test_reshape_op.py 4.2 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18 19
import unittest
import numpy as np

Y
ying 已提交
20
from op_test import OpTest
Y
Yibing Liu 已提交
21

C
caoying03 已提交
22 23 24 25 26 27 28 29

class TestReshapeOp(OpTest):
    def setUp(self):
        ori_shape = (2, 25)
        new_shape = (5, 10)

        self.op_type = "reshape"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
D
dzhwinter 已提交
30
        self.attrs = {"shape": new_shape}
C
caoying03 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1(OpTest):
    def setUp(self):
        ori_shape = (5, 10)
        new_shape = (5, -1, 5)

        self.op_type = "reshape"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
D
dzhwinter 已提交
47
        self.attrs = {"shape": new_shape}
C
caoying03 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
        self.outputs = {"Out": self.inputs["X"].reshape(self.attrs["shape"])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer2(OpTest):
    def setUp(self):
        ori_shape = (2, 2, 6)
        new_shape = (2, 0, 3, -1)
        infered_shape = (2, 2, 3, -1)

        self.op_type = "reshape"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
D
dzhwinter 已提交
65
        self.attrs = {"shape": new_shape}
C
caoying03 已提交
66 67 68 69 70 71 72 73 74 75
        self.outputs = {"Out": self.inputs["X"].reshape(infered_shape)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpInplace(OpTest):
76
    def setUp(self):
Y
ying 已提交
77
        ori_shape = (2, 25)
C
caoying03 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
        new_shape = (5, 10)

        self.op_type = "reshape"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"shape": new_shape}
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInferInplace1(OpTest):
    def setUp(self):
        ori_shape = (5, 10)
        new_shape = (5, -1, 5)
Y
ying 已提交
96

97
        self.op_type = "reshape"
C
caoying03 已提交
98 99 100
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"shape": new_shape}
        self.outputs = {"Out": self.inputs["X"].reshape(new_shape)}
101 102 103 104 105 106 107 108

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


C
caoying03 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
class TestReshapeOpDimInferInplace2(OpTest):
    def setUp(self):
        ori_shape = (2, 2, 6)
        new_shape = (2, 0, 3, -1)
        infered_shape = (2, 2, 3, -1)

        self.op_type = "reshape"
        self.inputs = {"X": np.random.random(ori_shape).astype("float32")}
        self.attrs = {"shape": new_shape}
        self.outputs = {"Out": self.inputs["X"].reshape(infered_shape)}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad(["X"], "Out")

C
caoying03 已提交
126

127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
class TestReshapeOpWithInputShape(OpTest):
    def setUp(self):
        ori_shape = (6, 5)
        new_shape = (0, -1, 5)
        actual_shape = (2, 3, 5)

        self.op_type = "reshape"
        self.inputs = {
            "X": np.random.random(ori_shape).astype("float32"),
            "Shape": np.array(
                actual_shape, dtype="int32")
        }
        self.attrs = {"shape": new_shape}
        self.outputs = {"Out": self.inputs["X"].reshape(actual_shape)}

    def test_check_output(self):
        self.check_output()

G
guosheng 已提交
145 146
    def test_check_grad(self):
        self.check_grad(["X"], "Out")
147 148


Y
ying 已提交
149
if __name__ == "__main__":
Y
Yibing Liu 已提交
150
    unittest.main()