jit_kernel_exp.cc 26.8 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <cmath>  // for exp
T
tensor-tang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <string>
#include "paddle/fluid/operators/math/jit_kernel_macro.h"
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

namespace paddle {
namespace operators {
namespace math {
namespace jitkernel {
namespace jit = platform::jit;

/* VExp JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VExpKernelImpl : public VExpKernel<T> {
 public:
T
tensor-tang 已提交
33 34 35
  explicit VExpKernelImpl(int d) : VExpKernel<T>() { this->num_ = d; }
  void Compute(const T* x, T* y) const override {
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
36 37 38 39 40 41
      y[i] = std::exp(x[i]);
    }
  }
};

#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
42 43 44 45 46
#define MKL_FLOAT(isa, block)                                               \
  template <>                                                               \
  void VExpKernelImpl<float, isa, block>::Compute(const float* x, float* y) \
      const {                                                               \
    platform::dynload::vsExp(this->num_, x, y);                             \
T
tensor-tang 已提交
47 48
  }

T
tensor-tang 已提交
49 50 51 52 53
#define MKL_DOUBLE(isa, block)                                                 \
  template <>                                                                  \
  void VExpKernelImpl<double, isa, block>::Compute(const double* x, double* y) \
      const {                                                                  \
    platform::dynload::vdExp(this->num_, x, y);                                \
T
tensor-tang 已提交
54 55 56 57 58 59 60
  }
FOR_EACH_ISA(MKL_FLOAT, kLT8);
FOR_EACH_ISA(MKL_FLOAT, kGT8LT16);
FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
#endif

61 62 63 64
namespace detail {

#ifdef __AVX__

D
dzhwinter 已提交
65 66 67
#if defined(_WIN32)
#define ALIGN32 __declspec(align(32))
#else
68
#define ALIGN32 __attribute__((aligned(32)))
D
dzhwinter 已提交
69
#endif  // _WIN32
70 71

#define _PS256_CONST(Name, Val)                                      \
D
dzhwinter 已提交
72
  static const float ALIGN32 _ps256_##Name[8] = {Val, Val, Val, Val, \
73 74 75
                                                 Val, Val, Val, Val}

#define _PI256_CONST(Name, Val)                                    \
D
dzhwinter 已提交
76
  static const int ALIGN32 _pi256_##Name[8] = {Val, Val, Val, Val, \
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
                                               Val, Val, Val, Val}

_PI256_CONST(0x7f, 0x7f);
_PS256_CONST(one, 1.f);
_PS256_CONST(0p5, 0.5f);
_PS256_CONST(exp_hi, 88.3762626647949f);
_PS256_CONST(exp_lo, -88.3762626647949f);
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);

typedef union imm_xmm_union {
  __m256i imm;
  __m128i xmm[2];
} imm_xmm_union;

#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
  {                                         \
D
dzhwinter 已提交
101
    imm_xmm_union ALIGN32 u;                \
102 103 104 105 106 107 108
    u.imm = imm_;                           \
    xmm0_ = u.xmm[0];                       \
    xmm1_ = u.xmm[1];                       \
  }

#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
  {                                         \
D
dzhwinter 已提交
109
    imm_xmm_union ALIGN32 u;                \
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    u.xmm[0] = xmm0_;                       \
    u.xmm[1] = xmm1_;                       \
    imm_ = u.imm;                           \
  }

#define AVX2_BITOP_USING_SSE2(fn)                           \
  static inline __m256i avx2_mm256_##fn(__m256i x, int y) { \
    /* use SSE2 to perform the bitop AVX2 */                \
    __m128i x1, x2;                                         \
    __m256i ret;                                            \
    COPY_IMM_TO_XMM(x, x1, x2);                             \
    x1 = _mm_##fn(x1, y);                                   \
    x2 = _mm_##fn(x2, y);                                   \
    COPY_XMM_TO_IMM(x1, x2, ret);                           \
    return ret;                                             \
  }

#define AVX2_INTOP_USING_SSE2(fn)                                    \
  static inline __m256i avx2_mm256_add_epi32(__m256i x, __m256i y) { \
    /* use SSE2 to perform the AVX2 integer operation */             \
    __m128i x1, x2;                                                  \
    __m128i y1, y2;                                                  \
    __m256i ret;                                                     \
    COPY_IMM_TO_XMM(x, x1, x2);                                      \
    COPY_IMM_TO_XMM(y, y1, y2);                                      \
    x1 = _mm_##fn(x1, y1);                                           \
    x2 = _mm_##fn(x2, y2);                                           \
    COPY_XMM_TO_IMM(x1, x2, ret);                                    \
    return ret;                                                      \
  }

AVX2_BITOP_USING_SSE2(slli_epi32);
AVX2_INTOP_USING_SSE2(add_epi32);

T
tensor-tang 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
#define AVXEXP_BASE                                                            \
  __m256 tmp = _mm256_setzero_ps(), fx;                                        \
  __m256 one = *reinterpret_cast<const __m256*>(_ps256_one);                   \
  __m256i imm0;                                                                \
  x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi));       \
  x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo));       \
  /* express exp(x) as exp(g + n*log(2)) */                                    \
  fx = _mm256_mul_ps(x,                                                        \
                     *reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF));  \
  fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5));        \
  tmp = _mm256_floor_ps(fx);                                                   \
  /* if greater, substract 1 */                                                \
  __m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS);                            \
  mask = _mm256_and_ps(mask, one);                                             \
  fx = _mm256_sub_ps(tmp, mask);                                               \
  tmp = _mm256_mul_ps(fx,                                                      \
                      *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1)); \
  __m256 z = _mm256_mul_ps(                                                    \
      fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2));             \
  x = _mm256_sub_ps(x, tmp);                                                   \
  x = _mm256_sub_ps(x, z);                                                     \
  z = _mm256_mul_ps(x, x);                                                     \
  __m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0);           \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4));   \
  y = _mm256_mul_ps(y, x);                                                     \
  y = _mm256_add_ps(y,                                                         \
                    *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5));   \
  y = _mm256_mul_ps(y, z);                                                     \
  y = _mm256_add_ps(y, x);                                                     \
  y = _mm256_add_ps(y, one);                                                   \
  /* build 2^n */                                                              \
  imm0 = _mm256_cvttps_epi32(fx)

188
__m256 ExpAVX(__m256 x) {
T
tensor-tang 已提交
189
  AVXEXP_BASE;
190 191 192 193 194 195 196 197 198 199 200 201
  // two AVX2 instructions using SSE2
  imm0 = avx2_mm256_add_epi32(imm0,
                              *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = avx2_mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
#endif

#ifdef __AVX2__
__m256 ExpAVX2(__m256 x) {
T
tensor-tang 已提交
202
  AVXEXP_BASE;
203 204 205 206 207 208 209 210 211 212 213 214
  // two AVX2 instructions
  imm0 = _mm256_add_epi32(imm0, *reinterpret_cast<const __m256i*>(_pi256_0x7f));
  imm0 = _mm256_slli_epi32(imm0, 23);
  __m256 pow2n = _mm256_castsi256_ps(imm0);
  y = _mm256_mul_ps(y, pow2n);
  return y;
}
#endif

}  // namespace detail

#define INTRI8_FLOAT(isa, expisa)                                          \
T
tensor-tang 已提交
215 216 217 218
  template <>                                                              \
  void VExpKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                              \
    __m256 tmp = _mm256_loadu_ps(x);                                       \
219
    _mm256_storeu_ps(y, expisa(tmp));                                      \
T
tensor-tang 已提交
220 221
  }

222
#define INTRI16_FLOAT(isa, expisa)                                          \
T
tensor-tang 已提交
223 224 225 226 227
  template <>                                                               \
  void VExpKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp0 = _mm256_loadu_ps(x);                                       \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                   \
228 229
    tmp0 = expisa(tmp0);                                                    \
    tmp1 = expisa(tmp1);                                                    \
T
tensor-tang 已提交
230 231
    _mm256_storeu_ps(y, tmp0);                                              \
    _mm256_storeu_ps(y + 8, tmp1);                                          \
T
tensor-tang 已提交
232 233 234
  }

#ifdef __AVX__
235 236
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
T
tensor-tang 已提交
237 238
#endif
#ifdef __AVX2__
239 240
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
T
tensor-tang 已提交
241 242
#endif
#ifdef __AVX512F__
243 244
INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
T
tensor-tang 已提交
245 246 247 248 249 250 251 252
#endif
// TODO(TJ): eq16 test and complete avx512

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef MKL_FLOAT
#undef MKL_DOUBLE

T
tensor-tang 已提交
253
REGISTER_JITKERNEL_DEPRECATED(vexp, VExpKernel);
T
tensor-tang 已提交
254

T
tensor-tang 已提交
255 256 257 258 259
/* VSigmoid JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VSigmoidKernelImpl : public VSigmoidKernel<T> {
 public:
  explicit VSigmoidKernelImpl(int d) : VSigmoidKernel<T>() {
T
tensor-tang 已提交
260
    this->num_ = d;
T
tensor-tang 已提交
261 262
    vexp_ = KernelPool::Instance().template Get<VExpKernel<T>>(d);
  }
T
tensor-tang 已提交
263
  void Compute(const T* x, T* y) const override {
T
tensor-tang 已提交
264 265
    const T min = SIGMOID_THRESHOLD_MIN;
    const T max = SIGMOID_THRESHOLD_MAX;
T
tensor-tang 已提交
266
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
267 268 269
      y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
      y[i] = static_cast<T>(0) - y[i];
    }
T
tensor-tang 已提交
270
    vexp_->Compute(y, y);
T
tensor-tang 已提交
271
    for (int i = 0; i < this->num_; ++i) {
T
tensor-tang 已提交
272 273 274 275 276 277 278 279
      y[i] = static_cast<T>(1) / (static_cast<T>(1) + y[i]);
    }
  }

 private:
  std::shared_ptr<const VExpKernel<T>> vexp_;
};

280
#define INTRI_SIGMOID(tmp, min, max, expisa)      \
281 282 283
  tmp = _mm256_max_ps(tmp, min);                  \
  tmp = _mm256_min_ps(tmp, max);                  \
  tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \
284
  tmp = expisa(tmp);                              \
285 286 287
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
  tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)

288
#define INTRI8_FLOAT(isa, expisa)                                              \
T
tensor-tang 已提交
289 290 291
  template <>                                                                  \
  void VSigmoidKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                                  \
T
tensor-tang 已提交
292 293
    /* TODO(TJ): try to use static const*/                                     \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                        \
T
tensor-tang 已提交
294 295
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                        \
    __m256 tmp = _mm256_loadu_ps(x);                                           \
296
    INTRI_SIGMOID(tmp, min, max, expisa);                                      \
T
tensor-tang 已提交
297
    _mm256_storeu_ps(y, tmp);                                                  \
298 299
  }

300
#define INTRI16_FLOAT(isa, expisa)                                      \
T
tensor-tang 已提交
301 302 303 304 305 306 307
  template <>                                                           \
  void VSigmoidKernelImpl<float, isa, kEQ16>::Compute(const float* x,   \
                                                      float* y) const { \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                 \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                 \
    __m256 tmp0 = _mm256_loadu_ps(x);                                   \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                               \
308 309
    INTRI_SIGMOID(tmp0, min, max, expisa);                              \
    INTRI_SIGMOID(tmp1, min, max, expisa);                              \
T
tensor-tang 已提交
310 311
    _mm256_storeu_ps(y, tmp0);                                          \
    _mm256_storeu_ps(y + 8, tmp1);                                      \
312 313
  }

314
#define INTRI_GT8LT16_FLOAT(isa, expisa)                                     \
T
tensor-tang 已提交
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
  template <>                                                                \
  VSigmoidKernelImpl<float, isa, kGT8LT16>::VSigmoidKernelImpl(int d)        \
      : VSigmoidKernel<float>() {                                            \
    this->num_ = d;                                                          \
    this->end_ = AVX_FLOAT_BLOCK;                                            \
    this->rest_ = d - this->end_;                                            \
    vexp_ =                                                                  \
        KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
  }                                                                          \
  template <>                                                                \
  void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,     \
                                                         float* y) const {   \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                      \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                      \
    __m256 tmp = _mm256_loadu_ps(x);                                         \
330
    INTRI_SIGMOID(tmp, min, max, expisa);                                    \
T
tensor-tang 已提交
331 332 333 334 335 336 337 338 339 340 341
    _mm256_storeu_ps(y, tmp);                                                \
    const float min_ = SIGMOID_THRESHOLD_MIN;                                \
    const float max_ = SIGMOID_THRESHOLD_MAX;                                \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]);           \
      y[i] = 0.f - y[i];                                                     \
    }                                                                        \
    vexp_->Compute(y + this->end_, y + this->end_);                          \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = 1.f / (1.f + y[i]);                                             \
    }                                                                        \
342 343
  }

344
#define INTRI_GT16_FLOAT(isa, expisa)                                        \
T
tensor-tang 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360
  template <>                                                                \
  VSigmoidKernelImpl<float, isa, kGT16>::VSigmoidKernelImpl(int d)           \
      : VSigmoidKernel<float>() {                                            \
    this->num_ = d;                                                          \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                       \
    this->end_ = d - this->rest_;                                            \
    vexp_ =                                                                  \
        KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
  }                                                                          \
  template <>                                                                \
  void VSigmoidKernelImpl<float, isa, kGT16>::Compute(const float* x,        \
                                                      float* y) const {      \
    __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX);                      \
    __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN);                      \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                  \
      __m256 tmp = _mm256_loadu_ps(x + i);                                   \
361
      INTRI_SIGMOID(tmp, min, max, expisa);                                  \
T
tensor-tang 已提交
362 363 364 365 366 367 368 369 370 371 372 373
      _mm256_storeu_ps(y + i, tmp);                                          \
    }                                                                        \
    const float min_ = SIGMOID_THRESHOLD_MIN;                                \
    const float max_ = SIGMOID_THRESHOLD_MAX;                                \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]);           \
      y[i] = 0.f - y[i];                                                     \
    }                                                                        \
    vexp_->Compute(y + this->end_, y + this->end_);                          \
    for (int i = this->end_; i < this->num_; ++i) {                          \
      y[i] = 1.f / (1.f + y[i]);                                             \
    }                                                                        \
374 375 376
  }

#ifdef __AVX__
377 378 379 380
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
381 382
#endif
#ifdef __AVX2__
383 384 385
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
// maybe use avx at gt8lt16 and gt16
386 387
#endif
#ifdef __AVX512F__
388 389 390
INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
// maybe use avx2 at gt8lt16 and gt16
391 392 393 394 395 396
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
T
tensor-tang 已提交
397
#undef INTRI_VSIGMOID
398

T
tensor-tang 已提交
399
REGISTER_JITKERNEL_DEPRECATED(vsigmoid, VSigmoidKernel);
T
tensor-tang 已提交
400

T
tensor-tang 已提交
401 402 403 404 405
/* VTanh JitKernel */
template <typename T, jit::cpu_isa_t isa, jit_block>
class VTanhKernelImpl : public VTanhKernel<T> {
 public:
  explicit VTanhKernelImpl(int d) : VTanhKernel<T>() {
T
tensor-tang 已提交
406
    this->num_ = d;
T
tensor-tang 已提交
407 408 409 410
    vscal_ = KernelPool::Instance().template Get<VScalKernel<T>>(d);
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<T>>(d);
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<T>>(d);
  }
T
tensor-tang 已提交
411
  void Compute(const T* x, T* y) const override {
T
tensor-tang 已提交
412 413
    const T a = static_cast<T>(2);
    vscal_->Compute(&a, x, y, this->num_);
T
tensor-tang 已提交
414
    vsigmoid_->Compute(y, y);
T
tensor-tang 已提交
415
    vscal_->Compute(&a, y, y, this->num_);
T
tensor-tang 已提交
416
    vaddbias_->Compute(static_cast<T>(-1), y, y);
T
tensor-tang 已提交
417 418 419 420 421 422 423 424
  }

 private:
  std::shared_ptr<const VScalKernel<T>> vscal_;
  std::shared_ptr<const VSigmoidKernel<T>> vsigmoid_;
  std::shared_ptr<const VAddBiasKernel<T>> vaddbias_;
};

425
#define INTRI_VTANH(tmp, expisa)                           \
T
tensor-tang 已提交
426 427
  tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), tmp);         \
  tmp = _mm256_min_ps(tmp, _mm256_set1_ps(EXP_MAX_INPUT)); \
428
  tmp = expisa(tmp);                                       \
T
tensor-tang 已提交
429 430 431 432
  tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp);          \
  tmp = _mm256_div_ps(_mm256_set1_ps(2.0f), tmp);          \
  tmp = _mm256_sub_ps(tmp, _mm256_set1_ps(1.0f))

433
#define INTRI8_FLOAT(isa, expisa)                                           \
T
tensor-tang 已提交
434 435 436 437
  template <>                                                               \
  void VTanhKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
      const {                                                               \
    __m256 tmp = _mm256_loadu_ps(x);                                        \
438
    INTRI_VTANH(tmp, expisa);                                               \
T
tensor-tang 已提交
439
    _mm256_storeu_ps(y, tmp);                                               \
T
tensor-tang 已提交
440 441
  }

442
#define INTRI16_FLOAT(isa, expisa)                                           \
T
tensor-tang 已提交
443 444 445 446 447
  template <>                                                                \
  void VTanhKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
      const {                                                                \
    __m256 tmp0 = _mm256_loadu_ps(x);                                        \
    __m256 tmp1 = _mm256_loadu_ps(x + 8);                                    \
448 449
    INTRI_VTANH(tmp0, expisa);                                               \
    INTRI_VTANH(tmp1, expisa);                                               \
T
tensor-tang 已提交
450 451
    _mm256_storeu_ps(y, tmp0);                                               \
    _mm256_storeu_ps(y + 8, tmp1);                                           \
T
tensor-tang 已提交
452 453
  }

454
#define INTRI_GT8LT16_FLOAT(isa, expisa)                                      \
T
tensor-tang 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT8LT16>::VTanhKernelImpl(int d)               \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->end_ = AVX_FLOAT_BLOCK;                                             \
    this->rest_ = d - this->end_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kGT8LT16>::Compute(const float* x,         \
                                                      float* y) const {       \
    __m256 tmp = _mm256_loadu_ps(x);                                          \
472
    INTRI_VTANH(tmp, expisa);                                                 \
T
tensor-tang 已提交
473 474 475
    _mm256_storeu_ps(y, tmp);                                                 \
    x += AVX_FLOAT_BLOCK;                                                     \
    y += AVX_FLOAT_BLOCK;                                                     \
T
tensor-tang 已提交
476 477
    const float a = 2.f;                                                      \
    vscal_->Compute(&a, x, y, this->num_);                                    \
T
tensor-tang 已提交
478
    vsigmoid_->Compute(y, y);                                                 \
T
tensor-tang 已提交
479
    vscal_->Compute(&a, y, y, this->num_);                                    \
T
tensor-tang 已提交
480
    vaddbias_->Compute(-1.f, y, y);                                           \
T
tensor-tang 已提交
481 482
  }

483
#define INTRI_GT16_FLOAT(isa, expisa)                                         \
T
tensor-tang 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
  template <>                                                                 \
  VTanhKernelImpl<float, isa, kGT16>::VTanhKernelImpl(int d)                  \
      : VTanhKernel<float>() {                                                \
    this->num_ = d;                                                           \
    this->rest_ = d % AVX_FLOAT_BLOCK;                                        \
    this->end_ = d - this->rest_;                                             \
    vscal_ =                                                                  \
        KernelPool::Instance().template Get<VScalKernel<float>>(this->rest_); \
    vsigmoid_ = KernelPool::Instance().template Get<VSigmoidKernel<float>>(   \
        this->rest_);                                                         \
    vaddbias_ = KernelPool::Instance().template Get<VAddBiasKernel<float>>(   \
        this->rest_);                                                         \
  }                                                                           \
  template <>                                                                 \
  void VTanhKernelImpl<float, isa, kGT16>::Compute(const float* x, float* y)  \
      const {                                                                 \
    for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) {                   \
      __m256 tmp = _mm256_loadu_ps(x + i);                                    \
502
      INTRI_VTANH(tmp, expisa);                                               \
T
tensor-tang 已提交
503 504 505 506
      _mm256_storeu_ps(y + i, tmp);                                           \
    }                                                                         \
    x += this->end_;                                                          \
    y += this->end_;                                                          \
T
tensor-tang 已提交
507 508
    const float a = 2.f;                                                      \
    vscal_->Compute(&a, x, y, this->num_);                                    \
T
tensor-tang 已提交
509
    vsigmoid_->Compute(y, y);                                                 \
T
tensor-tang 已提交
510
    vscal_->Compute(&a, y, y, this->num_);                                    \
T
tensor-tang 已提交
511
    vaddbias_->Compute(-1.f, y, y);                                           \
T
tensor-tang 已提交
512 513
  }

D
dzhwinter 已提交
514
#ifndef __WIN32
T
tensor-tang 已提交
515
#ifdef __AVX__
516 517 518 519
INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
D
dzhwinter 已提交
520 521
#endif  // AVX
#endif  // WIN32
T
tensor-tang 已提交
522
#ifdef __AVX2__
523 524
INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
T
tensor-tang 已提交
525 526 527
// maybe use avx at gt8lt16 and gt16
#endif
#ifdef __AVX512F__
528 529
INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
T
tensor-tang 已提交
530 531 532 533 534 535 536 537 538
// maybe use avx at gt8lt16 and gt16
#endif

#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
#undef INTRI_VTANH

T
tensor-tang 已提交
539
REGISTER_JITKERNEL_DEPRECATED(vtanh, VTanhKernel);
T
tensor-tang 已提交
540

T
tensor-tang 已提交
541
#undef JITKERNEL_NEW_ACT_IMPL
542

T
tensor-tang 已提交
543 544 545 546
}  // namespace jitkernel
}  // namespace math
}  // namespace operators
}  // namespace paddle