test_reshape_op.py 18.0 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yibing Liu 已提交
15 16
import unittest

17
import numpy as np
18
from op_test import OpTest, convert_float_to_uint16
19

20
import paddle
21
import paddle.fluid as fluid
J
joejiong 已提交
22
from paddle.static import Program, program_guard
Y
Yibing Liu 已提交
23

C
caoying03 已提交
24

25
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
26 27
class TestReshapeOp(OpTest):
    def setUp(self):
28 29 30 31 32 33
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
34
            'XShape': np.random.random(self.ori_shape).astype("float32"),
35
        }
Y
ying 已提交
36

37
    def init_data(self):
Z
zhupengyang 已提交
38 39 40
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)
41 42

    def test_check_output(self):
43
        self.check_output(no_check_set=['XShape'])
44 45 46

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
47 48


49 50 51
class TestReshapeOp_ZeroDim1(OpTest):
    def init_data(self):
        self.ori_shape = ()
52 53
        self.new_shape = (1,)
        self.infered_shape = (1,)
54 55 56 57


class TestReshapeOp_ZeroDim2(OpTest):
    def init_data(self):
58
        self.ori_shape = ()
59 60
        self.new_shape = (-1,)
        self.infered_shape = (1,)
61 62 63 64


class TestReshapeOp_ZeroDim3(OpTest):
    def init_data(self):
65
        self.ori_shape = (1,)
66 67
        self.new_shape = ()
        self.infered_shape = ()
68 69


70 71 72 73 74 75 76 77 78 79
class TestReshapeBF16Op(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.dtype = np.uint16
        x = np.random.random(self.ori_shape).astype("float32")
        out = x.reshape(self.infered_shape)
        self.inputs = {"X": convert_float_to_uint16(x)}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
80 81 82 83
            "Out": convert_float_to_uint16(out),
            'XShape': convert_float_to_uint16(
                np.random.random(self.ori_shape).astype("float32")
            ),
84 85 86 87 88 89 90 91 92 93 94 95
        }

    def init_data(self):
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
96 97


98 99
class TestReshapeOpDimInfer1(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
100
        self.ori_shape = (5, 25)
101 102
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
103 104


105 106
class TestReshapeOpDimInfer2(TestReshapeOp):
    def init_data(self):
Z
zhupengyang 已提交
107 108 109
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
C
caoying03 已提交
110

C
caoying03 已提交
111

112
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
113 114
class TestReshapeOpWithInputShape(OpTest):
    def setUp(self):
115
        self.init_data()
116
        self.op_type = "reshape2"
117

118
        self.inputs = {
119
            "X": np.random.random(self.ori_shape).astype("float32"),
120
            "Shape": np.array(self.actual_shape, dtype="int32"),
121
        }
122
        self.attrs = {"shape": self.new_shape}
123
        self.outputs = {
124
            "Out": self.inputs["X"].reshape(self.actual_shape),
125
            'XShape': np.random.random(self.ori_shape).astype("float32"),
126
        }
127

128
    def init_data(self):
Z
zhupengyang 已提交
129 130 131
        self.ori_shape = (6, 20)
        self.new_shape = (0, -1, 20)
        self.actual_shape = (2, 3, 20)
132

133
    def test_check_output(self):
134
        self.check_output(no_check_set=['XShape'])
135

G
guosheng 已提交
136
    def test_check_grad(self):
C
chengduo 已提交
137
        self.check_grad(["X"], "Out")
138 139


140 141
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
142 143 144 145 146 147
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
148 149 150
            shape_tensor.append(
                ("x" + str(index), np.ones((1)).astype('int32') * ele)
            )
151 152 153

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
154
            'ShapeTensor': shape_tensor,
155
        }
156 157 158
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
159
            'XShape': np.random.random(self.ori_shape).astype("float32"),
160 161 162
        }

    def init_data(self):
Z
zhupengyang 已提交
163 164 165
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
166 167 168 169 170 171 172 173 174 175 176
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
Z
zhupengyang 已提交
177 178 179
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 20)
        self.infered_shape = (5, -1, 20)
180 181 182 183 184
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
    def init_data(self):
Z
zhupengyang 已提交
185 186 187 188
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
189 190 191 192 193 194 195 196 197 198


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
199
            "Shape": np.array(self.new_shape, dtype="int32"),
200
        }
201 202 203
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
204
            'XShape': np.random.random(self.ori_shape).astype("float32"),
205 206 207
        }

    def init_data(self):
Z
zhupengyang 已提交
208 209 210
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
211 212 213 214 215 216 217 218

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


219
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
220
    def init_data(self):
Z
zhupengyang 已提交
221 222 223
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 10)
        self.infered_shape = (5, -1, 10)
224
        self.shape = (5, -1, -1)
225 226


227
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
228
    def init_data(self):
Z
zhupengyang 已提交
229 230 231 232
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
233 234


235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
# test int8 data type on CPU
class TestReshapeInt8Op(OpTest):
    def setUp(self):
        self.init_dtype()
        self.init_data()
        self.use_mkldnn = True
        self._cpu_only = True
        self.op_type = "reshape2"
        input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
        self.attrs = {
            'shape': self.new_shape,
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
251
            'XShape': np.random.random(self.ori_shape).astype(np.float32),
252 253 254 255 256 257
        }

    def init_dtype(self):
        self.dtype = np.int8

    def init_data(self):
Z
zhupengyang 已提交
258 259 260
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
261 262

    def test_check_output(self):
263 264 265
        self.check_output_with_place(
            fluid.core.CPUPlace(), atol=1e-5, no_check_set=['XShape']
        )
266 267 268 269 270 271 272 273 274 275 276

    def test_check_grad(self):
        pass


# test unt8 data type on CPU
class TestReshapeUint8Op(TestReshapeInt8Op):
    def init_dtype(self):
        self.dtype = np.uint8


277 278 279 280 281
class TestReshapeOpBool(TestReshapeOp):
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {
282
            "X": np.random.choice([True, False], size=self.ori_shape)
283 284 285 286
        }
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
287
            'XShape': np.random.random(self.ori_shape).astype("float32"),
288 289 290 291 292 293
        }

    def test_check_grad(self):
        pass


294
# Test python API
295
class TestReshapeAPI(unittest.TestCase):
296
    def _set_paddle_api(self):
297
        self.fill_constant = paddle.fluid.layers.fill_constant
J
joejiong 已提交
298
        self.data = paddle.static.data
299
        self.to_tensor = paddle.to_tensor
300 301 302 303
        self._executed_api()

    def _executed_api(self):
        self.reshape = paddle.reshape
304 305

    def _test_api(self):
J
joejiong 已提交
306
        paddle.enable_static()
307 308
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
309 310 311 312
        main_prog = Program()
        with program_guard(main_prog, Program()):
            positive_five = self.fill_constant([1], "int32", 5)
            x = self.data(name="x", shape=[2, 25], dtype="float32")
313

314
            actual_shape = self.data(name="shape", shape=[3], dtype="int32")
315

316
            # situation 1: have shape( list, no tensor)
317
            out_1 = self.reshape(x, shape)
318

319 320
            # situation 2: have shape(list, no tensor)
            out_2 = paddle.reshape(x, actual_shape)
321

322
            # Situation 3: have shape(list, have tensor)
323
            out_3 = self.reshape(x, shape=[positive_five, 10])
324

325
            # Situation 4: have shape(Tensor)
326
            out_4 = self.reshape(x, shape=actual_shape)
327

J
joejiong 已提交
328
        exe = paddle.static.Executor(place=paddle.CPUPlace())
329
        res_1, res_2, res_3, res_4 = exe.run(
330
            main_prog,
331 332 333
            feed={"x": input, "shape": np.array([2, 5, 5]).astype("int32")},
            fetch_list=[out_1, out_2, out_3, out_4],
        )
334 335 336 337 338

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
339

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
    def test_paddle_api(self):
        self._set_paddle_api()
        self._test_api()

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape([5, 10]))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))

363

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
class TestStaticReshape_(TestReshapeAPI):
    def _executed_api(self):
        self.reshape = paddle.reshape_

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape(shape))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))


388
# Test Input Error
389
class TestReshapeOpError(unittest.TestCase):
390
    def _set_paddle_api(self):
J
joejiong 已提交
391
        self.data = paddle.static.data
392 393 394
        self.reshape = paddle.reshape

    def _test_errors(self):
395 396 397
        with program_guard(Program(), Program()):
            # The x type of reshape_op must be Variable.
            def test_x_type():
398 399 400
                x1 = fluid.create_lod_tensor(
                    np.array([[-1]]), [[1]], paddle.CPUPlace()
                )
401
                self.reshape(x1, shape=[1])
402 403 404

            self.assertRaises(TypeError, test_x_type)

405
            # The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
406
            def test_x_dtype():
407
                x2 = self.data(name="x2", shape=[2, 25], dtype="int8")
408
                self.reshape(x2, shape=[2, 5, 5])
409 410 411

            self.assertRaises(TypeError, test_x_dtype)

412
            def test_x_dtype_float16():
413 414 415
                x_float16 = self.data(
                    name="x_float16", shape=[2, 25], dtype="float16"
                )
416
                self.reshape(x_float16, shape=[2, 5, 5])
417 418 419

            test_x_dtype_float16()

420
            x3 = self.data(name="x3", shape=[2, 25], dtype="float32")
421 422 423

            # The argument shape's type of reshape_op must be list, tuple or Variable.
            def test_shape_type():
424
                self.reshape(x3, shape=1)
425 426 427 428 429

            self.assertRaises(TypeError, test_shape_type)

            # The argument shape have more than one -1.
            def test_shape_1():
430
                self.reshape(x3, shape=[-1, -1, 5])
431 432 433 434 435

            self.assertRaises(AssertionError, test_shape_1)

            # The argument shape have element 0 whose index exceed the input dimension.
            def test_shape_2():
436
                self.reshape(x3, [2, 5, 5, 0])
437 438 439

            self.assertRaises(AssertionError, test_shape_2)

T
tianshuo78520a 已提交
440
            # The argument shape have more than one negative value.
441
            def test_shape_3():
442
                self.reshape(x3, [-1, -2, 5])
443 444 445

            self.assertRaises(AssertionError, test_shape_3)

446 447 448 449
    def test_paddle_api_error(self):
        self._set_paddle_api()
        self._test_errors()

450

451 452 453 454 455 456 457
class TestDygraphReshapeAPI(unittest.TestCase):
    def setUp(self):
        self.executed_api()

    def executed_api(self):
        self.reshape = paddle.reshape

J
joejiong 已提交
458 459 460 461
    def test_out(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
462
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
463 464
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
465
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
466 467 468 469 470

    def test_out_uint8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("uint8")
        input = paddle.to_tensor(input_1)
471
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
472 473
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
474
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
475 476 477 478 479

    def test_out_float32(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("float32")
        input = paddle.to_tensor(input_1)
480
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
481 482
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
483
        np.testing.assert_allclose(expected_out, out_np, rtol=1e-05)
J
joejiong 已提交
484 485


486 487 488 489 490
class TestDygraphReshapeInplaceAPI(TestDygraphReshapeAPI):
    def executed_api(self):
        self.reshape = paddle.reshape_


491 492 493
class TestReshapeZeroTensor(unittest.TestCase):
    def test_reshape_zero_tensor_success(self):
        zero_tensor = paddle.zeros([0, 2, 3])
494
        # since we use "0" as the dimension copy semantically in reshape,
495 496 497 498 499 500 501 502 503 504
        # we need to copy the 0 dim in the src tensor in order to make a successful zero tensor reshape
        zero_tensor = zero_tensor.reshape([0, 6])
        self.assertTrue(list(zero_tensor.shape) == [0, 6])

    def test_reshape_zero_tensor_error(self):
        zero_tensor = paddle.zeros([0, 2, 3])
        with self.assertRaises(ValueError):
            zero_tensor.reshape([2, 3])


505 506 507 508 509 510 511 512 513 514
class TestReshapeAPI_ZeroDim(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
        x = paddle.rand([])
        x.stop_gradient = False

        out = paddle.reshape(x, [1])
        out.backward()
        self.assertEqual(x.grad.shape, [])
515
        self.assertEqual(out.shape, [1])
516 517 518 519 520
        self.assertEqual(out.grad.shape, [1])

        out = paddle.reshape(x, [-1, 1])
        out.backward()
        self.assertEqual(x.grad.shape, [])
521
        self.assertEqual(out.shape, [1, 1])
522 523
        self.assertEqual(out.grad.shape, [1, 1])

524 525 526 527 528 529 530 531
        x = paddle.rand([1])
        x.stop_gradient = False
        out = paddle.reshape(x, [])
        out.backward()
        self.assertEqual(x.grad.shape, [1])
        self.assertEqual(out.shape, [])
        self.assertEqual(out.grad.shape, [])

532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
        paddle.enable_static()

    def test_static(self):
        main_prog = fluid.Program()
        with fluid.program_guard(main_prog, fluid.Program()):
            x = paddle.rand([])
            x.stop_gradient = False
            out = paddle.reshape(x, [-1])
            fluid.backward.append_backward(out)

            prog = paddle.static.default_main_program()
            block = prog.global_block()

            x_grad = block.var(fluid.framework.grad_var_name(x.name))
            out_grad = block.var(fluid.framework.grad_var_name(out.name))

            # Test compile shape
            self.assertEqual(x.shape, ())
550
            self.assertEqual(out.shape, (1,))
551
            self.assertEqual(x_grad.shape, ())
552
            self.assertEqual(out_grad.shape, (1,))
553 554 555 556 557 558

            exe = fluid.Executor()
            result = exe.run(main_prog, fetch_list=[x, out, x_grad, out_grad])

            # Test runtime shape
            self.assertEqual(result[0].shape, ())
559
            self.assertEqual(result[1].shape, (1,))
560
            self.assertEqual(result[2].shape, ())
561
            self.assertEqual(result[3].shape, (1,))
562 563


Y
ying 已提交
564
if __name__ == "__main__":
H
hong 已提交
565
    paddle.enable_static()
Y
Yibing Liu 已提交
566
    unittest.main()