tracer = framework._dygraph_tracer()
        if tracer:
370 371
            self.orig = tracer._has_grad
            tracer._has_grad = False
372 373 374 375

    def __exit__(self, *args):
        tracer = framework._dygraph_tracer()
        if tracer:
376
            tracer._has_grad = self.orig
377 378


S
rename  
sneaxiy 已提交
379
@signature_safe_contextmanager
P
Paddle CI 已提交
380
def guard(place=None):
381
    """
382 383
    :api_attr: imperative

384
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
385

386
    Parameters:
387 388 389 390
        place(fluid.CPUPlace| fluid.CUDAPlace|str, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation.
            If ``place`` is string, It can be ``cpu``, ``gpu:x`` and ``xpu:x``, where ``x`` is the
            index of the GPUs or XPUs. Default: None
391 392 393 394 395 396 397 398 399 400 401 402

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
403
            inp = np.ones([3, 1024], dtype='float32')
404
            t = fluid.dygraph.base.to_variable(inp)
405 406 407 408
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
409 410

    """
411 412
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
413
    tracer = Tracer()
414
    VarBase = core.VarBase
M
minqiyang 已提交
415

416
    if place is not None:
417
        expected_place = _get_paddle_place(place)
418 419
    else:
        expected_place = framework._current_expected_place()
M
minqiyang 已提交
420

421 422
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
423
            with framework._dygraph_guard(tracer):
424
                with framework._dygraph_place_guard(expected_place):
P
Paddle CI 已提交
425
                    yield
426 427


428 429 430 431
@framework.dygraph_only
def grad(outputs,
         inputs,
         grad_outputs=None,
Z
Zeng Jinle 已提交
432
         retain_graph=None,
433
         create_graph=False,
Z
Zeng Jinle 已提交
434 435
         only_inputs=True,
         allow_unused=False,
436
         no_grad_vars=None):
Z
Zeng Jinle 已提交
437 438
    ''' 
    .. note::
439
        **This API is ONLY available in imperative mode.**
Z
Zeng Jinle 已提交
440 441 442 443

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
444 445 446 447
        outputs (Tensor|list(Tensor)|tuple(Tensor)): the output Tensor or 
            Tensor list/tuple of the graph to compute gradients.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the graph to compute gradients. The returned
Z
Zeng Jinle 已提交
448
            values of this API are the gradients of `inputs` . 
449
        grad_outputs (Tensor|list(Tensor|None)|tuple(Tensor|None), optional): 
Z
Zeng Jinle 已提交
450 451 452 453 454 455
            initial gradient values of `outputs` . If `grad_outputs` is None, 
            the initial gradient values of `outputs` would be Tensors filled with 1; 
            if `grad_outputs` is not None, it must have the same length as `outputs` , 
            and in this case, the initial gradient value of the i-th `outputs` would
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs` 
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
456
            `grad_outputs` is a Tensor. Default None.
Z
Zeng Jinle 已提交
457 458 459 460 461 462 463 464 465 466 467
        retain_graph (bool, optional): whether to retain the forward graph which 
            is used to calculate the gradient. When it is True, the graph would 
            be retained, in which way users can calculate backward twice for the 
            same graph. When it is False, the graph would be freed. Default None,
            which means it is equal to `create_graph` . 
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
            `inputs` . If it is False, the gradients of all remaining leaf 
468
            Tensors in the graph would be also computed and accumulated. 
Z
Zeng Jinle 已提交
469 470 471 472
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
            not supported yet.    
        allow_unused (bool, optional): whether to raise error or return None if some 
473
            Tensors of `inputs` are unreachable in the graph. If some Tensors of 
Z
Zeng Jinle 已提交
474 475 476
            `inputs` are unreachable in the graph (i.e., their gradients are None),  
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
477 478
        no_grad_vars (Tensor|list(Tensor)|tuple(Tensor)|set(Tensor), optional): 
            the Tensors whose gradients are not needed to compute. Default None.
Z
Zeng Jinle 已提交
479 480

    Returns:
L
levi131 已提交
481
        list: a list of Tensors, whose length is the same as the Tensor number 
482
        inside `inputs`, and the i-th returned Tensor is the sum of gradients of 
Z
Zeng Jinle 已提交
483 484 485 486 487
        `outputs` with respect to the i-th `inputs`.

    Examples 1:
        .. code-block:: python

488
            import paddle
Z
Zeng Jinle 已提交
489 490

            def test_dygraph_grad(create_graph):
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
                x = paddle.ones(shape=[1], dtype='float32')
                x.stop_gradient = False
                y = x * x

                # Since y = x * x, dx = 2 * x
                dx = paddle.grad(
                        outputs=[y],
                        inputs=[x],
                        create_graph=create_graph,
                        retain_graph=True)[0]

                z = y + dx

                # If create_graph = False, the gradient of dx
                # would not be backpropagated. Therefore,
                # z = x * x + dx, and x.gradient() = 2 * x = 2.0

                # If create_graph = True, the gradient of dx
                # would be backpropagated. Therefore,
                # z = x * x + dx = x * x + 2 * x, and
                # x.gradient() = 2 * x + 2 = 4.0

                z.backward()
                return x.gradient()

            print(test_dygraph_grad(create_graph=False)) # [2.]
Z
Zeng Jinle 已提交
517 518 519 520 521
            print(test_dygraph_grad(create_graph=True)) # [4.]

    Examples 2:
        .. code-block:: python

522
            import paddle
Z
Zeng Jinle 已提交
523 524

            def test_dygraph_grad(grad_outputs=None):
525
                x = paddle.to_tensor(2.0)
Z
Zeng Jinle 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540
                x.stop_gradient = False

                y1 = x * x
                y2 = x * 3 

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

541
                dx = paddle.grad(
Z
Zeng Jinle 已提交
542 543 544 545 546 547
                    outputs=[y1, y2], 
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

548
            grad_value = paddle.to_tensor(4.0)
Z
Zeng Jinle 已提交
549 550 551 552
            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
553
            print(test_dygraph_grad([None, grad_value])) # [16.]
Z
Zeng Jinle 已提交
554 555

            # dy1 = [4], dy2 = [1]
556
            print(test_dygraph_grad([grad_value, None])) # [19.]
Z
Zeng Jinle 已提交
557 558

            # dy1 = [3], dy2 = [4]
559
            grad_y1 = paddle.to_tensor(3.0)
560
            print(test_dygraph_grad([grad_y1, grad_value])) # [24.]
Z
Zeng Jinle 已提交
561 562
	'''

563 564 565 566 567 568
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
J
Jiabin Yang 已提交
569
                if _in_eager_without_dygraph_check():
570 571 572 573 574 575 576 577
                    assert isinstance(
                        each_var, core.eager.
                        Tensor), "Elements of {} must be Tensor".format(name)
                else:
                    assert isinstance(
                        each_var,
                        core.VarBase), "Elements of {} must be Variable".format(
                            name)
578 579
            return in_out_list
        else:
J
Jiabin Yang 已提交
580
            if _in_eager_without_dygraph_check():
581 582 583 584 585 586 587
                assert isinstance(
                    in_out_list, core.eager.
                    Tensor), "{} must be Tensor or list of Tensor".format(name)
            else:
                assert isinstance(
                    in_out_list, core.VarBase
                ), "{} must be Variable or list of Variable".format(name)
588 589 590 591 592 593 594 595 596 597 598
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
J
Jiabin Yang 已提交
599
                if _in_eager_without_dygraph_check():
600 601 602 603 604 605 606
                    assert isinstance(
                        each_var, core.eager.Tensor
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
                else:
                    assert isinstance(
                        each_var, core.VarBase
                    ), "grad_outputs must be None, a Variable or a list containing None or Variables"
607 608 609 610 611 612 613
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
            outputs), "The length of grad_outputs must be equal to outputs"

Z
Zeng Jinle 已提交
614 615
    if no_grad_vars is None:
        no_grad_vars = []
H
hong 已提交
616
    elif isinstance(no_grad_vars, (core.VarBase, core.eager.Tensor)):
Z
Zeng Jinle 已提交
617
        no_grad_vars = [no_grad_vars]
618 619
    elif isinstance(no_grad_vars, core.eager.Tensor):
        no_grad_vars = [no_grad_vars]
Z
Zeng Jinle 已提交
620 621 622
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
J
Jiabin Yang 已提交
623
            if _in_eager_without_dygraph_check():
624 625 626 627 628 629 630
                assert isinstance(
                    var,
                    core.eager.Tensor), "no_grad_vars can only contains Tensor"
            else:
                assert isinstance(
                    var,
                    core.VarBase), "no_grad_vars can only contains Variable"
631
    else:
J
Jiabin Yang 已提交
632
        if _in_eager_without_dygraph_check():
633 634 635 636 637 638
            raise AssertionError(
                "no_grad_vars must be None, Tensor or list/tuple/set of Tensors")
        else:
            raise AssertionError(
                "no_grad_vars must be None, Variable or list/tuple/set of Variables"
            )
639 640 641

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
642 643 644 645 646 647 648 649 650 651 652
    if retain_graph is None:
        retain_graph = create_graph

    assert isinstance(retain_graph,
                      bool), "retain_graph must be None, True or False"

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

J
Jiabin Yang 已提交
653
    if _in_eager_without_dygraph_check():
654 655 656
        return core.eager.run_partial_grad(
            outputs, inputs, grad_outputs, retain_graph, create_graph,
            only_inputs, allow_unused, no_grad_vars)
J
Jiabin Yang 已提交
657 658 659 660 661 662
    else:
        place = core.Place()
        place.set_place(framework._current_expected_place())
        return core.dygraph_partial_grad(
            inputs, outputs, grad_outputs, no_grad_vars, place, create_graph,
            retain_graph, allow_unused, only_inputs)
663 664


665
@framework.dygraph_only
666
def to_variable(value, name=None, zero_copy=None, dtype=None):
667
    r"""
668 669
    :api_attr: imperative

C
chentianyu03 已提交
670 671
    The API will create a ``Variable`` object from 
    tuple, list, numpy\.ndarray or Variable object.
672

673
    Parameters:
C
chentianyu03 已提交
674 675
        value(tuple|list|ndarray|Variable|Tensor): Initial data. 
            Can be a list, tuple, NumPy ndarray, Variable, Tensor.
676 677 678
            The shape can be multi-dimensional. The data type is one of 
            numpy\.{float16, float32, float64, int16, int32, int64, 
            uint8, uint16, complex64, complex128}.
679 680
        name(str, optional): The default value is None. Normally there is no 
            need for user to set this property. For more information, please 
L
Leo Chen 已提交
681
            refer to :ref:`api_guide_Name` . 
682 683
        zero_copy(bool, optional): Whether to share memory with the input numpy 
            array. This parameter only works with CPUPlace and will be set to 
L
Leo Chen 已提交
684
            True when it is None. Default: None. (Note: zero_copy is discarded temporally for some reason.)
685 686 687
        dtype(str, optional): The desired data type of returned ``Variable`` .
            Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' , 
            'int32' , 'int64' , 'uint8' . Default: None.
688

689
    Returns:
C
chentianyu03 已提交
690
        Variable : If ``value`` is a tuple/list/numpy\.ndarray object, 
691
            return ``Tensor`` created from the corresponding numpy\.ndarray object, which has 
C
chentianyu03 已提交
692
            same data type and shape with ``value``. 
693

694 695 696 697 698 699 700 701

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

702
        with fluid.dygraph.guard(fluid.CPUPlace()):
703
            x = np.ones([2, 2], np.float32)
704 705 706
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
707
            y = fluid.dygraph.to_variable(x)
708 709
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
710 711 712 713
            c = np.array([2+1j, 2])
            z = fluid.dygraph.to_variable(c)
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
714 715 716 717 718 719 720

            y = fluid.dygraph.to_variable([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
            y.shape     # [3L, 2L]

            y = fluid.dygraph.to_variable(((0.1, 1.2), (2.2, 3.1), (4.9, 5.2)), dtype='int32')
            y.shape     # [3L, 2L]

721
    """
H
hong 已提交
722 723
    support_type = (list, tuple, np.ndarray, core.eager.Tensor, core.VarBase,
                    framework.Variable, core.Tensor, core.LoDTensor)
724 725 726 727
    if not isinstance(value, support_type):
        raise TypeError(
            "The type of 'value' in fluid.dygraph.to_variable must be %s, but received %s."
            % (support_type, type(value)))
H
hong 已提交
728
    if isinstance(value, (core.eager.Tensor, core.VarBase, framework.Variable)):
729 730 731 732
        return value
    elif isinstance(value, (core.Tensor, core.LoDTensor)):
        return core.VarBase(value)
    else:
733 734
        if isinstance(framework._current_expected_place(),
                      framework.core.CPUPlace):
L
Leo Chen 已提交
735
            #TODO(zhiqiu): we found two problems when enable zero_copy on CPUPlace.
736
            # (1): eigen requires 16-bytes alignments, but the data of numpy array may not statisfy.
L
Leo Chen 已提交
737 738 739 740 741 742 743 744 745
            # Details: https://eigen.tuxfamily.org/dox/group__TopicUnalignedArrayAssert.html
            # (2): when used in flask framework, it may result in hang.
            # Details: https://github.com/PaddlePaddle/Paddle/issues/26635
            # So, we temporally diable the zero_copy strategy.
            if zero_copy == True:
                warnings.warn(
                    "Currently, zero_copy is not supported, and it will be discarded."
                )
                zero_copy = False
746 747
        else:
            assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
748 749 750 751 752 753 754 755 756

        if not isinstance(value, np.ndarray):
            value = np.array(value)

        if dtype is not None:
            dtype = convert_dtype(dtype)
            if value.dtype != dtype:
                value = value.astype(dtype)

J
Jiabin Yang 已提交
757
        if _in_eager_without_dygraph_check():
758 759 760
            return core.eager.Tensor(value,
                                     framework._current_expected_place(), False,
                                     zero_copy, name if name else None, True)
761 762 763 764 765 766 767 768
        else:
            py_var = core.VarBase(
                value=value,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name if name else '')
            return py_var