base.py 25.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
from ..wrapped_decorator import signature_safe_contextmanager, wrap_decorator
S
songyouwei 已提交
15
import decorator
16
import contextlib
17 18
import functools
import inspect
19
import sys
20 21 22
import numpy as np
from paddle.fluid import core
from paddle.fluid import framework
H
hong 已提交
23
from paddle.fluid.multiprocess_utils import CleanupFuncRegistrar
M
minqiyang 已提交
24
from .tracer import Tracer
Z
Zeng Jinle 已提交
25
import logging
26
from ..data_feeder import convert_dtype
L
Leo Chen 已提交
27
import warnings
28

29
__all__ = [
30 31
    'no_grad', 'no_grad_', 'grad', 'guard', 'enable_dygraph', 'disable_dygraph',
    'enabled', 'to_variable'
32
]
33 34


35 36 37 38 39 40 41 42 43 44 45
def _switch_to_static_graph_(func):
    def __impl__(*args, **kwargs):
        with framework._dygraph_guard(None):
            return func(*args, **kwargs)

    return __impl__


switch_to_static_graph = wrap_decorator(_switch_to_static_graph_)


46 47 48 49 50 51
@signature_safe_contextmanager
def program_desc_tracing_guard(enable):
    tracer = framework._dygraph_tracer()
    if tracer:
        original_val = tracer._enable_program_desc_tracing
        tracer._enable_program_desc_tracing = enable
52 53 54 55 56
    try:
        yield
    finally:
        if tracer:
            tracer._enable_program_desc_tracing = original_val
57 58


59 60 61
_functional_dygraph_context_manager = None


62 63
@signature_safe_contextmanager
def param_guard(parameters):
64
    # Note: parameters is a reference of self._parameters or self._buffers
65 66 67 68
    if not framework.in_dygraph_mode() and parameters:
        origin_parameters = parameters.copy()
        for name, var_base in parameters.items():
            if isinstance(var_base, core.VarBase):
69 70 71 72 73 74 75 76 77 78 79 80 81
                # Convert ParamBase into Parameter with same attributes in dy2stat.
                if isinstance(var_base, framework.ParamBase):
                    new_var = var_base._to_static_var(to_parameter=True)
                else:
                    # Check whether has been created before.
                    if var_base.name in var_base.block.vars:
                        new_var = var_base.block.vars[var_base.name]
                    # Note(Aurelius84): Convert VarBase in self._buffers into Variabe with
                    # same attributes and set persistable=True to allow saving this var.
                    # Because users can create a VarBase in `__init__`  like a
                    # `mask` Tensor or `hidden_0` in RNN layers, which is equivalent to a Parameter
                    # and necessary for inferring. It will be pruned if it's not necessary for inferring.
                    else:
82 83 84 85
                        # But if its shape is empty while created from `create_variable()`, we consider this buffer
                        # non-persistable. See case of `drop_state` in lstm api.
                        is_persistable = len(var_base.shape) > 0

86
                        new_var = var_base._to_static_var(
87
                            to_parameter=False, persistable=is_persistable)
88 89 90 91 92 93 94
                parameters[name] = new_var
        yield
        parameters.update(origin_parameters)
    else:
        yield


95
def enabled():
96 97 98
    """
    This function checks whether the program runs in dynamic graph mode or not.
    You can enter dynamic graph mode with :ref:`api_fluid_dygraph_guard` api,
99 100
    or enable and disable dynamic graph mode with :ref:`api_fluid_dygraph_enable_dygraph`
    and :ref:`api_fluid_dygraph_disable_dygraph` api .
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

    **Note**:
        ``fluid.dygraph.enabled`` is the alias of ``fluid.in_dygraph_mode``, and
        ``fluid.in_dygraph_mode`` is recommended to use.

    Returns:
        bool: Whether the program is running in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            fluid.enable_dygraph()  # Now we are in dygragh mode
            print(fluid.dygraph.enabled())  # True
            fluid.disable_dygraph()
            print(fluid.dygraph.enabled())  # False
    """
L
lujun 已提交
119
    return framework.in_dygraph_mode()
120 121


122 123
def enable_dygraph(place=None):
    """
124 125 126 127 128

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn OFF static graph mode. You can turn ON static graph mode by `enable_static <./disable_dygraph_en.html>`_ .
129 130

    Parameters:
131 132
        place(paddle.CPUPlace|paddle.CUDAPlace, optional): Place to run dynamic graph. Default: None. Which means that the running place will be 
            determined according to the way of paddle compilation. 
133 134 135 136 137 138 139

    return:
        None

    Examples:
        .. code-block:: python

140 141 142 143 144 145 146 147
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
148 149 150

    """
    global _functional_dygraph_context_manager
S
songyouwei 已提交
151 152 153
    if _functional_dygraph_context_manager is None:
        _functional_dygraph_context_manager = guard(place=place)
        _functional_dygraph_context_manager.__enter__()
154

H
hong 已提交
155 156 157
        # call disable_dygraph when Python exit
        CleanupFuncRegistrar.register(disable_dygraph)

158 159 160

def disable_dygraph():
    """
161 162 163 164 165

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API turn ON static graph mode. You can turn ON static graph mode by `disable_static <./enable_dygraph_en.html>`_ .
166 167 168 169 170 171 172

    return:
        None

    Examples:
        .. code-block:: python

173 174 175 176 177 178 179 180
            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode
181 182 183 184 185 186 187 188

    """
    global _functional_dygraph_context_manager
    if _functional_dygraph_context_manager is not None:
        _functional_dygraph_context_manager.__exit__(*sys.exc_info())
        _functional_dygraph_context_manager = None


189 190 191 192
@signature_safe_contextmanager
def _switch_tracer_mode_guard_(is_train=True):
    tracer = framework._dygraph_tracer()
    if tracer:
193 194
        has_grad = tracer._has_grad
        tracer._has_grad = is_train
195 196 197
        try:
            yield
        finally:
198
            tracer._has_grad = has_grad
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    else:
        yield


def no_grad(func=None):
    """
    :api_attr: imperative

    Create a context which disables dygraph gradient calculation.
    In this mode, the result of every computation will have `stop_gradient=True`.

    Also functions as a decorator. (Make sure to instantiate without parenthesis.)

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
        with fluid.dygraph.guard():
            l0 = fluid.Linear(2, 2)  # l0.weight.gradient() is None
            l1 = fluid.Linear(2, 2)
            with fluid.dygraph.no_grad():
                # l1.weight.stop_gradient is False
                tmp = l1.weight * 2  # tmp.stop_gradient is True
            x = fluid.dygraph.to_variable(data)
            y = l0(x) + tmp
            o = l1(y)
            o.backward()
            print(tmp.gradient() is None)  # True
            print(l0.weight.gradient() is None)  # False

        # use as decorator

        @fluid.dygraph.no_grad
        def test_layer():
            with fluid.dygraph.guard():
                inp = np.ones([3, 1024], dtype='float32')
                t = fluid.dygraph.base.to_variable(inp)
                linear1 = fluid.Linear(1024, 4, bias_attr=False)
                linear2 = fluid.Linear(4, 4)
                ret = linear1(t)
                dy_ret = linear2(ret)

        test_layer()

    """
    if func is None:
        return _switch_tracer_mode_guard_(is_train=False)
    else:

        @decorator.decorator
        def __impl__(func, *args, **kwargs):
            with _switch_tracer_mode_guard_(is_train=False):
                return func(*args, **kwargs)

        return __impl__(func)


class no_grad_:
263
    """
264 265
    :api_attr: imperative

266
    Create a context which disables dygraph gradient calculation.
267 268
    In this mode, the result of every computation will have `stop_gradient` set
    to `True`.
269

270
    Also functions as a decorator. (Make sure to use an instance.)
271 272 273 274 275 276

    Examples:

     .. code-block:: python

        import numpy as np
277
        import paddle
278

279 280 281
        # use as generator

        data = np.array([[2, 3], [4, 5]]).astype('float32')
282 283 284
        l0 = paddle.nn.Linear(2, 2)  # l0.weight.gradient() is None
        l1 = paddle.nn.Linear(2, 2)
        with paddle.no_grad():
285 286
            # l1.weight.stop_gradient is False
            tmp = l1.weight * 2  # tmp.stop_gradient is True
287
        x = paddle.to_tensor(data)
288 289 290 291 292
        y = l0(x) + tmp
        o = l1(y)
        o.backward()
        print(tmp.gradient() is None)  # True
        print(l0.weight.gradient() is None)  # False
293 294 295

        # use as decorator

296
        @paddle.no_grad()
297
        def test_layer():
298
            inp = np.ones([3, 1024], dtype='float32')
299 300 301
            t = paddle.to_tensor(inp)
            linear1 = paddle.nn.Linear(1024, 4, bias_attr=False)
            linear2 = paddle.nn.Linear(4, 4)
302 303
            ret = linear1(t)
            dy_ret = linear2(ret)
304 305 306 307

        test_layer()
    """

308
    def __call__(self, func):
S
songyouwei 已提交
309
        @decorator.decorator
310 311
        def _decorate_function(func, *args, **kwargs):
            with self:
312
                return func(*args, **kwargs)
313

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
        @decorator.decorator
        def _decorate_generator(func, *args, **kwargs):
            gen = func(*args, **kwargs)
            with self:
                for x in gen:
                    yield x

        if inspect.isgeneratorfunction(func):
            return _decorate_generator(func)
        else:
            return _decorate_function(func)

    def __enter__(self):
        tracer = framework._dygraph_tracer()
        if tracer:
            self.orig = tracer._train_mode
            tracer._train_mode = False

    def __exit__(self, *args):
        tracer = framework._dygraph_tracer()
        if tracer:
            tracer._train_mode = self.orig
336 337


S
rename  
sneaxiy 已提交
338
@signature_safe_contextmanager
P
Paddle CI 已提交
339
def guard(place=None):
340
    """
341 342
    :api_attr: imperative

343
    This context will create a dygraph context for dygraph to run, using python ``with`` statement.
344

345 346 347
    Parameters:
        place(fluid.CPUPlace or fluid.CUDAPlace, optional): Place to execute dygraph. 
            If None, the running place will be determined according to the way of paddle compilation. Default: None
348 349 350 351 352 353 354 355 356 357 358 359

    return:
        None

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

        with fluid.dygraph.guard():
360
            inp = np.ones([3, 1024], dtype='float32')
361
            t = fluid.dygraph.base.to_variable(inp)
362 363 364 365
            linear1 = fluid.Linear(1024, 4, bias_attr=False)
            linear2 = fluid.Linear(4, 4)
            ret = linear1(t)
            dy_ret = linear2(ret)
366 367

    """
368 369
    train = framework.Program()
    startup = framework.Program()
J
Jiabin Yang 已提交
370
    tracer = Tracer()
371
    VarBase = core.VarBase
M
minqiyang 已提交
372

373 374 375 376 377
    if place is not None:
        expected_place = place
    else:
        expected_place = framework._current_expected_place()
    tracer._expected_place = expected_place
M
minqiyang 已提交
378

379 380
    with framework.program_guard(train, startup):
        with framework.unique_name.guard():
L
lujun 已提交
381
            with framework._dygraph_guard(tracer):
382
                with framework._dygraph_place_guard(expected_place):
P
Paddle CI 已提交
383
                    yield
384 385


386 387 388 389
@framework.dygraph_only
def grad(outputs,
         inputs,
         grad_outputs=None,
Z
Zeng Jinle 已提交
390
         retain_graph=None,
391
         create_graph=False,
Z
Zeng Jinle 已提交
392 393
         only_inputs=True,
         allow_unused=False,
394
         no_grad_vars=None):
Z
Zeng Jinle 已提交
395 396 397 398 399 400 401
    ''' 
    .. note::
        **This API is ONLY available in Dygraph mode.**

    This API computes the sum of gradients of `outputs` with respect to each `inputs` .

    Parameters:
402 403 404 405
        outputs (Tensor|list(Tensor)|tuple(Tensor)): the output Tensor or 
            Tensor list/tuple of the graph to compute gradients.
        inputs (Tensor|list(Tensor)|tuple(Tensor)): the input Tensor or 
            Tensor list/tuple of the graph to compute gradients. The returned
Z
Zeng Jinle 已提交
406
            values of this API are the gradients of `inputs` . 
407
        grad_outputs (Tensor|list(Tensor|None)|tuple(Tensor|None), optional): 
Z
Zeng Jinle 已提交
408 409 410 411 412 413
            initial gradient values of `outputs` . If `grad_outputs` is None, 
            the initial gradient values of `outputs` would be Tensors filled with 1; 
            if `grad_outputs` is not None, it must have the same length as `outputs` , 
            and in this case, the initial gradient value of the i-th `outputs` would
            be: (1) a Tensor filled with 1 when the i-th element of `grad_outputs` 
            is None; (2) the i-th element of `grad_outputs` when the i-th element of
414
            `grad_outputs` is a Tensor. Default None.
Z
Zeng Jinle 已提交
415 416 417 418 419 420 421 422 423 424 425
        retain_graph (bool, optional): whether to retain the forward graph which 
            is used to calculate the gradient. When it is True, the graph would 
            be retained, in which way users can calculate backward twice for the 
            same graph. When it is False, the graph would be freed. Default None,
            which means it is equal to `create_graph` . 
        create_graph (bool, optional): whether to create the gradient graphs of
            the computing process. When it is True, higher order derivatives are
            supported to compute; when it is False, the gradient graphs of the
            computing process would be discarded. Default False.
        only_inputs (bool, optional): whether to only compute the gradients of
            `inputs` . If it is False, the gradients of all remaining leaf 
426
            Tensors in the graph would be also computed and accumulated. 
Z
Zeng Jinle 已提交
427 428 429 430
            If it is True, only the gradients of `inputs` would be computed.
            Default True. only_inputs=False is under development, and it is
            not supported yet.    
        allow_unused (bool, optional): whether to raise error or return None if some 
431
            Tensors of `inputs` are unreachable in the graph. If some Tensors of 
Z
Zeng Jinle 已提交
432 433 434
            `inputs` are unreachable in the graph (i.e., their gradients are None),  
            error would be raised if allow_unused=False, or None would be returned as
            their gradients if allow_unused=True. Default False.
435 436
        no_grad_vars (Tensor|list(Tensor)|tuple(Tensor)|set(Tensor), optional): 
            the Tensors whose gradients are not needed to compute. Default None.
Z
Zeng Jinle 已提交
437 438

    Returns:
439 440
        tuple: a tuple of Tensors, whose length is the same as the Tensor number 
        inside `inputs`, and the i-th returned Tensor is the sum of gradients of 
Z
Zeng Jinle 已提交
441 442 443 444 445
        `outputs` with respect to the i-th `inputs`.

    Examples 1:
        .. code-block:: python

446 447
            import paddle
            paddle.disable_static()
Z
Zeng Jinle 已提交
448 449

            def test_dygraph_grad(create_graph):
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
                x = paddle.ones(shape=[1], dtype='float32')
                x.stop_gradient = False
                y = x * x

                # Since y = x * x, dx = 2 * x
                dx = paddle.grad(
                        outputs=[y],
                        inputs=[x],
                        create_graph=create_graph,
                        retain_graph=True)[0]

                z = y + dx

                # If create_graph = False, the gradient of dx
                # would not be backpropagated. Therefore,
                # z = x * x + dx, and x.gradient() = 2 * x = 2.0

                # If create_graph = True, the gradient of dx
                # would be backpropagated. Therefore,
                # z = x * x + dx = x * x + 2 * x, and
                # x.gradient() = 2 * x + 2 = 4.0

                z.backward()
                return x.gradient()

            print(test_dygraph_grad(create_graph=False)) # [2.]
Z
Zeng Jinle 已提交
476 477 478 479 480
            print(test_dygraph_grad(create_graph=True)) # [4.]

    Examples 2:
        .. code-block:: python

481 482
            import paddle
            paddle.disable_static()
Z
Zeng Jinle 已提交
483 484

            def test_dygraph_grad(grad_outputs=None):
485
                x = paddle.fluid.layers.fill_constant(shape=[1], value=2.0, dtype='float32')
Z
Zeng Jinle 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
                x.stop_gradient = False

                y1 = x * x
                y2 = x * 3 

                # If grad_outputs=None, dy1 = [1], dy2 = [1].
                # If grad_outputs=[g1, g2], then:
                #    - dy1 = [1] if g1 is None else g1
                #    - dy2 = [1] if g2 is None else g2

                # Since y1 = x * x, dx = 2 * x * dy1.
                # Since y2 = x * 3, dx = 3 * dy2.
                # Therefore, the final result would be:
                # dx = 2 * x * dy1 + 3 * dy2 = 4 * dy1 + 3 * dy2.

501
                dx = paddle.grad(
Z
Zeng Jinle 已提交
502 503 504 505 506 507
                    outputs=[y1, y2], 
                    inputs=[x],
                    grad_outputs=grad_outputs)[0]

                return dx.numpy()

508
            grad_value = paddle.fluid.layers.fill_constant(shape=[1], value=4.0, dtype='float32')
Z
Zeng Jinle 已提交
509 510 511 512 513

            # dy1 = [1], dy2 = [1]
            print(test_dygraph_grad(None)) # [7.]

            # dy1 = [1], dy2 = [4]
514
            print(test_dygraph_grad([None, grad_value])) # [16.]
Z
Zeng Jinle 已提交
515 516

            # dy1 = [4], dy2 = [1]
517
            print(test_dygraph_grad([grad_value, None])) # [19.]
Z
Zeng Jinle 已提交
518 519

            # dy1 = [3], dy2 = [4]
520
            grad_y1 = paddle.fluid.layers.fill_constant(shape=[1], value=3.0, dtype='float32')
521
            print(test_dygraph_grad([grad_y1, grad_value])) # [24.]
Z
Zeng Jinle 已提交
522 523
	'''

524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
    def check_in_out(in_out_list, name):
        assert in_out_list is not None, "{} should not be None".format(name)

        if isinstance(in_out_list, (list, tuple)):
            assert len(in_out_list) > 0, "{} cannot be empty".format(name)
            for each_var in in_out_list:
                assert isinstance(
                    each_var,
                    core.VarBase), "Elements of {} must be Variable".format(
                        name)
            return in_out_list
        else:
            assert isinstance(
                in_out_list,
                core.VarBase), "{} must be Variable or list of Variable".format(
                    name)
            return [in_out_list]

    outputs = check_in_out(outputs, 'outputs')
    inputs = check_in_out(inputs, 'inputs')

    if grad_outputs is not None:
        if not isinstance(grad_outputs, (list, tuple)):
            grad_outputs = [grad_outputs]

        for each_var in grad_outputs:
            if each_var is not None:
                assert isinstance(
                    each_var, core.VarBase
                ), "grad_outputs must be None, a Variable or a list containing None or Variables"
    else:
        grad_outputs = []

    if len(grad_outputs) > 0:
        assert len(grad_outputs) == len(
            outputs), "The length of grad_outputs must be equal to outputs"

Z
Zeng Jinle 已提交
561 562 563 564 565 566 567
    if no_grad_vars is None:
        no_grad_vars = []
    elif isinstance(no_grad_vars, core.VarBase):
        no_grad_vars = [no_grad_vars]
    elif isinstance(no_grad_vars, (list, tuple, set)):
        no_grad_vars = list(no_grad_vars)
        for var in no_grad_vars:
568
            assert isinstance(
Z
Zeng Jinle 已提交
569
                var, core.VarBase), "no_grad_vars can only contains Variable"
570 571
    else:
        raise AssertionError(
Z
Zeng Jinle 已提交
572
            "no_grad_vars must be None, Variable or list/tuple/set of Variables")
573 574 575

    assert isinstance(create_graph, bool), "create_graph must be True or False"

Z
Zeng Jinle 已提交
576 577 578 579 580 581 582 583 584 585 586
    if retain_graph is None:
        retain_graph = create_graph

    assert isinstance(retain_graph,
                      bool), "retain_graph must be None, True or False"

    assert isinstance(allow_unused, bool), "allow_unused must be True or False"

    assert isinstance(only_inputs, bool), "only_inputs must be True or False"
    assert only_inputs, "only_inputs=False is not supported yet"

587 588
    place = core.Place()
    place.set_place(framework._current_expected_place())
589 590 591
    return core.dygraph_partial_grad(inputs, outputs, grad_outputs,
                                     no_grad_vars, place, create_graph,
                                     retain_graph, allow_unused, only_inputs)
592 593


594
@framework.dygraph_only
595
def to_variable(value, name=None, zero_copy=None, dtype=None):
596
    r"""
597 598
    :api_attr: imperative

599
    The API will create a ``Variable`` or ``ComplexVariable`` object from 
600
    tuple, list, numpy\.ndarray, Variable or ComplexVariable object.
601

602
    Parameters:
603 604 605 606 607
        value(tuple|list|ndarray|Variable|Tensor|ComplexVariable): Initial data. 
            Can be a list, tuple, NumPy ndarray, Variable, Tensor, ComplexVariable. 
            The shape can be multi-dimensional. The data type is one of 
            numpy\.{float16, float32, float64, int16, int32, int64, 
            uint8, uint16, complex64, complex128}.
608 609
        name(str, optional): The default value is None. Normally there is no 
            need for user to set this property. For more information, please 
L
Leo Chen 已提交
610
            refer to :ref:`api_guide_Name` . 
611 612
        zero_copy(bool, optional): Whether to share memory with the input numpy 
            array. This parameter only works with CPUPlace and will be set to 
L
Leo Chen 已提交
613
            True when it is None. Default: None. (Note: zero_copy is discarded temporally for some reason.)
614 615 616
        dtype(str, optional): The desired data type of returned ``Variable`` .
            Can be 'bool' , 'float16' , 'float32' , 'float64' , 'int8' , 'int16' , 
            'int32' , 'int64' , 'uint8' . Default: None.
617

618
    Returns:
619 620 621 622
        Variable or ComplexVariable: If ``value`` is a tuple/list/numpy\.ndarray object, 
            return ``Tensor`` created from the corresponding numpy\.ndarray object, which has 
            same data type and shape with ``value``. If ``value`` is a Variable or ComplexVariable 
            object, just return ``value``.
623

624 625 626 627 628 629 630 631

    Examples:

     .. code-block:: python

        import numpy as np
        import paddle.fluid as fluid

632
        with fluid.dygraph.guard(fluid.CPUPlace()):
633
            x = np.ones([2, 2], np.float32)
634 635 636
            y = fluid.dygraph.to_variable(x, zero_copy=False)
            x[0][0] = -1
            y[0][0].numpy()  # array([1.], dtype=float32)
637
            y = fluid.dygraph.to_variable(x)
638 639
            x[0][0] = 0
            y[0][0].numpy()  # array([0.], dtype=float32)
640 641 642 643
            c = np.array([2+1j, 2])
            z = fluid.dygraph.to_variable(c)
            z.numpy() # array([2.+1.j, 2.+0.j])
            z.dtype # 'complex128'
644 645 646 647 648 649 650

            y = fluid.dygraph.to_variable([[0.1, 1.2], [2.2, 3.1], [4.9, 5.2]])
            y.shape     # [3L, 2L]

            y = fluid.dygraph.to_variable(((0.1, 1.2), (2.2, 3.1), (4.9, 5.2)), dtype='int32')
            y.shape     # [3L, 2L]

651
    """
652 653 654 655 656 657 658 659 660 661 662 663
    support_type = (list, tuple, np.ndarray, core.VarBase, framework.Variable,
                    framework.ComplexVariable, core.Tensor, core.LoDTensor)
    if not isinstance(value, support_type):
        raise TypeError(
            "The type of 'value' in fluid.dygraph.to_variable must be %s, but received %s."
            % (support_type, type(value)))
    if isinstance(value, (core.VarBase, framework.Variable,
                          framework.ComplexVariable)):
        return value
    elif isinstance(value, (core.Tensor, core.LoDTensor)):
        return core.VarBase(value)
    else:
664 665
        if isinstance(framework._current_expected_place(),
                      framework.core.CPUPlace):
L
Leo Chen 已提交
666 667 668 669 670 671 672 673 674 675 676
            #TODO(zhiqiu): we found two problems when enable zero_copy on CPUPlace.
            # (1): eigen requires 16-bytes alignments, but the data of numpy array may not statisfy. 
            # Details: https://eigen.tuxfamily.org/dox/group__TopicUnalignedArrayAssert.html
            # (2): when used in flask framework, it may result in hang.
            # Details: https://github.com/PaddlePaddle/Paddle/issues/26635
            # So, we temporally diable the zero_copy strategy.
            if zero_copy == True:
                warnings.warn(
                    "Currently, zero_copy is not supported, and it will be discarded."
                )
                zero_copy = False
677 678
        else:
            assert not zero_copy, "zero_copy mode can only be used with CPUPlace"
679 680 681 682 683 684 685 686 687

        if not isinstance(value, np.ndarray):
            value = np.array(value)

        if dtype is not None:
            dtype = convert_dtype(dtype)
            if value.dtype != dtype:
                value = value.astype(dtype)

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
        if np.iscomplexobj(value):
            if not name:
                name = framework.unique_name.generate('_generated_var')
            real_var = core.VarBase(
                value=value.real,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name + ".real")
            imag_var = core.VarBase(
                value=value.imag,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name + ".imag")
            return framework.ComplexVariable(real_var, imag_var)
        else:
            py_var = core.VarBase(
                value=value,
                place=framework._current_expected_place(),
                persistable=False,
                zero_copy=zero_copy,
                name=name if name else '')
            return py_var