提交 bb33c2b3 编写于 作者: C chengduoZH

fix kernel func

上级 2ed56df1
......@@ -458,6 +458,233 @@ template class Pool3dGradFunctor<
platform::CPUPlace, paddle::operators::math::MaxPoolGrad<double>, double>;
template class Pool3dGradFunctor<
platform::CPUPlace, paddle::operators::math::AvgPoolGrad<double>, double>;
template <typename T>
class MaxPool2dWithIndexFunctor<platform::CPUPlace, T> {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output,
framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings) {
const int batch_size = input.dims()[0];
const int input_height = input.dims()[2];
const int input_width = input.dims()[3];
const int output_channels = output.dims()[1];
const int output_height = output.dims()[2];
const int output_width = output.dims()[3];
const int ksize_height = ksize[0];
const int ksize_width = ksize[1];
const int stride_height = strides[0];
const int stride_width = strides[1];
const int padding_height = paddings[0];
const int padding_width = paddings[1];
const int input_stride = input_height * input_width;
const int output_stride = output_height * output_width;
const T* input_data = input.data<T>();
T* output_data = output.mutable_data<T>(context.GetPlace());
T* mask_data = mask.mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) {
for (int c = 0; c < output_channels; ++c) {
for (int ph = 0; ph < output_height; ++ph) {
int hstart = ph * stride_height - padding_height;
int hend = std::min(hstart + ksize_height, input_height);
hstart = std::max(hstart, 0);
for (int pw = 0; pw < output_width; ++pw) {
int wstart = pw * stride_width - padding_width;
int wend = std::min(wstart + ksize_width, input_width);
wstart = std::max(wstart, 0);
T ele = static_cast<T>(-FLT_MAX);
int index = -1;
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
if (ele < input_data[h * input_width + w]) {
ele = input_data[h * input_width + w];
index = h * input_width + w;
}
}
}
output_data[ph * output_width + pw] = ele;
mask_data[ph * output_width + pw] = index;
}
}
// offset
input_data += input_stride;
output_data += output_stride;
mask_data += output_stride;
}
}
}
};
template <typename T>
class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, T> {
public:
void operator()(const platform::DeviceContext& context,
framework::Tensor& input_grad,
const framework::Tensor& output_grad,
const framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings) {
const int batch_size = input_grad.dims()[0];
const int input_height = input_grad.dims()[2];
const int input_width = input_grad.dims()[3];
const int output_channels = output_grad.dims()[1];
const int output_height = output_grad.dims()[2];
const int output_width = output_grad.dims()[3];
const int input_stride = input_height * input_width;
const int output_stride = output_height * output_width;
const T* mask_data = mask.data<T>();
const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
for (int n = 0; n < batch_size; ++n) {
for (int c = 0; c < output_channels; ++c) {
for (int ph = 0; ph < output_height; ++ph) {
for (int pw = 0; pw < output_width; ++pw) {
const int output_idx = ph * output_width + pw;
const int input_idx = static_cast<int>(mask_data[output_idx]);
input_grad_data[input_idx] += output_grad_data[output_idx];
}
}
// offset
input_grad_data += input_stride;
output_grad_data += output_stride;
mask_data += output_stride;
}
}
}
};
template class MaxPool2dWithIndexFunctor<platform::CPUPlace, float>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, float>;
template class MaxPool2dWithIndexFunctor<platform::CPUPlace, double>;
template class MaxPool2dWithIndexGradFunctor<platform::CPUPlace, double>;
template <typename T>
class MaxPool3dWithIndexFunctor<platform::CPUPlace, T> {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output,
framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings) {
const int batch_size = input.dims()[0];
const int input_depth = input.dims()[2];
const int input_height = input.dims()[3];
const int input_width = input.dims()[4];
const int output_channels = output.dims()[1];
const int output_depth = output.dims()[2];
const int output_height = output.dims()[3];
const int output_width = output.dims()[4];
const int ksize_depth = ksize[0];
const int ksize_height = ksize[1];
const int ksize_width = ksize[2];
const int stride_depth = strides[0];
const int stride_height = strides[1];
const int stride_width = strides[2];
const int padding_depth = paddings[0];
const int padding_height = paddings[1];
const int padding_width = paddings[2];
const int input_stride = input_depth * input_height * input_width;
const int output_stride = output_depth * output_height * output_width;
const T* input_data = input.data<T>();
T* output_data = output.mutable_data<T>(context.GetPlace());
T* mask_data = mask.mutable_data<T>(context.GetPlace());
for (int i = 0; i < batch_size; i++) {
for (int c = 0; c < output_channels; ++c) {
for (int pd = 0; pd < output_depth; ++pd) {
int dstart = pd * stride_depth - padding_depth;
int dend = std::min(dstart + ksize_depth, input_depth);
dstart = std::max(dstart, 0);
for (int ph = 0; ph < output_height; ++ph) {
int hstart = ph * stride_height - padding_height;
int hend = std::min(hstart + ksize_height, input_height);
hstart = std::max(hstart, 0);
for (int pw = 0; pw < output_width; ++pw) {
int wstart = pw * stride_width - padding_width;
int wend = std::min(wstart + ksize_width, input_width);
wstart = std::max(wstart, 0);
int output_idx = (pd * output_height + ph) * output_width + pw;
T ele = static_cast<T>(-FLT_MAX);
int index = -1;
for (int d = dstart; d < dend; ++d) {
for (int h = hstart; h < hend; ++h) {
for (int w = wstart; w < wend; ++w) {
int input_idx = (d * input_height + h) * input_width + w;
if (ele < input_data[input_idx]) {
index = input_idx;
ele = input_data[input_idx];
}
}
}
}
output_data[output_idx] = ele;
mask_data[output_idx] = index;
}
}
}
// offset
input_data += input_stride;
output_data += output_stride;
mask_data += output_stride;
}
}
}
};
template <typename T>
class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, T> {
public:
void operator()(const platform::DeviceContext& context,
framework::Tensor& input_grad,
const framework::Tensor& output_grad,
const framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings) {
const int batch_size = input_grad.dims()[0];
const int input_depth = input_grad.dims()[2];
const int input_height = input_grad.dims()[3];
const int input_width = input_grad.dims()[4];
const int output_channels = output_grad.dims()[1];
const int output_depth = output_grad.dims()[2];
const int output_height = output_grad.dims()[3];
const int output_width = output_grad.dims()[4];
const int input_stride = input_depth * input_height * input_width;
const int output_stride = output_depth * output_height * output_width;
const T* mask_data = mask.data<T>();
const T* output_grad_data = output_grad.data<T>();
T* input_grad_data = input_grad.mutable_data<T>(context.GetPlace());
for (int n = 0; n < batch_size; ++n) {
for (int c = 0; c < output_channels; ++c) {
for (int pd = 0; pd < output_depth; ++pd) {
for (int ph = 0; ph < output_height; ++ph) {
for (int pw = 0; pw < output_width; ++pw) {
const int output_idx =
(pd * output_height + ph) * output_width + pw;
const int input_idx = static_cast<int>(mask_data[output_idx]);
input_grad_data[input_idx] += output_grad_data[output_idx];
}
}
}
// offset
input_grad_data += input_stride;
output_grad_data += output_stride;
mask_data += output_stride;
}
}
}
};
template class MaxPool3dWithIndexFunctor<platform::CPUPlace, float>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, float>;
template class MaxPool3dWithIndexFunctor<platform::CPUPlace, double>;
template class MaxPool3dWithIndexGradFunctor<platform::CPUPlace, double>;
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -637,7 +637,7 @@ __global__ void KernelMaxPool2dWithIdx(
const int output_height, const int output_width, const int ksize_height,
const int ksize_width, const int stride_height, const int stride_width,
const int padding_height, const int padding_width) {
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads);
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
index += blockDim.x * gridDim.x) {
int pw = index % output_width;
int ph = (index / output_width) % output_height;
......@@ -676,7 +676,7 @@ __global__ void KernelMaxPool2DWithIdxGrad(
const int output_height, const int output_width, const int ksize_height,
const int ksize_width, const int stride_height, const int stride_width,
const int padding_height, const int padding_width) {
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads);
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
index += blockDim.x * gridDim.x) {
int w_offset = index % input_width;
int h_offset = (index / input_width) % input_height;
......@@ -766,7 +766,6 @@ class MaxPool2dWithIndexGradFunctor<platform::GPUPlace, T> {
const int input_channels = input_grad.dims()[1];
const int input_height = input_grad.dims()[2];
const int input_width = input_grad.dims()[3];
const int output_channels = output_grad.dims()[1];
const int output_height = output_grad.dims()[2];
const int output_width = output_grad.dims()[3];
const int ksize_height = ksize[0];
......@@ -810,7 +809,7 @@ __global__ void KernelMaxPool3DWithIdx(
const int ksize_width, const int stride_depth, const int stride_height,
const int stride_width, const int padding_depth, const int padding_height,
const int padding_width) {
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads);
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
index += blockDim.x * gridDim.x) {
int pw = index % output_width;
int ph = (index / output_width) % output_height;
......@@ -858,7 +857,7 @@ __global__ void KernelMaxPool3DWithIdxGrad(
const int ksize_width, const int stride_depth, const int stride_height,
const int stride_width, const int padding_depth, const int padding_height,
const int padding_width) {
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads);
for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < nthreads;
index += blockDim.x * gridDim.x) {
int w_offset = index % input_width;
int h_offset = (index / input_width) % input_height;
......@@ -969,7 +968,6 @@ class MaxPool3dWithIndexGradFunctor<platform::GPUPlace, T> {
const int input_depth = input_grad.dims()[2];
const int input_height = input_grad.dims()[3];
const int input_width = input_grad.dims()[4];
const int output_channels = output_grad.dims()[1];
const int output_depth = output_grad.dims()[2];
const int output_height = output_grad.dims()[3];
const int output_width = output_grad.dims()[4];
......
......@@ -117,6 +117,43 @@ class MaxPool3dGradFunctor {
std::vector<int>& strides, std::vector<int>& paddings);
};
template <typename Place, typename T>
class MaxPool2dWithIndexFunctor {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output,
framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings);
};
template <typename Place, typename T>
class MaxPool2dWithIndexGradFunctor {
public:
void operator()(const platform::DeviceContext& context,
framework::Tensor& input_grad,
const framework::Tensor& output_grad,
const framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings);
};
template <typename Place, typename T>
class MaxPool3dWithIndexFunctor {
public:
void operator()(const platform::DeviceContext& context,
const framework::Tensor& input, framework::Tensor& output,
framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings);
};
template <typename Place, typename T>
class MaxPool3dWithIndexGradFunctor {
public:
void operator()(const platform::DeviceContext& context,
framework::Tensor& input_grad,
const framework::Tensor& output_grad,
const framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings);
};
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -25,7 +25,7 @@ namespace operators {
using Tensor = framework::Tensor;
template <typename Place, typename T>
class MaxPoolWithIndexKernel : public framework::OpKernel {
class MaxPoolWithIndexKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* in_x = context.Input<Tensor>("X");
......@@ -59,7 +59,7 @@ class MaxPoolWithIndexKernel : public framework::OpKernel {
};
template <typename Place, typename T>
class MaxPoolWithIndexGradKernel : public framework::OpKernel {
class MaxPoolWithIndexGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* mask = context.Input<Tensor>("Mask");
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册