pooling.cu 71.0 KB
Newer Older
1
/* Copyright (c) 2016 paddlepaddle Authors. All Rights Reserved.
C
chengduoZH 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

C
chengduo 已提交
15 16
#include <algorithm>
#include <vector>
17

Y
Yi Wang 已提交
18
#include "paddle/fluid/operators/math/pooling.h"
D
dzhwinter 已提交
19
#include "paddle/fluid/platform/cuda_primitives.h"
C
chengduoZH 已提交
20 21 22 23 24

namespace paddle {
namespace operators {
namespace math {

25
template <typename PoolProcess, typename T>
26
__global__ void KernelPool2D(const int nthreads, const T* input_data,
C
chengduoZH 已提交
27 28 29 30 31 32
                             const int channels, const int input_height,
                             const int input_width, const int output_height,
                             const int output_width, const int ksize_height,
                             const int ksize_width, const int stride_height,
                             const int stride_width, const int padding_height,
                             const int padding_width, PoolProcess pool_process,
33 34
                             bool exclusive, bool adaptive, T* output_data,
                             bool channel_last = false) {
35 36
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
37 38 39 40 41 42 43 44 45 46 47 48
    int pw, ph, c, batch_idx;
    if (!channel_last) { /*NCHW*/
      pw = index % output_width;
      ph = (index / output_width) % output_height;
      c = (index / output_width / output_height) % channels;
      batch_idx = index / output_width / output_height / channels;
    } else { /*NHWC*/
      c = index % channels;
      pw = (index / channels) % output_width;
      ph = (index / channels / output_width) % output_height;
      batch_idx = index / channels / output_width / output_height;
    }
49

50 51
    int hstart, hend;
    int wstart, wend;
D
dengkaipeng 已提交
52
    if (adaptive) {
D
dengkaipeng 已提交
53 54
      hstart = AdaptStartIndex(ph, input_height, output_height);
      hend = AdaptEndIndex(ph, input_height, output_height);
55

D
dengkaipeng 已提交
56 57
      wstart = AdaptStartIndex(pw, input_width, output_width);
      wend = AdaptEndIndex(pw, input_width, output_width);
D
dengkaipeng 已提交
58
    } else {
59 60
      hstart = ph * stride_height - padding_height;
      hend = min(hstart + ksize_height, input_height);
D
dengkaipeng 已提交
61 62
      hstart = max(hstart, 0);

63 64
      wstart = pw * stride_width - padding_width;
      wend = min(wstart + ksize_width, input_width);
D
dengkaipeng 已提交
65 66
      wstart = max(wstart, 0);
    }
67

68 69 70 71 72
    if (!channel_last) {
      input_data += (batch_idx * channels + c) * input_height * input_width;
    } else {
      input_data += batch_idx * input_height * input_width * channels;
    }
73
    T ele = pool_process.initial();
74 75
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
76 77 78
        auto input_idx = channel_last ? (h * input_width + w) * channels + c
                                      : h * input_width + w;
        pool_process.compute(input_data[input_idx], &ele);
79 80
      }
    }
D
dengkaipeng 已提交
81 82
    int pool_size = (exclusive || adaptive) ? (hend - hstart) * (wend - wstart)
                                            : ksize_height * ksize_width;
C
chengduo 已提交
83
    pool_process.finalize(static_cast<T>(pool_size), &ele);
84 85 86 87
    output_data[index] = ele;
  }
}
template <typename PoolProcess, typename T>
88
__global__ void KernelPool2DGrad(
89
    const int nthreads, const T* input_data, const T* output_data,
C
chengduoZH 已提交
90 91 92 93
    const T* output_grad, const int channels, const int input_height,
    const int input_width, const int output_height, const int output_width,
    const int ksize_height, const int ksize_width, const int stride_height,
    const int stride_width, const int padding_height, const int padding_width,
94 95
    PoolProcess pool_process, bool exclusive, bool adaptive, T* input_grad,
    bool channel_last = false) {
96 97
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
98 99 100 101 102 103 104 105 106 107 108 109 110
    int w_offset, h_offset, offsetC, batch_idx;
    if (!channel_last) { /* NCHW */
      w_offset = index % input_width + padding_width;
      h_offset = (index / input_width) % input_height + padding_height;
      offsetC = (index / input_width / input_height) % channels;
      batch_idx = index / input_width / input_height / channels;
    } else { /* NHWC */
      offsetC = index % channels;
      w_offset = (index / channels) % input_width + padding_width;
      h_offset =
          (index / channels / input_width) % input_height + padding_height;
      batch_idx = index / channels / input_width / input_height;
    }
111

112 113 114
    int phstart, phend;
    int pwstart, pwend;
    if (adaptive) {
115 116 117 118 119
      phstart = AdaptStartIndex(h_offset, output_height, input_height);
      phend = AdaptEndIndex(h_offset, output_height, input_height);

      pwstart = AdaptStartIndex(w_offset, output_width, input_width);
      pwend = AdaptEndIndex(w_offset, output_width, input_width);
120
    } else {
D
dengkaipeng 已提交
121
      phstart = (h_offset < ksize_height)
122
                    ? 0
D
dengkaipeng 已提交
123 124
                    : (h_offset - ksize_height) / stride_height + 1;
      pwstart = (w_offset < ksize_width)
125
                    ? 0
D
dengkaipeng 已提交
126 127 128
                    : (w_offset - ksize_width) / stride_width + 1;
      phend = min(h_offset / stride_height + 1, output_height);
      pwend = min(w_offset / stride_width + 1, output_width);
129
    }
130
    T gradient = static_cast<T>(0.0);
131
    T input = input_data[index];
132 133 134 135 136 137 138 139 140 141 142 143

    int output_stride;
    if (!channel_last) {
      output_stride =
          (batch_idx * channels + offsetC) * output_height * output_width;
    } else {
      output_stride = batch_idx * output_height * output_width * channels;
    }

    output_data += output_stride;
    output_grad += output_stride;

144 145
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        int pool_size;
        if (adaptive) {
          pool_size = static_cast<int>(ceil(static_cast<double>(input_height) /
                                            ksize_height)) *
                      static_cast<int>(
                          ceil(static_cast<double>(input_width) / ksize_width));
        } else {
          int hstart = ph * stride_height - padding_height;
          int wstart = pw * stride_width - padding_width;
          int hend = min(hstart + ksize_height, input_height);
          int wend = min(wstart + ksize_width, input_width);
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          pool_size = exclusive ? (hend - hstart) * (wend - wstart)
                                : ksize_height * ksize_width;
        }
162

163 164 165
        int output_sub_idx = channel_last
                                 ? (ph * output_width + pw) * channels + offsetC
                                 : ph * output_width + pw;
166
        pool_process.compute(input, output_data[output_sub_idx],
C
chengduo 已提交
167 168
                             output_grad[output_sub_idx],
                             static_cast<T>(1.0 / pool_size), &gradient);
169 170 171 172 173 174
      }
    }
    input_grad[index] = gradient;
  }
}

175
template <typename T>
176
__global__ void KernelMaxPool2DGrad(
177
    const int nthreads, const T* input_data, const T* output_data,
C
chengduoZH 已提交
178 179 180 181
    const T* output_grad, const int channels, const int input_height,
    const int input_width, const int output_height, const int output_width,
    const int ksize_height, const int ksize_width, const int stride_height,
    const int stride_width, const int padding_height, const int padding_width,
182
    T* input_grad, bool channel_last = false) {
183 184
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
       index += blockDim.x * gridDim.x) {
185 186 187 188 189 190 191 192 193 194 195 196
    int pw, ph, c, batch_idx;
    if (!channel_last) { /* NCHW */
      pw = index % output_width;
      ph = (index / output_width) % output_height;
      c = (index / output_width / output_height) % channels;
      batch_idx = index / output_width / output_height / channels;
    } else { /* NHWC */
      c = index % channels;
      pw = (index / channels) % output_width;
      ph = (index / channels / output_width) % output_height;
      batch_idx = index / channels / output_width / output_height;
    }
197 198 199 200 201 202 203 204
    int hstart = ph * stride_height - padding_height;
    int hend = min(hstart + ksize_height, input_height);
    hstart = max(hstart, 0);

    int wstart = pw * stride_width - padding_width;
    int wend = min(wstart + ksize_width, input_width);
    wstart = max(wstart, 0);

205 206 207 208 209 210 211 212
    int input_stride;
    if (!channel_last) {
      input_stride = (batch_idx * channels + c) * input_height * input_width;
    } else {
      input_stride = batch_idx * input_height * input_width * channels;
    }
    input_data += input_stride;
    input_grad += input_stride;
213 214 215 216 217 218

    T ele = output_data[index];
    int maxIndex = -1;
    bool stop = false;
    for (int h = hstart; h < hend && !stop; ++h) {
      for (int w = wstart; w < wend && !stop; ++w) {
219 220 221 222
        int input_data_idx = channel_last ? (h * input_width + w) * channels + c
                                          : h * input_width + w;
        if (ele == input_data[input_data_idx]) {
          maxIndex = input_data_idx;
223 224 225 226 227 228 229
          stop = true;
        }
      }
    }

    if (maxIndex != -1) {
      // atomic add
C
chengduoZH 已提交
230
      platform::CudaAtomicAdd(input_grad + maxIndex, output_grad[index]);
231 232 233 234
    }
  }
}

N
nhzlx 已提交
235 236 237 238 239
template <typename PoolProcess, typename T>
void Pool2dDirectCUDAFunctor<PoolProcess, T>::operator()(
    const T* input, const std::vector<int>& input_shape,
    const std::vector<int>& output_shape, const std::vector<int>& ksize,
    const std::vector<int>& strides, const std::vector<int>& paddings,
240 241
    PoolProcess pool_compute, bool exclusive, bool adaptive, T* output,
    cudaStream_t stream) {
N
nhzlx 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
  const int batch_size = input_shape[0];
  const int input_channels = input_shape[1];
  const int input_height = input_shape[2];
  const int input_width = input_shape[3];
  const int output_channels = output_shape[1];
  const int output_height = output_shape[2];
  const int output_width = output_shape[3];
  const int ksize_height = ksize[0];
  const int ksize_width = ksize[1];
  const int stride_height = strides[0];
  const int stride_width = strides[1];
  const int padding_height = paddings[0];
  const int padding_width = paddings[1];

  int nthreads = batch_size * output_channels * output_height * output_width;
  int blocks = (nthreads + 1024 - 1) / 1024;
  dim3 threads(1024, 1);
  dim3 grid(blocks, 1);

  KernelPool2D<PoolProcess, T><<<grid, threads, 0, stream>>>(
      nthreads, input, input_channels, input_height, input_width, output_height,
      output_width, ksize_height, ksize_width, stride_height, stride_width,
264
      padding_height, padding_width, pool_compute, exclusive, adaptive, output);
N
nhzlx 已提交
265 266
}

C
chengduoZH 已提交
267
/*
268 269 270 271 272 273
 * Tensors are in NCHW or NHWC format.
 * Ksize, strides are two elements. These two elements represent height
 * and width, respectively.
 * Paddings are four elements. These four elements represent height_up,
 * height_down, width_left and width_right, respectively.
 */
274
template <typename PoolProcess, typename T>
Q
QI JUN 已提交
275
class Pool2dFunctor<platform::CUDADeviceContext, PoolProcess, T> {
276
 public:
Q
QI JUN 已提交
277
  void operator()(const platform::CUDADeviceContext& context,
C
chengduo 已提交
278 279 280
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
281
                  bool exclusive, bool adaptive, framework::Tensor* output) {
282 283 284 285
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
286 287 288
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
289 290 291 292 293 294 295 296
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
297
    T* output_data = output->mutable_data<T>(context.GetPlace());
298 299 300 301 302 303

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
304
    KernelPool2D<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
305 306
        nthreads, input_data, input_channels, input_height, input_width,
        output_height, output_width, ksize_height, ksize_width, stride_height,
307
        stride_width, padding_height, padding_width, pool_process, exclusive,
308
        adaptive, output_data);
309
  }
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format, PoolProcess pool_process,
                  bool exclusive, bool adaptive, framework::Tensor* output) {
    bool channel_last = (data_format == "NHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output->dims()[3] : output->dims()[1];
    const int output_height =
        channel_last ? output->dims()[1] : output->dims()[2];
    const int output_width =
        channel_last ? output->dims()[2] : output->dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];
335

336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelPool2D<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, input_channels, input_height, input_width,
        output_height, output_width, ksize_height, ksize_width, stride_height,
        stride_width, padding_height, padding_width, pool_process, exclusive,
        adaptive, output_data, channel_last);
  }
};
C
chengduoZH 已提交
354
/*
355 356 357 358 359 360
 * Tensors are in NCHW or NHWC format.
 * Ksize, strides are two elements. These two elements represent height
 * and width, respectively.
 * Paddings are four elements. These four elements represent height_up,
 * height_down, width_left and width_right, respectively.
 */
361
template <typename PoolProcess, typename T>
Q
QI JUN 已提交
362
class Pool2dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
363
 public:
Q
QI JUN 已提交
364
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
365
                  const framework::Tensor& input,
366
                  const framework::Tensor& output,
C
chengduo 已提交
367 368 369 370
                  const framework::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
371 372
                  bool exclusive, bool adaptive,
                  framework::Tensor* input_grad) {
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
389
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
390 391 392 393 394 395

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
396
    KernelPool2DGrad<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
397 398 399
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_height, input_width, output_height, output_width, ksize_height,
        ksize_width, stride_height, stride_width, padding_height, padding_width,
400
        pool_process, exclusive, adaptive, input_grad_data);
401
  }
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
  void operator()(
      const platform::CUDADeviceContext& context,
      const framework::Tensor& input, const framework::Tensor& output,
      const framework::Tensor& output_grad, const std::vector<int>& ksize,
      const std::vector<int>& strides, const std::vector<int>& paddings,
      const std::string data_format, PoolProcess pool_process, bool exclusive,
      bool adaptive, framework::Tensor* input_grad) {
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output.dims()[3] : output.dims()[1];
    const int output_height =
        channel_last ? output.dims()[1] : output.dims()[2];
    const int output_width = channel_last ? output.dims()[2] : output.dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();

    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelPool2DGrad<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_height, input_width, output_height, output_width, ksize_height,
        ksize_width, stride_height, stride_width, padding_height, padding_width,
        pool_process, exclusive, adaptive, input_grad_data, channel_last);
  }
449 450
};

C
chengduoZH 已提交
451
/*
452 453 454 455 456 457
 * Tensors are in NCHW or NHWC format.
 * Ksize, strides are two elements. These two elements represent height
 * and width, respectively.
 * Paddings are four elements. These four elements represent height_up,
 * height_down, width_left and width_right, respectively.
 */
458
template <typename T>
Q
QI JUN 已提交
459
class MaxPool2dGradFunctor<platform::CUDADeviceContext, T> {
460
 public:
Q
QI JUN 已提交
461
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
462
                  const framework::Tensor& input,
463
                  const framework::Tensor& output,
C
chengduo 已提交
464 465 466 467
                  const framework::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
C
chengduoZH 已提交
468
                  framework::Tensor* input_grad) {
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
    const int output_channels = output.dims()[1];
    const int output_height = output.dims()[2];
    const int output_width = output.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
486
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
487 488 489 490 491 492

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
493
    KernelMaxPool2DGrad<T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
494 495 496 497
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_height, input_width, output_height, output_width, ksize_height,
        ksize_width, stride_height, stride_width, padding_height, padding_width,
        input_grad_data);
498
  }
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
  void operator()(
      const platform::CUDADeviceContext& context,
      const framework::Tensor& input, const framework::Tensor& output,
      const framework::Tensor& output_grad, const std::vector<int>& ksize,
      const std::vector<int>& strides, const std::vector<int>& paddings,
      const std::string data_format, framework::Tensor* input_grad) {
    bool channel_last = (data_format == "NHWC");

    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[3] : input.dims()[1];
    const int input_height = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_width = channel_last ? input.dims()[2] : input.dims()[3];

    const int output_channels =
        channel_last ? output.dims()[3] : output.dims()[1];
    const int output_height =
        channel_last ? output.dims()[1] : output.dims()[2];
    const int output_width = channel_last ? output.dims()[2] : output.dims()[3];

    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];

    const int stride_height = strides[0];
    const int stride_width = strides[1];

    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelMaxPool2DGrad<T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_height, input_width, output_height, output_width, ksize_height,
        ksize_width, stride_height, stride_width, padding_height, padding_width,
        input_grad_data, channel_last);
  }
544 545
};

N
nhzlx 已提交
546 547 548 549 550
template class Pool2dDirectCUDAFunctor<paddle::operators::math::MaxPool<float>,
                                       float>;
template class Pool2dDirectCUDAFunctor<paddle::operators::math::AvgPool<float>,
                                       float>;

Q
QI JUN 已提交
551 552
template class MaxPool2dGradFunctor<platform::CUDADeviceContext, float>;
template class MaxPool2dGradFunctor<platform::CUDADeviceContext, double>;
553 554
template class MaxPool2dGradFunctor<platform::CUDADeviceContext,
                                    paddle::platform::float16>;
C
chengduoZH 已提交
555

Q
QI JUN 已提交
556
template class Pool2dFunctor<platform::CUDADeviceContext,
557
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
558
template class Pool2dFunctor<platform::CUDADeviceContext,
559
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
560 561 562 563 564 565 566
template class Pool2dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool2dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool2dFunctor<platform::CUDADeviceContext,
567
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
568
template class Pool2dFunctor<platform::CUDADeviceContext,
569
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
570 571 572 573 574 575
template class Pool2dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool2dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
576

577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
template class Pool2dFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::MaxPool<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool2dFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::AvgPool<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool2dGradFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::MaxPoolGrad<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool2dGradFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::AvgPoolGrad<paddle::platform::float16>,
    paddle::platform::float16>;

594
template <typename PoolProcess, typename T>
595
__global__ void KernelPool3D(
596 597 598
    const int nthreads, const T* input_data, const int channels,
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
599
    const int ksize_depth, const int ksize_height, const int ksize_width,
600
    const int stride_depth, const int stride_height, const int stride_width,
601
    const int padding_depth, const int padding_height, const int padding_width,
602 603
    PoolProcess pool_process, bool exclusive, bool adaptive, T* output_data,
    bool channel_last = false) {
604
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
605
       index += blockDim.x * gridDim.x) {
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    int pw, ph, pd, c, batch_idx;
    if (!channel_last) {
      pw = index % output_width;
      ph = (index / output_width) % output_height;
      pd = (index / output_width / output_height) % output_depth;
      c = (index / output_width / output_height / output_depth) % channels;
      batch_idx =
          index / output_width / output_height / output_depth / channels;
    } else {
      c = index % channels;
      pw = (index / channels) % output_width;
      ph = (index / channels / output_width) % output_height;
      pd = (index / channels / output_width / output_height) % output_depth;
      batch_idx =
          index / channels / output_width / output_height / output_depth;
    }
622 623 624 625 626

    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
    if (adaptive) {
D
dengkaipeng 已提交
627 628
      dstart = AdaptStartIndex(pd, input_depth, output_depth);
      dend = AdaptEndIndex(pd, input_depth, output_depth);
629

D
dengkaipeng 已提交
630 631
      hstart = AdaptStartIndex(ph, input_height, output_height);
      hend = AdaptEndIndex(ph, input_height, output_height);
632

D
dengkaipeng 已提交
633 634
      wstart = AdaptStartIndex(pw, input_width, output_width);
      wend = AdaptEndIndex(pw, input_width, output_width);
635 636 637 638 639 640 641 642 643 644 645
    } else {
      dstart = pd * stride_depth - padding_depth;
      hstart = ph * stride_height - padding_height;
      wstart = pw * stride_width - padding_width;
      dend = min(dstart + ksize_depth, input_depth);
      hend = min(hstart + ksize_height, input_height);
      wend = min(wstart + ksize_width, input_width);
      dstart = max(dstart, 0);
      hstart = max(hstart, 0);
      wstart = max(wstart, 0);
    }
646 647 648 649 650 651 652 653 654 655 656

    int input_data_stride;
    if (!channel_last) { /* NCDHW */
      input_data_stride =
          (batch_idx * channels + c) * input_depth * input_height * input_width;
    } else { /* NDHWC */
      input_data_stride =
          batch_idx * input_depth * input_height * input_width * channels;
    }
    input_data += input_data_stride;

657
    T ele = pool_process.initial();
658 659 660
    for (int d = dstart; d < dend; ++d) {
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
661 662 663 664 665
          auto input_data_idx =
              channel_last
                  ? ((d * input_height + h) * input_width + w) * channels + c
                  : (d * input_height + h) * input_width + w;
          pool_process.compute(input_data[input_data_idx], &ele);
666 667 668
        }
      }
    }
669
    int pool_size = (exclusive || adaptive)
670 671
                        ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                        : ksize_depth * ksize_height * ksize_width;
C
chengduo 已提交
672
    pool_process.finalize(static_cast<T>(pool_size), &ele);
673 674 675 676 677
    output_data[index] = ele;
  }
}

template <typename PoolProcess, typename T>
678
__global__ void KernelPool3DGrad(
679
    const int nthreads, const T* input_data, const T* output_data,
C
chengduoZH 已提交
680 681 682 683 684 685
    const T* output_grad, const int channels, const int input_depth,
    const int input_height, const int input_width, const int output_depth,
    const int output_height, const int output_width, const int ksize_depth,
    const int ksize_height, const int ksize_width, const int stride_depth,
    const int stride_height, const int stride_width, const int padding_depth,
    const int padding_height, const int padding_width, PoolProcess pool_process,
686
    bool exclusive, bool adaptive, T* input_grad, bool channel_last = false) {
687
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
688
       index += blockDim.x * gridDim.x) {
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    int w_offset, h_offset, d_offset, offsetC, batch_idx;
    if (!channel_last) { /* "NCDHW" */
      w_offset = index % input_width + padding_width;
      h_offset = (index / input_width) % input_height + padding_height;
      d_offset =
          (index / input_width / input_height) % input_depth + padding_depth;
      offsetC = (index / input_width / input_height / input_depth) % channels;
      batch_idx = index / input_width / input_height / input_depth / channels;

    } else { /* "NDHWC" */
      offsetC = index % channels;
      w_offset = (index / channels) % input_width + padding_width;
      h_offset =
          (index / channels / input_width) % input_height + padding_height;
      d_offset = (index / channels / input_width / input_height) % input_depth +
                 padding_depth;
      batch_idx = index / channels / input_width / input_height / input_depth;
    }
707

708 709 710 711
    int pdstart, pdend;
    int phstart, phend;
    int pwstart, pwend;
    if (adaptive) {
712 713 714 715 716 717 718 719
      pdstart = AdaptStartIndex(d_offset, output_depth, input_depth);
      pdend = AdaptEndIndex(d_offset, output_depth, input_depth);

      phstart = AdaptStartIndex(h_offset, output_height, input_height);
      phend = AdaptEndIndex(h_offset, output_height, input_height);

      pwstart = AdaptStartIndex(w_offset, output_width, input_width);
      pwend = AdaptEndIndex(w_offset, output_width, input_width);
720
    } else {
D
dengkaipeng 已提交
721
      pdstart = (d_offset < ksize_depth)
722
                    ? 0
D
dengkaipeng 已提交
723 724
                    : (d_offset - ksize_depth) / stride_depth + 1;
      phstart = (h_offset < ksize_height)
725
                    ? 0
D
dengkaipeng 已提交
726 727
                    : (h_offset - ksize_height) / stride_height + 1;
      pwstart = (w_offset < ksize_width)
728
                    ? 0
D
dengkaipeng 已提交
729 730 731 732
                    : (w_offset - ksize_width) / stride_width + 1;
      pdend = min((d_offset) / stride_depth + 1, output_depth);
      phend = min((h_offset) / stride_height + 1, output_height);
      pwend = min((w_offset) / stride_width + 1, output_width);
733
    }
734

735
    T gradient = static_cast<T>(0.0);
736
    T input = input_data[index];
737 738 739 740 741 742 743 744 745 746 747

    int output_stride;
    if (!channel_last) {
      output_stride = (batch_idx * channels + offsetC) * output_depth *
                      output_height * output_width;
    } else {
      output_stride =
          batch_idx * output_depth * output_height * output_width * channels;
    }
    output_data += output_stride;
    output_grad += output_stride;
748 749 750 751 752

    for (int pd = pdstart; pd < pdend; ++pd) {
      for (int ph = phstart; ph < phend; ++ph) {
        for (int pw = pwstart; pw < pwend; ++pw) {
          // figure out the pooling size
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
          int pool_size;
          if (adaptive) {
            pool_size =
                static_cast<int>(
                    ceil(static_cast<double>(input_depth) / ksize_depth)) *
                static_cast<int>(
                    ceil(static_cast<double>(input_height) / ksize_height)) *
                static_cast<int>(
                    ceil(static_cast<double>(input_width) / ksize_width));
          } else {
            int dstart = pd * stride_depth - padding_depth;
            int hstart = ph * stride_height - padding_height;
            int wstart = pw * stride_width - padding_width;
            int dend = min(dstart + ksize_depth, input_depth);
            int hend = min(hstart + ksize_height, input_height);
            int wend = min(wstart + ksize_width, input_width);
            dstart = max(dstart, 0);
            hstart = max(hstart, 0);
            wstart = max(wstart, 0);
            pool_size =
                exclusive ? (dend - dstart) * (hend - hstart) * (wend - wstart)
                          : ksize_depth * ksize_height * ksize_width;
          }
776 777 778 779 780 781 782

          int output_sub_idx =
              channel_last
                  ? ((pd * output_height + ph) * output_width + pw) * channels +
                        offsetC
                  : (pd * output_height + ph) * output_width + pw;

783
          pool_process.compute(input, output_data[output_sub_idx],
C
chengduo 已提交
784 785
                               output_grad[output_sub_idx],
                               static_cast<T>(1.0 / pool_size), &gradient);
786 787 788 789 790 791 792
        }
      }
    }
    input_grad[index] = gradient;
  }
}

793
template <typename T>
794
__global__ void KernelMaxPool3DGrad(
795
    const int nthreads, const T* input_data, const T* output_data,
C
chengduoZH 已提交
796 797 798 799 800
    const T* output_grad, const int channels, const int input_depth,
    const int input_height, const int input_width, const int output_depth,
    const int output_height, const int output_width, const int ksize_depth,
    const int ksize_height, const int ksize_width, const int stride_depth,
    const int stride_height, const int stride_width, const int padding_depth,
801 802
    const int padding_height, const int padding_width, T* input_grad,
    bool channel_last = false) {
803
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
804
       index += blockDim.x * gridDim.x) {
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822
    int pw, ph, pd, c, batch_idx;

    if (!channel_last) { /*NCDHW*/
      pw = index % output_width;
      ph = (index / output_width) % output_height;
      pd = (index / output_width / output_height) % output_depth;
      c = (index / output_width / output_height / output_depth) % channels;
      batch_idx =
          index / output_width / output_height / output_depth / channels;
    } else { /*NDHWC*/
      c = index % channels;
      pw = (index / channels) % output_width;
      ph = (index / channels / output_width) % output_height;
      pd = (index / channels / output_width / output_height) % output_depth;
      batch_idx =
          index / channels / output_width / output_height / output_depth;
    }

823 824 825
    int dstart = pd * stride_depth - padding_depth;
    int hstart = ph * stride_height - padding_height;
    int wstart = pw * stride_width - padding_width;
826

827 828 829
    int dend = min(dstart + ksize_depth, input_depth);
    int hend = min(hstart + ksize_height, input_height);
    int wend = min(wstart + ksize_width, input_width);
830

831 832 833
    dstart = max(dstart, 0);
    hstart = max(hstart, 0);
    wstart = max(wstart, 0);
834

835 836 837 838
    T ele = output_data[index];
    bool stop = false;
    int maxIdx = -1;

839 840 841 842 843 844 845 846 847 848
    int input_stride;
    if (!channel_last) {
      input_stride =
          (batch_idx * channels + c) * input_depth * input_height * input_width;
    } else {
      input_stride =
          batch_idx * input_depth * input_height * input_width * channels;
    }
    input_data += input_stride;
    input_grad += input_stride;
849 850 851
    for (int d = dstart; d < dend && !stop; ++d) {
      for (int h = hstart; h < hend && !stop; ++h) {
        for (int w = wstart; w < wend && !stop; ++w) {
852 853 854 855 856
          int input_data_idx =
              channel_last
                  ? ((d * input_height + h) * input_width + w) * channels + c
                  : (d * input_height + h) * input_width + w;
          if (ele == input_data[input_data_idx]) {
857
            stop = true;
858
            maxIdx = input_data_idx;
859 860 861 862 863 864
          }
        }
      }
    }
    if (maxIdx != -1) {
      // atomic add
C
chengduoZH 已提交
865
      platform::CudaAtomicAdd(input_grad + maxIdx, output_grad[index]);
866 867 868 869
    }
  }
}

C
chengduoZH 已提交
870
/*
871 872 873 874 875 876 877
 * Tensors are in NCDHW or NDHWC format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 * Paddings are six elements. These six elements represent depth_forth,
 * depth_back,
 * height_up, height_down, width_left and width_right, respectively.
 */
878
template <typename PoolProcess, class T>
Q
QI JUN 已提交
879
class Pool3dFunctor<platform::CUDADeviceContext, PoolProcess, T> {
880
 public:
Q
QI JUN 已提交
881
  void operator()(const platform::CUDADeviceContext& context,
C
chengduo 已提交
882 883 884
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
885
                  bool exclusive, bool adaptive, framework::Tensor* output) {
886 887 888 889 890
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
891 892 893 894
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
895 896 897 898 899 900 901 902 903 904 905
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
C
chengduoZH 已提交
906
    T* output_data = output->mutable_data<T>(context.GetPlace());
907 908 909 910 911 912 913

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
914
    KernelPool3D<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
915 916 917
        nthreads, input_data, input_channels, input_depth, input_height,
        input_width, output_depth, output_height, output_width, ksize_depth,
        ksize_height, ksize_width, stride_depth, stride_height, stride_width,
918
        padding_depth, padding_height, padding_width, pool_process, exclusive,
919
        adaptive, output_data);
920
  }
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
  void operator()(const platform::CUDADeviceContext& context,
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
                  const std::string data_format, PoolProcess pool_process,
                  bool exclusive, bool adaptive, framework::Tensor* output) {
    bool channel_last = (data_format == "NDHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output->dims()[4] : output->dims()[1];
    const int output_depth =
        channel_last ? output->dims()[1] : output->dims()[2];
    const int output_height =
        channel_last ? output->dims()[2] : output->dims()[3];
    const int output_width =
        channel_last ? output->dims()[3] : output->dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    T* output_data = output->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelPool3D<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, input_channels, input_depth, input_height,
        input_width, output_depth, output_height, output_width, ksize_depth,
        ksize_height, ksize_width, stride_depth, stride_height, stride_width,
        padding_depth, padding_height, padding_width, pool_process, exclusive,
        adaptive, output_data, channel_last);
  }
972 973
};

C
chengduoZH 已提交
974
/*
975 976 977 978 979 980 981
 * Tensors are in NCDHW or NDHWC format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 * Paddings are six elements. These six elements represent depth_forth,
 * depth_back,
 * height_up, height_down, width_left and width_right, respectively.
 */
982
template <typename PoolProcess, class T>
Q
QI JUN 已提交
983
class Pool3dGradFunctor<platform::CUDADeviceContext, PoolProcess, T> {
984
 public:
Q
QI JUN 已提交
985
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
986
                  const framework::Tensor& input,
987
                  const framework::Tensor& output,
C
chengduo 已提交
988 989 990 991
                  const framework::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings, PoolProcess pool_process,
992 993
                  bool exclusive, bool adaptive,
                  framework::Tensor* input_grad) {
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
1016
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
1017

1018 1019
    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
1020 1021 1022 1023
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1024
    KernelPool3DGrad<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1025 1026 1027 1028
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
1029
        padding_width, pool_process, exclusive, adaptive, input_grad_data);
1030
  }
1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
  void operator()(
      const platform::CUDADeviceContext& context,
      const framework::Tensor& input, const framework::Tensor& output,
      const framework::Tensor& output_grad, const std::vector<int>& ksize,
      const std::vector<int>& strides, const std::vector<int>& paddings,
      const std::string data_format, PoolProcess pool_process, bool exclusive,
      bool adaptive, framework::Tensor* input_grad) {
    bool channel_last = (data_format == "NDHWC");

    const int batch_size = input.dims()[0];
    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output.dims()[4] : output.dims()[1];
    const int output_depth = channel_last ? output.dims()[1] : output.dims()[2];
    const int output_height =
        channel_last ? output.dims()[2] : output.dims()[3];
    const int output_width = channel_last ? output.dims()[3] : output.dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelPool3DGrad<PoolProcess, T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
        padding_width, pool_process, exclusive, adaptive, input_grad_data,
        channel_last);  // add channel_last
  }
1084 1085
};

C
chengduoZH 已提交
1086
/*
1087 1088 1089 1090 1091 1092 1093
 * tensors are in NCDHW or NDHWC format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 * Paddings are six elements. These six elements represent depth_forth,
 * depth_back,
 * height_up, height_down, width_left and width_right, respectively.
 */
1094
template <class T>
Q
QI JUN 已提交
1095
class MaxPool3dGradFunctor<platform::CUDADeviceContext, T> {
1096
 public:
Q
QI JUN 已提交
1097
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
1098
                  const framework::Tensor& input,
1099
                  const framework::Tensor& output,
C
chengduo 已提交
1100 1101 1102 1103
                  const framework::Tensor& output_grad,
                  const std::vector<int>& ksize,
                  const std::vector<int>& strides,
                  const std::vector<int>& paddings,
C
chengduoZH 已提交
1104
                  framework::Tensor* input_grad) {
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
    const int output_channels = output.dims()[1];
    const int output_depth = output.dims()[2];
    const int output_height = output.dims()[3];
    const int output_width = output.dims()[4];
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
C
chengduoZH 已提交
1127
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());
1128 1129 1130 1131 1132 1133 1134

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1135
    KernelMaxPool3DGrad<T><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1136 1137 1138 1139 1140
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
        padding_width, input_grad_data);
1141
  }
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
  void operator()(
      const platform::CUDADeviceContext& context,
      const framework::Tensor& input, const framework::Tensor& output,
      const framework::Tensor& output_grad, const std::vector<int>& ksize,
      const std::vector<int>& strides, const std::vector<int>& paddings,
      const std::string data_format, framework::Tensor* input_grad) {
    bool channel_last = (data_format == "NDHWC");
    const int batch_size = input.dims()[0];

    const int input_channels = channel_last ? input.dims()[4] : input.dims()[1];
    const int input_depth = channel_last ? input.dims()[1] : input.dims()[2];
    const int input_height = channel_last ? input.dims()[2] : input.dims()[3];
    const int input_width = channel_last ? input.dims()[3] : input.dims()[4];

    const int output_channels =
        channel_last ? output.dims()[4] : output.dims()[1];
    const int output_depth = channel_last ? output.dims()[1] : output.dims()[2];
    const int output_height =
        channel_last ? output.dims()[2] : output.dims()[3];
    const int output_width = channel_last ? output.dims()[3] : output.dims()[4];

    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];

    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];

    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

    const T* input_data = input.data<T>();
    const T* output_data = output.data<T>();
    const T* output_grad_data = output_grad.data<T>();
    T* input_grad_data = input_grad->mutable_data<T>(context.GetPlace());

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

    KernelMaxPool3DGrad<T><<<grid, threads, 0, context.stream()>>>(
        nthreads, input_data, output_data, output_grad_data, input_channels,
        input_depth, input_height, input_width, output_depth, output_height,
        output_width, ksize_depth, ksize_height, ksize_width, stride_depth,
        stride_height, stride_width, padding_depth, padding_height,
        padding_width, input_grad_data, channel_last);  // add channel_last
  }
1193 1194
};

Q
QI JUN 已提交
1195 1196
template class MaxPool3dGradFunctor<platform::CUDADeviceContext, float>;
template class MaxPool3dGradFunctor<platform::CUDADeviceContext, double>;
1197 1198
template class MaxPool3dGradFunctor<platform::CUDADeviceContext,
                                    paddle::platform::float16>;
C
chengduoZH 已提交
1199

Q
QI JUN 已提交
1200
template class Pool3dFunctor<platform::CUDADeviceContext,
1201
                             paddle::operators::math::MaxPool<float>, float>;
Q
QI JUN 已提交
1202
template class Pool3dFunctor<platform::CUDADeviceContext,
1203
                             paddle::operators::math::AvgPool<float>, float>;
Q
QI JUN 已提交
1204 1205 1206 1207 1208 1209 1210
template class Pool3dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::MaxPoolGrad<float>,
                                 float>;
template class Pool3dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::AvgPoolGrad<float>,
                                 float>;
template class Pool3dFunctor<platform::CUDADeviceContext,
1211
                             paddle::operators::math::MaxPool<double>, double>;
Q
QI JUN 已提交
1212
template class Pool3dFunctor<platform::CUDADeviceContext,
1213
                             paddle::operators::math::AvgPool<double>, double>;
Q
QI JUN 已提交
1214 1215 1216 1217 1218 1219
template class Pool3dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::MaxPoolGrad<double>,
                                 double>;
template class Pool3dGradFunctor<platform::CUDADeviceContext,
                                 paddle::operators::math::AvgPoolGrad<double>,
                                 double>;
1220

1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
template class Pool3dFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::MaxPool<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool3dFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::AvgPool<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool3dGradFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::MaxPoolGrad<paddle::platform::float16>,
    paddle::platform::float16>;
template class Pool3dGradFunctor<
    platform::CUDADeviceContext,
    paddle::operators::math::AvgPoolGrad<paddle::platform::float16>,
    paddle::platform::float16>;

C
chengduoZH 已提交
1238
template <typename T1, typename T2>
C
chengduoZH 已提交
1239
__global__ void KernelMaxPool2dWithIdx(
C
chengduoZH 已提交
1240
    const int nthreads, const T1* input_data, const int channels,
C
chengduoZH 已提交
1241 1242 1243
    const int input_height, const int input_width, const int output_height,
    const int output_width, const int ksize_height, const int ksize_width,
    const int stride_height, const int stride_width, const int padding_height,
1244
    const int padding_width, bool adaptive, T1* output_data, T2* mask_data) {
C
chengduoZH 已提交
1245
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
1246
       index += blockDim.x * gridDim.x) {
C
chengduoZH 已提交
1247 1248 1249 1250 1251
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int c = (index / output_width / output_height) % channels;
    int batch_idx = index / output_width / output_height / channels;

1252 1253 1254
    int hstart, hend;
    int wstart, wend;
    if (adaptive) {
D
dengkaipeng 已提交
1255 1256
      hstart = AdaptStartIndex(ph, input_height, output_height);
      hend = AdaptEndIndex(ph, input_height, output_height);
C
chengduoZH 已提交
1257

D
dengkaipeng 已提交
1258 1259
      wstart = AdaptStartIndex(pw, input_width, output_width);
      wend = AdaptEndIndex(pw, input_width, output_width);
1260 1261 1262 1263 1264 1265 1266 1267 1268
    } else {
      hstart = ph * stride_height - padding_height;
      hend = min(hstart + ksize_height, input_height);
      hstart = max(hstart, 0);

      wstart = pw * stride_width - padding_width;
      wend = min(wstart + ksize_width, input_width);
      wstart = max(wstart, 0);
    }
C
chengduoZH 已提交
1269 1270

    input_data += (batch_idx * channels + c) * input_height * input_width;
C
chengduoZH 已提交
1271
    T1 ele = -FLT_MAX;
C
chengduoZH 已提交
1272
    int max_index = -1;
C
chengduoZH 已提交
1273 1274
    for (int h = hstart; h < hend; ++h) {
      for (int w = wstart; w < wend; ++w) {
C
chengduoZH 已提交
1275 1276 1277 1278
        int input_index = h * input_width + w;
        if (ele < input_data[input_index]) {
          max_index = input_index;
          ele = input_data[input_index];
C
chengduoZH 已提交
1279 1280 1281 1282
        }
      }
    }
    output_data[index] = ele;
C
chengduoZH 已提交
1283
    mask_data[index] = max_index;
C
chengduoZH 已提交
1284 1285 1286
  }
}

C
chengduoZH 已提交
1287
template <typename T1, typename T2>
C
chengduoZH 已提交
1288
__global__ void KernelMaxPool2DWithIdxGrad(
C
chengduoZH 已提交
1289
    const int nthreads, const T1* output_grad, const T2* mask_data,
C
chengduoZH 已提交
1290 1291 1292
    const int channels, const int input_height, const int input_width,
    const int output_height, const int output_width, const int ksize_height,
    const int ksize_width, const int stride_height, const int stride_width,
1293 1294
    const int padding_height, const int padding_width, bool adaptive,
    T1* input_grad) {
C
chengduoZH 已提交
1295
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
1296
       index += blockDim.x * gridDim.x) {
D
dengkaipeng 已提交
1297 1298
    int w_offset = index % input_width;
    int h_offset = (index / input_width) % input_height;
1299
    int offsetC = (index / input_width / input_height) % channels;
C
chengduoZH 已提交
1300 1301
    int batch_idx = index / input_width / input_height / channels;

1302 1303 1304
    int phstart, phend;
    int pwstart, pwend;
    if (adaptive) {
D
dengkaipeng 已提交
1305
      phstart = h_offset * output_height / input_height;
1306
      phend =
D
dengkaipeng 已提交
1307 1308 1309 1310
          min((h_offset + 1) * output_height / input_height + 1, output_height);
      pwstart = w_offset * output_width / input_width;
      pwend =
          min((w_offset + 1) * output_width / input_width + 1, output_width);
1311 1312
    } else {
      phstart =
D
dengkaipeng 已提交
1313
          (h_offset + padding_height < ksize_height)
1314
              ? 0
D
dengkaipeng 已提交
1315
              : (h_offset + padding_height - ksize_height) / stride_height + 1;
1316
      pwstart =
D
dengkaipeng 已提交
1317
          (w_offset + padding_width < ksize_width)
1318
              ? 0
D
dengkaipeng 已提交
1319
              : (w_offset + padding_width - ksize_width) / stride_width + 1;
1320
      phend =
D
dengkaipeng 已提交
1321 1322
          min((h_offset + padding_height) / stride_height + 1, output_height);
      pwend = min((w_offset + padding_width) / stride_width + 1, output_width);
1323
    }
C
chengduoZH 已提交
1324

C
chengduoZH 已提交
1325
    T1 gradient = 0;
D
dengkaipeng 已提交
1326
    int input_current_featuremap_idx = h_offset * input_width + w_offset;
C
chengduoZH 已提交
1327
    int output_idx =
1328
        (batch_idx * channels + offsetC) * output_height * output_width;
C
chengduoZH 已提交
1329

C
chengduoZH 已提交
1330 1331
    mask_data += output_idx;
    output_grad += output_idx;
1332 1333
    for (int ph = phstart; ph < phend; ++ph) {
      for (int pw = pwstart; pw < pwend; ++pw) {
C
chengduoZH 已提交
1334
        if (mask_data[ph * output_width + pw] == input_current_featuremap_idx)
C
chengduoZH 已提交
1335 1336 1337 1338 1339 1340 1341
          gradient += output_grad[ph * output_width + pw];
      }
    }
    input_grad[index] = gradient;
  }
}

C
chengduoZH 已提交
1342 1343 1344 1345 1346
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
1347
template <typename T1, typename T2>
Q
QI JUN 已提交
1348
class MaxPool2dWithIndexFunctor<platform::CUDADeviceContext, T1, T2> {
C
chengduoZH 已提交
1349
 public:
Q
QI JUN 已提交
1350
  void operator()(const platform::CUDADeviceContext& context,
C
chengduo 已提交
1351 1352
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1353 1354
                  const std::vector<int>& paddings, bool adaptive,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
1355 1356 1357 1358
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_height = input.dims()[2];
    const int input_width = input.dims()[3];
C
chengduoZH 已提交
1359 1360 1361
    const int output_channels = output->dims()[1];
    const int output_height = output->dims()[2];
    const int output_width = output->dims()[3];
C
chengduoZH 已提交
1362 1363 1364 1365 1366 1367 1368
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

C
chengduoZH 已提交
1369 1370 1371
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
1372 1373 1374 1375 1376 1377

    int nthreads = batch_size * output_channels * output_height * output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1378
    KernelMaxPool2dWithIdx<T1, T2><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1379 1380
        nthreads, input_data, input_channels, input_height, input_width,
        output_height, output_width, ksize_height, ksize_width, stride_height,
1381 1382
        stride_width, padding_height, padding_width, adaptive, output_data,
        mask_data);
C
chengduoZH 已提交
1383 1384 1385
  }
};

C
chengduoZH 已提交
1386 1387 1388 1389 1390
/*
 * All tensors are in NCHW format.
 * Ksize, strides, paddings are two elements. These two elements represent
 * height and width, respectively.
 */
C
chengduoZH 已提交
1391
template <typename T1, typename T2>
Q
QI JUN 已提交
1392
class MaxPool2dWithIndexGradFunctor<platform::CUDADeviceContext, T1, T2> {
C
chengduoZH 已提交
1393
 public:
Q
QI JUN 已提交
1394
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
1395
                  const framework::Tensor& output_grad,
C
chengduo 已提交
1396 1397
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1398
                  const std::vector<int>& paddings, bool adaptive,
C
chengduoZH 已提交
1399 1400 1401 1402 1403
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_channels = input_grad->dims()[1];
    const int input_height = input_grad->dims()[2];
    const int input_width = input_grad->dims()[3];
C
chengduoZH 已提交
1404 1405 1406 1407 1408 1409 1410 1411 1412
    const int output_height = output_grad.dims()[2];
    const int output_width = output_grad.dims()[3];
    const int ksize_height = ksize[0];
    const int ksize_width = ksize[1];
    const int stride_height = strides[0];
    const int stride_width = strides[1];
    const int padding_height = paddings[0];
    const int padding_width = paddings[1];

C
chengduoZH 已提交
1413 1414 1415
    const T2* mask_data = mask.data<T2>();
    const T1* output_grad_data = output_grad.data<T1>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
1416 1417 1418 1419 1420 1421

    int nthreads = batch_size * input_channels * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1422
    KernelMaxPool2DWithIdxGrad<T1, T2><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1423 1424
        nthreads, output_grad_data, mask_data, input_channels, input_height,
        input_width, output_height, output_width, ksize_height, ksize_width,
1425
        stride_height, stride_width, padding_height, padding_width, adaptive,
C
chengduoZH 已提交
1426
        input_grad_data);
C
chengduoZH 已提交
1427 1428 1429
  }
};

Q
QI JUN 已提交
1430 1431 1432 1433 1434 1435 1436 1437
template class MaxPool2dWithIndexFunctor<platform::CUDADeviceContext, float,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CUDADeviceContext, float,
                                             int>;
template class MaxPool2dWithIndexFunctor<platform::CUDADeviceContext, double,
                                         int>;
template class MaxPool2dWithIndexGradFunctor<platform::CUDADeviceContext,
                                             double, int>;
C
chengduoZH 已提交
1438

C
chengduoZH 已提交
1439
template <typename T1, typename T2>
C
chengduoZH 已提交
1440
__global__ void KernelMaxPool3DWithIdx(
C
chengduoZH 已提交
1441
    const int nthreads, const T1* input_data, const int channels,
C
chengduoZH 已提交
1442 1443 1444 1445 1446
    const int input_depth, const int input_height, const int input_width,
    const int output_depth, const int output_height, const int output_width,
    const int ksize_depth, const int ksize_height, const int ksize_width,
    const int stride_depth, const int stride_height, const int stride_width,
    const int padding_depth, const int padding_height, const int padding_width,
1447
    bool adaptive, T1* output_data, T2* mask_data) {
C
chengduoZH 已提交
1448
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
1449 1450 1451 1452 1453 1454 1455
       index += blockDim.x * gridDim.x) {
    int pw = index % output_width;
    int ph = (index / output_width) % output_height;
    int pd = (index / output_width / output_height) % output_depth;
    int c = (index / output_width / output_height / output_depth) % channels;
    int batch_idx =
        index / output_width / output_height / output_depth / channels;
C
chengduoZH 已提交
1456

1457 1458 1459 1460
    int dstart, dend;
    int hstart, hend;
    int wstart, wend;
    if (adaptive) {
D
dengkaipeng 已提交
1461 1462
      dstart = AdaptStartIndex(pd, input_depth, output_depth);
      dend = AdaptEndIndex(pd, input_depth, output_depth);
1463

D
dengkaipeng 已提交
1464 1465
      hstart = AdaptStartIndex(ph, input_height, output_height);
      hend = AdaptEndIndex(ph, input_height, output_height);
1466

D
dengkaipeng 已提交
1467 1468
      wstart = AdaptStartIndex(pw, input_width, output_width);
      wend = AdaptEndIndex(pw, input_width, output_width);
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
    } else {
      dstart = pd * stride_depth - padding_depth;
      hstart = ph * stride_height - padding_height;
      wstart = pw * stride_width - padding_width;
      dend = min(dstart + ksize_depth, input_depth);
      hend = min(hstart + ksize_height, input_height);
      wend = min(wstart + ksize_width, input_width);
      dstart = max(dstart, 0);
      hstart = max(hstart, 0);
      wstart = max(wstart, 0);
    }
C
chengduoZH 已提交
1480

C
chengduoZH 已提交
1481
    T1 ele = -FLT_MAX;
C
chengduoZH 已提交
1482
    int max_index = -1;
C
chengduoZH 已提交
1483 1484 1485 1486 1487 1488 1489
    input_data +=
        (batch_idx * channels + c) * input_depth * input_height * input_width;

    for (int d = dstart; d < dend; ++d) {
      for (int h = hstart; h < hend; ++h) {
        for (int w = wstart; w < wend; ++w) {
          if (ele < input_data[(d * input_height + h) * input_width + w]) {
C
chengduoZH 已提交
1490 1491
            max_index = (d * input_height + h) * input_width + w;
            ele = input_data[max_index];
C
chengduoZH 已提交
1492 1493 1494 1495 1496
          }
        }
      }
    }
    output_data[index] = ele;
C
chengduoZH 已提交
1497
    mask_data[index] = max_index;
C
chengduoZH 已提交
1498 1499 1500
  }
}

C
chengduoZH 已提交
1501
template <typename T1, typename T2>
C
chengduoZH 已提交
1502
__global__ void KernelMaxPool3DWithIdxGrad(
C
chengduoZH 已提交
1503 1504 1505 1506 1507 1508
    const int nthreads, const T1* output_grad, const T2* mask,
    const int channels, const int input_depth, const int input_height,
    const int input_width, const int output_depth, const int output_height,
    const int output_width, const int ksize_depth, const int ksize_height,
    const int ksize_width, const int stride_depth, const int stride_height,
    const int stride_width, const int padding_depth, const int padding_height,
1509
    const int padding_width, bool adaptive, T1* input_grad) {
C
chengduoZH 已提交
1510
  for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
C
chengduoZH 已提交
1511
       index += blockDim.x * gridDim.x) {
D
dengkaipeng 已提交
1512 1513 1514
    int w_offset = index % input_width;
    int h_offset = (index / input_width) % input_height;
    int d_offset = (index / input_width / input_height) % input_depth;
1515
    int offsetC = (index / input_width / input_height / input_depth) % channels;
C
chengduoZH 已提交
1516 1517
    int batch_idx = index / input_width / input_height / input_depth / channels;

1518 1519 1520 1521
    int pdstart, pdend;
    int phstart, phend;
    int pwstart, pwend;
    if (adaptive) {
D
dengkaipeng 已提交
1522 1523 1524 1525
      pdstart = d_offset * output_depth / input_depth;
      pdend =
          min((d_offset + 1) * output_depth / input_depth + 1, output_depth);
      phstart = h_offset * output_height / input_height;
1526
      phend =
D
dengkaipeng 已提交
1527 1528 1529 1530
          min((h_offset + 1) * output_height / input_height + 1, output_height);
      pwstart = w_offset * output_width / input_width;
      pwend =
          min((w_offset + 1) * output_width / input_width + 1, output_width);
1531 1532
    } else {
      pdstart =
D
dengkaipeng 已提交
1533
          (d_offset + padding_depth < ksize_depth)
1534
              ? 0
D
dengkaipeng 已提交
1535
              : (d_offset + padding_depth - ksize_depth) / stride_depth + 1;
1536
      phstart =
D
dengkaipeng 已提交
1537
          (h_offset + padding_height < ksize_height)
1538
              ? 0
D
dengkaipeng 已提交
1539
              : (h_offset + padding_height - ksize_height) / stride_height + 1;
1540
      pwstart =
D
dengkaipeng 已提交
1541
          (w_offset + padding_width < ksize_width)
1542
              ? 0
D
dengkaipeng 已提交
1543 1544
              : (w_offset + padding_width - ksize_width) / stride_width + 1;
      pdend = min((d_offset + padding_depth) / stride_depth + 1, output_depth);
1545
      phend =
D
dengkaipeng 已提交
1546 1547
          min((h_offset + padding_height) / stride_height + 1, output_height);
      pwend = min((w_offset + padding_width) / stride_width + 1, output_width);
1548
    }
C
chengduoZH 已提交
1549

C
chengduoZH 已提交
1550
    T1 gradient = 0;
C
chengduoZH 已提交
1551
    int input_current_feature_map_idx =
D
dengkaipeng 已提交
1552
        (d_offset * input_height + h_offset) * input_width + w_offset;
1553
    int output_idx = (batch_idx * channels + offsetC) * output_depth *
C
chengduoZH 已提交
1554 1555 1556 1557
                     output_height * output_width;
    mask += output_idx;
    output_grad += output_idx;

1558 1559 1560
    for (int pd = pdstart; pd < pdend; ++pd) {
      for (int ph = phstart; ph < phend; ++ph) {
        for (int pw = pwstart; pw < pwend; ++pw) {
C
chengduoZH 已提交
1561 1562
          if (mask[(pd * output_height + ph) * output_width + pw] ==
              input_current_feature_map_idx)
C
chengduoZH 已提交
1563 1564 1565 1566 1567 1568 1569 1570 1571
            gradient +=
                output_grad[(pd * output_height + ph) * output_width + pw];
        }
      }
    }
    input_grad[index] = gradient;
  }
}

C
chengduoZH 已提交
1572 1573 1574 1575 1576
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
1577
template <typename T1, typename T2>
Q
QI JUN 已提交
1578
class MaxPool3dWithIndexFunctor<platform::CUDADeviceContext, T1, T2> {
C
chengduoZH 已提交
1579
 public:
Q
QI JUN 已提交
1580
  void operator()(const platform::CUDADeviceContext& context,
C
chengduo 已提交
1581 1582
                  const framework::Tensor& input, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1583 1584
                  const std::vector<int>& paddings, bool adaptive,
                  framework::Tensor* output, framework::Tensor* mask) {
C
chengduoZH 已提交
1585 1586 1587 1588 1589
    const int batch_size = input.dims()[0];
    const int input_channels = input.dims()[1];
    const int input_depth = input.dims()[2];
    const int input_height = input.dims()[3];
    const int input_width = input.dims()[4];
C
chengduoZH 已提交
1590 1591 1592 1593
    const int output_channels = output->dims()[1];
    const int output_depth = output->dims()[2];
    const int output_height = output->dims()[3];
    const int output_width = output->dims()[4];
C
chengduoZH 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

C
chengduoZH 已提交
1604 1605 1606
    const T1* input_data = input.data<T1>();
    T1* output_data = output->mutable_data<T1>(context.GetPlace());
    T2* mask_data = mask->mutable_data<T2>(context.GetPlace());
C
chengduoZH 已提交
1607 1608 1609 1610 1611 1612 1613

    int nthreads = batch_size * output_channels * output_depth * output_height *
                   output_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1614
    KernelMaxPool3DWithIdx<T1, T2><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1615 1616 1617
        nthreads, input_data, input_channels, input_depth, input_height,
        input_width, output_depth, output_height, output_width, ksize_depth,
        ksize_height, ksize_width, stride_depth, stride_height, stride_width,
1618 1619
        padding_depth, padding_height, padding_width, adaptive, output_data,
        mask_data);
C
chengduoZH 已提交
1620 1621 1622
  }
};

C
chengduoZH 已提交
1623 1624 1625 1626 1627
/*
 * All tensors are in NCDHW format.
 * Ksize, strides, paddings are three elements. These three elements represent
 * depth, height and width, respectively.
 */
C
chengduoZH 已提交
1628
template <typename T1, typename T2>
Q
QI JUN 已提交
1629
class MaxPool3dWithIndexGradFunctor<platform::CUDADeviceContext, T1, T2> {
C
chengduoZH 已提交
1630
 public:
Q
QI JUN 已提交
1631
  void operator()(const platform::CUDADeviceContext& context,
C
chengduoZH 已提交
1632
                  const framework::Tensor& output_grad,
C
chengduo 已提交
1633 1634
                  const framework::Tensor& mask, const std::vector<int>& ksize,
                  const std::vector<int>& strides,
1635
                  const std::vector<int>& paddings, bool adaptive,
C
chengduoZH 已提交
1636 1637 1638 1639 1640 1641
                  framework::Tensor* input_grad) {
    const int batch_size = input_grad->dims()[0];
    const int input_channels = input_grad->dims()[1];
    const int input_depth = input_grad->dims()[2];
    const int input_height = input_grad->dims()[3];
    const int input_width = input_grad->dims()[4];
C
chengduoZH 已提交
1642 1643 1644
    const int output_depth = output_grad.dims()[2];
    const int output_height = output_grad.dims()[3];
    const int output_width = output_grad.dims()[4];
C
chengduoZH 已提交
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
    const int ksize_depth = ksize[0];
    const int ksize_height = ksize[1];
    const int ksize_width = ksize[2];
    const int stride_depth = strides[0];
    const int stride_height = strides[1];
    const int stride_width = strides[2];
    const int padding_depth = paddings[0];
    const int padding_height = paddings[1];
    const int padding_width = paddings[2];

C
chengduoZH 已提交
1655 1656 1657
    const T1* output_grad_data = output_grad.data<T1>();
    const T2* mask_data = mask.data<T2>();
    T1* input_grad_data = input_grad->mutable_data<T1>(context.GetPlace());
C
chengduoZH 已提交
1658 1659 1660 1661 1662 1663 1664

    int nthreads =
        batch_size * input_channels * input_depth * input_height * input_width;
    int blocks = (nthreads + 1024 - 1) / 1024;
    dim3 threads(1024, 1);
    dim3 grid(blocks, 1);

Q
QI JUN 已提交
1665
    KernelMaxPool3DWithIdxGrad<T1, T2><<<grid, threads, 0, context.stream()>>>(
C
chengduoZH 已提交
1666 1667 1668
        nthreads, output_grad_data, mask_data, input_channels, input_depth,
        input_height, input_width, output_depth, output_height, output_width,
        ksize_depth, ksize_height, ksize_width, stride_depth, stride_height,
1669
        stride_width, padding_depth, padding_height, padding_width, adaptive,
C
chengduoZH 已提交
1670
        input_grad_data);
C
chengduoZH 已提交
1671 1672 1673
  }
};

Q
QI JUN 已提交
1674 1675 1676 1677 1678 1679 1680 1681
template class MaxPool3dWithIndexFunctor<platform::CUDADeviceContext, float,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CUDADeviceContext, float,
                                             int>;
template class MaxPool3dWithIndexFunctor<platform::CUDADeviceContext, double,
                                         int>;
template class MaxPool3dWithIndexGradFunctor<platform::CUDADeviceContext,
                                             double, int>;
C
chengduoZH 已提交
1682 1683 1684 1685

}  // namespace math
}  // namespace operators
}  // namespace paddle