test_reshape_op.py 16.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yibing Liu 已提交
17 18 19
import unittest
import numpy as np

20
from op_test import OpTest, convert_float_to_uint16
21
import paddle
22
import paddle.fluid as fluid
J
joejiong 已提交
23 24
from paddle.fluid import compiler
from paddle.static import Program, program_guard
25
import paddle.fluid.core as core
Y
Yibing Liu 已提交
26

C
caoying03 已提交
27

28
# situation 1: have shape( list, no tensor), no actual shape(Tensor)
C
caoying03 已提交
29
class TestReshapeOp(OpTest):
30

C
caoying03 已提交
31
    def setUp(self):
32 33 34 35 36 37 38 39
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }
Y
ying 已提交
40

41
    def init_data(self):
Z
zhupengyang 已提交
42 43 44
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)
45 46

    def test_check_output(self):
47
        self.check_output(no_check_set=['XShape'])
48 49 50

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
51 52 53


class TestReshapeBF16Op(OpTest):
54

55 56 57 58 59 60 61 62 63
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.dtype = np.uint16
        x = np.random.random(self.ori_shape).astype("float32")
        out = x.reshape(self.infered_shape)
        self.inputs = {"X": convert_float_to_uint16(x)}
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
64 65 66 67
            "Out":
            convert_float_to_uint16(out),
            'XShape':
            convert_float_to_uint16(
68 69 70 71 72 73 74 75 76 77 78 79 80
                np.random.random(self.ori_shape).astype("float32"))
        }

    def init_data(self):
        self.ori_shape = (2, 60)
        self.new_shape = (12, 10)
        self.infered_shape = (12, 10)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")
81 82


83
class TestReshapeOpDimInfer1(TestReshapeOp):
84

85
    def init_data(self):
Z
zhupengyang 已提交
86
        self.ori_shape = (5, 25)
87 88
        self.new_shape = (5, -1, 5)
        self.infered_shape = (5, -1, 5)
C
caoying03 已提交
89 90


91
class TestReshapeOpDimInfer2(TestReshapeOp):
92

93
    def init_data(self):
Z
zhupengyang 已提交
94 95 96
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
C
caoying03 已提交
97

C
caoying03 已提交
98

99
# situation 2: have shape(list, no tensor), have actual shape(Tensor)
100
class TestReshapeOpWithInputShape(OpTest):
101

102
    def setUp(self):
103
        self.init_data()
104
        self.op_type = "reshape2"
105

106
        self.inputs = {
107
            "X": np.random.random(self.ori_shape).astype("float32"),
108
            "Shape": np.array(self.actual_shape, dtype="int32")
109
        }
110
        self.attrs = {"shape": self.new_shape}
111
        self.outputs = {
112 113
            "Out": self.inputs["X"].reshape(self.actual_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
114
        }
115

116
    def init_data(self):
Z
zhupengyang 已提交
117 118 119
        self.ori_shape = (6, 20)
        self.new_shape = (0, -1, 20)
        self.actual_shape = (2, 3, 20)
120

121
    def test_check_output(self):
122
        self.check_output(no_check_set=['XShape'])
123

G
guosheng 已提交
124
    def test_check_grad(self):
C
chengduo 已提交
125
        self.check_grad(["X"], "Out")
126 127


128 129
# Situation 3: have shape(list, have tensor), no actual shape(Tensor)
class TestReshapeOp_attr_ShapeTensor(OpTest):
130

131 132 133 134 135 136 137 138 139 140 141 142 143
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        shape_tensor = []
        for index, ele in enumerate(self.new_shape):
            shape_tensor.append(("x" + str(index), np.ones(
                (1)).astype('int32') * ele))

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
            'ShapeTensor': shape_tensor
        }
144 145 146 147 148 149 150
        self.attrs = {'shape': self.shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
151 152 153
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
154 155 156 157 158 159 160 161 162 163
        self.shape = (-1, -1)

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


class TestReshapeOpDimInfer1_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
164

165
    def init_data(self):
Z
zhupengyang 已提交
166 167 168
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 20)
        self.infered_shape = (5, -1, 20)
169 170 171 172
        self.shape = (5, -1, -1)


class TestReshapeOpDimInfer2_attr_ShapeTensor(TestReshapeOp_attr_ShapeTensor):
173

174
    def init_data(self):
Z
zhupengyang 已提交
175 176 177 178
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
179 180 181 182


# Situation 4: have shape(Tensor), no actual shape(Tensor)
class TestReshapeOp_attr_OnlyShape(OpTest):
183

184 185 186 187 188 189
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"

        self.inputs = {
            "X": np.random.random(self.ori_shape).astype("float32"),
190
            "Shape": np.array(self.new_shape, dtype="int32")
191
        }
192 193 194 195 196 197 198
        self.attrs = {}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def init_data(self):
Z
zhupengyang 已提交
199 200 201
        self.ori_shape = (4, 25)
        self.new_shape = (10, 10)
        self.infered_shape = (10, 10)
202 203 204 205 206 207 208 209

    def test_check_output(self):
        self.check_output(no_check_set=['XShape'])

    def test_check_grad(self):
        self.check_grad(["X"], "Out")


210
class TestReshapeOpDimInfer1_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
211

212
    def init_data(self):
Z
zhupengyang 已提交
213 214 215
        self.ori_shape = (5, 20)
        self.new_shape = (5, -1, 10)
        self.infered_shape = (5, -1, 10)
216
        self.shape = (5, -1, -1)
217 218


219
class TestReshapeOpDimInfer2_attr_OnlyShape(TestReshapeOp_attr_OnlyShape):
220

221
    def init_data(self):
Z
zhupengyang 已提交
222 223 224 225
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
        self.shape = (10, 0, 3, -1)
226 227


228 229
# test int8 data type on CPU
class TestReshapeInt8Op(OpTest):
230

231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
    def setUp(self):
        self.init_dtype()
        self.init_data()
        self.use_mkldnn = True
        self._cpu_only = True
        self.op_type = "reshape2"
        input = np.random.randint(0, 127, self.ori_shape).astype(self.dtype)
        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(input)}
        self.attrs = {
            'shape': self.new_shape,
            'use_mkldnn': self.use_mkldnn,
        }
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype(np.float32)
        }

    def init_dtype(self):
        self.dtype = np.int8

    def init_data(self):
Z
zhupengyang 已提交
252 253 254
        self.ori_shape = (10, 2, 6)
        self.new_shape = (10, 0, 3, -1)
        self.infered_shape = (10, 2, 3, -1)
255 256

    def test_check_output(self):
257 258 259
        self.check_output_with_place(fluid.core.CPUPlace(),
                                     atol=1e-5,
                                     no_check_set=['XShape'])
260 261 262 263 264 265 266

    def test_check_grad(self):
        pass


# test unt8 data type on CPU
class TestReshapeUint8Op(TestReshapeInt8Op):
267

268 269 270 271
    def init_dtype(self):
        self.dtype = np.uint8


272
class TestReshapeOpBool(TestReshapeOp):
273

274 275 276 277
    def setUp(self):
        self.init_data()
        self.op_type = "reshape2"
        self.inputs = {
278
            "X": np.random.choice([True, False], size=self.ori_shape)
279 280 281 282 283 284 285 286 287 288 289
        }
        self.attrs = {"shape": self.new_shape}
        self.outputs = {
            "Out": self.inputs["X"].reshape(self.infered_shape),
            'XShape': np.random.random(self.ori_shape).astype("float32")
        }

    def test_check_grad(self):
        pass


290
# Test python API
291
class TestReshapeAPI(unittest.TestCase):
292

293
    def _set_paddle_api(self):
294
        self.fill_constant = paddle.fluid.layers.fill_constant
J
joejiong 已提交
295
        self.data = paddle.static.data
296
        self.to_tensor = paddle.to_tensor
297 298 299 300
        self._executed_api()

    def _executed_api(self):
        self.reshape = paddle.reshape
301 302 303

    def _set_fluid_api(self):
        self.fill_constant = fluid.layers.fill_constant
J
joejiong 已提交
304
        self.data = paddle.static.data
305 306 307
        self.reshape = fluid.layers.reshape

    def _test_api(self):
J
joejiong 已提交
308
        paddle.enable_static()
309 310
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
311 312 313 314
        main_prog = Program()
        with program_guard(main_prog, Program()):
            positive_five = self.fill_constant([1], "int32", 5)
            x = self.data(name="x", shape=[2, 25], dtype="float32")
315

316
            actual_shape = self.data(name="shape", shape=[3], dtype="int32")
317

318 319
            # situation 1: have shape( list, no tensor), no actual shape(Tensor)
            out_1 = self.reshape(x, shape)
320

321
            # situation 2: have shape(list, no tensor), have actual shape(Tensor)
322 323 324
            out_2 = fluid.layers.reshape(x,
                                         shape=shape,
                                         actual_shape=actual_shape)
325

326 327
            # Situation 3: have shape(list, have tensor), no actual shape(Tensor)
            out_3 = self.reshape(x, shape=[positive_five, 10])
328

329 330
            # Situation 4: have shape(Tensor), no actual shape(Tensor)
            out_4 = self.reshape(x, shape=actual_shape)
331

J
joejiong 已提交
332
        exe = paddle.static.Executor(place=paddle.CPUPlace())
333
        res_1, res_2, res_3, res_4 = exe.run(
334
            main_prog,
335 336 337 338
            feed={
                "x": input,
                "shape": np.array([2, 5, 5]).astype("int32")
            },
339 340 341 342 343 344
            fetch_list=[out_1, out_2, out_3, out_4])

        assert np.array_equal(res_1, input.reshape(shape))
        assert np.array_equal(res_2, input.reshape(shape))
        assert np.array_equal(res_3, input.reshape([5, 10]))
        assert np.array_equal(res_4, input.reshape(shape))
345

346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    def test_paddle_api(self):
        self._set_paddle_api()
        self._test_api()

    def test_fluid_api(self):
        self._set_fluid_api()
        self._test_api()

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape([5, 10]))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))

373

374
class TestStaticReshape_(TestReshapeAPI):
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
    def _executed_api(self):
        self.reshape = paddle.reshape_

    def test_imperative(self):
        self._set_paddle_api()
        input = np.random.random([2, 25]).astype("float32")
        shape = [2, 5, 5]
        with fluid.dygraph.guard():
            x = self.to_tensor(input)
            positive_five = self.fill_constant([1], "int32", 5)

            out_1 = self.reshape(x, shape)

            out_2 = self.reshape(x, shape=[positive_five, 10])

            shape_tensor = self.to_tensor(np.array([2, 5, 5]).astype("int32"))
            out_3 = self.reshape(x, shape=shape_tensor)

        assert np.array_equal(out_1.numpy(), input.reshape(shape))
        assert np.array_equal(out_2.numpy(), input.reshape(shape))
        assert np.array_equal(out_3.numpy(), input.reshape(shape))


399
# Test Input Error
400
class TestReshapeOpError(unittest.TestCase):
401

402
    def _set_paddle_api(self):
J
joejiong 已提交
403
        self.data = paddle.static.data
404 405 406 407 408 409 410
        self.reshape = paddle.reshape

    def _set_fluid_api(self):
        self.data = fluid.data
        self.reshape = fluid.layers.reshape

    def _test_errors(self):
411 412 413
        with program_guard(Program(), Program()):
            # The x type of reshape_op must be Variable.
            def test_x_type():
414 415
                x1 = fluid.create_lod_tensor(np.array([[-1]]), [[1]],
                                             paddle.CPUPlace())
416
                self.reshape(x1, shape=[1])
417 418 419

            self.assertRaises(TypeError, test_x_type)

420
            # The x dtype of reshape_op must be float16, float32, float64, int32 or int64.
421
            def test_x_dtype():
422
                x2 = self.data(name="x2", shape=[2, 25], dtype="int8")
423
                self.reshape(x2, shape=[2, 5, 5])
424 425 426

            self.assertRaises(TypeError, test_x_dtype)

427
            def test_x_dtype_float16():
428 429 430
                x_float16 = self.data(name="x_float16",
                                      shape=[2, 25],
                                      dtype="float16")
431
                self.reshape(x_float16, shape=[2, 5, 5])
432 433 434

            test_x_dtype_float16()

435
            x3 = self.data(name="x3", shape=[2, 25], dtype="float32")
436 437 438

            # The argument shape's type of reshape_op must be list, tuple or Variable.
            def test_shape_type():
439
                self.reshape(x3, shape=1)
440 441 442 443 444

            self.assertRaises(TypeError, test_shape_type)

            # The argument actual_shape's type of reshape_op must be Variable or None.
            def test_actual_shape_type():
445
                self.reshape(x3, shape=[25, 2], actual_shape=1)
446 447 448 449 450

            self.assertRaises(TypeError, test_actual_shape_type)

            # The argument shape have more than one -1.
            def test_shape_1():
451
                self.reshape(x3, shape=[-1, -1, 5])
452 453 454 455 456

            self.assertRaises(AssertionError, test_shape_1)

            # The argument shape have element 0 whose index exceed the input dimension.
            def test_shape_2():
457
                self.reshape(x3, [2, 5, 5, 0])
458 459 460

            self.assertRaises(AssertionError, test_shape_2)

T
tianshuo78520a 已提交
461
            # The argument shape have more than one negative value.
462
            def test_shape_3():
463
                self.reshape(x3, [-1, -2, 5])
464 465 466

            self.assertRaises(AssertionError, test_shape_3)

467 468 469 470 471 472 473 474
    def test_paddle_api_error(self):
        self._set_paddle_api()
        self._test_errors()

    def test_fluid_api_error(self):
        self._set_fluid_api()
        self._test_errors()

475

476
class TestDygraphReshapeAPI(unittest.TestCase):
477

478 479 480 481 482 483
    def setUp(self):
        self.executed_api()

    def executed_api(self):
        self.reshape = paddle.reshape

J
joejiong 已提交
484 485 486 487
    def test_out(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("int32")
        input = paddle.to_tensor(input_1)
488
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
489 490 491 492 493 494 495 496
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_uint8(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("uint8")
        input = paddle.to_tensor(input_1)
497
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
498 499 500 501 502 503 504 505
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))

    def test_out_float32(self):
        paddle.disable_static()
        input_1 = np.random.random([5, 1, 10]).astype("float32")
        input = paddle.to_tensor(input_1)
506
        output = self.reshape(x=input, shape=[5, 10])
J
joejiong 已提交
507 508 509 510 511
        out_np = output.numpy()
        expected_out = np.reshape(input_1, newshape=[5, 10])
        self.assertTrue(np.allclose(expected_out, out_np))


512
class TestDygraphReshapeInplaceAPI(TestDygraphReshapeAPI):
513

514 515 516 517
    def executed_api(self):
        self.reshape = paddle.reshape_


518
class TestReshapeZeroTensor(unittest.TestCase):
519

520 521
    def test_reshape_zero_tensor_success(self):
        zero_tensor = paddle.zeros([0, 2, 3])
522
        # since we use "0" as the dimension copy semantically in reshape,
523 524 525 526 527 528 529 530 531 532
        # we need to copy the 0 dim in the src tensor in order to make a successful zero tensor reshape
        zero_tensor = zero_tensor.reshape([0, 6])
        self.assertTrue(list(zero_tensor.shape) == [0, 6])

    def test_reshape_zero_tensor_error(self):
        zero_tensor = paddle.zeros([0, 2, 3])
        with self.assertRaises(ValueError):
            zero_tensor.reshape([2, 3])


Y
ying 已提交
533
if __name__ == "__main__":
H
hong 已提交
534
    paddle.enable_static()
Y
Yibing Liu 已提交
535
    unittest.main()