Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
e6d8aca3
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
e6d8aca3
编写于
10月 08, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine code and fix
上级
ea7dc9cb
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
214 addition
and
213 deletion
+214
-213
paddle/fluid/operators/math/jit_kernel.h
paddle/fluid/operators/math/jit_kernel.h
+6
-6
paddle/fluid/operators/math/jit_kernel_blas.cc
paddle/fluid/operators/math/jit_kernel_blas.cc
+97
-93
paddle/fluid/operators/math/jit_kernel_exp.cc
paddle/fluid/operators/math/jit_kernel_exp.cc
+99
-102
paddle/fluid/operators/math/jit_kernel_macro.h
paddle/fluid/operators/math/jit_kernel_macro.h
+1
-1
paddle/fluid/operators/math/jit_kernel_test.cc
paddle/fluid/operators/math/jit_kernel_test.cc
+11
-11
未找到文件。
paddle/fluid/operators/math/jit_kernel.h
浏览文件 @
e6d8aca3
...
...
@@ -64,32 +64,32 @@ class KernelPool {
template
<
typename
T
>
class
VMulKernel
:
public
Kernel
{
public:
virtual
void
Compute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
=
0
;
virtual
void
Compute
(
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
=
0
;
};
template
<
typename
T
>
class
VAddKernel
:
public
Kernel
{
public:
virtual
void
Compute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
=
0
;
virtual
void
Compute
(
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
=
0
;
};
template
<
typename
T
>
class
VScalKernel
:
public
Kernel
{
public:
virtual
void
Compute
(
const
int
n
,
const
T
a
,
const
T
*
x
,
T
*
y
)
const
=
0
;
virtual
void
Compute
(
const
int
n
,
const
T
a
,
T
*
x
)
const
=
0
;
virtual
void
Compute
(
const
T
a
,
const
T
*
x
,
T
*
y
)
const
=
0
;
virtual
void
Compute
(
const
T
a
,
T
*
x
)
const
=
0
;
};
template
<
typename
T
>
class
VAddBiasKernel
:
public
Kernel
{
public:
virtual
void
Compute
(
const
int
n
,
const
T
a
,
const
T
*
x
,
T
*
y
)
const
=
0
;
virtual
void
Compute
(
const
T
a
,
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
class
VExpKernel
:
public
Kernel
{
public:
virtual
void
Compute
(
const
int
n
,
const
T
*
x
,
T
*
y
)
const
=
0
;
virtual
void
Compute
(
const
T
*
x
,
T
*
y
)
const
=
0
;
};
template
<
typename
T
>
...
...
paddle/fluid/operators/math/jit_kernel_blas.cc
浏览文件 @
e6d8aca3
...
...
@@ -34,41 +34,42 @@ namespace jit = platform::jit;
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
class
VMulKernelImpl
:
public
VMulKernel
<
T
>
{
public:
void
Compute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
override
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
explicit
VMulKernelImpl
(
int
d
)
:
VMulKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
z
[
i
]
=
x
[
i
]
*
y
[
i
];
}
}
};
#ifdef PADDLE_WITH_MKLML
#define MKL_FLOAT(isa, block)
\
template <>
\
void VMulKernelImpl<float, isa, block>::Compute(
\
const
int n, const
float* x, const float* y, float* z) const { \
platform::dynload::vsMul(
n, x, y, z);
\
#define MKL_FLOAT(isa, block) \
template <> \
void VMulKernelImpl<float, isa, block>::Compute( \
const float* x, const float* y, float* z) const { \
platform::dynload::vsMul(
this->num_, x, y, z);
\
}
#define MKL_DOUBLE(isa, block)
\
template <>
\
void VMulKernelImpl<double, isa, block>::Compute(
\
const
int n, const
double* x, const double* y, double* z) const { \
platform::dynload::vdMul(
n, x, y, z);
\
#define MKL_DOUBLE(isa, block) \
template <> \
void VMulKernelImpl<double, isa, block>::Compute( \
const double* x, const double* y, double* z) const { \
platform::dynload::vdMul(
this->num_, x, y, z);
\
}
FOR_EACH_ISA
(
MKL_FLOAT
,
kGT16
);
FOR_EACH_ISA_BLOCK
(
MKL_DOUBLE
);
#endif
#define INTRI8_FLOAT(isa)
\
template <>
\
void VMulKernelImpl<float, isa, kEQ8>::Compute(
\
const
int n, const
float* x, const float* y, float* z) const { \
__m256 tmpx, tmpy;
\
tmpx = _mm256_loadu_ps(x);
\
tmpy = _mm256_loadu_ps(y);
\
tmpx = _mm256_mul_ps(tmpx, tmpy);
\
_mm256_storeu_ps(z, tmpx);
\
#define INTRI8_FLOAT(isa) \
template <> \
void VMulKernelImpl<float, isa, kEQ8>::Compute( \
const float* x, const float* y, float* z) const { \
__m256 tmpx, tmpy; \
tmpx = _mm256_loadu_ps(x); \
tmpy = _mm256_loadu_ps(y); \
tmpx = _mm256_mul_ps(tmpx, tmpy); \
_mm256_storeu_ps(z, tmpx); \
}
// avx > for > mkl
...
...
@@ -90,41 +91,42 @@ INTRI8_FLOAT(jit::avx512f);
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
class
VAddKernelImpl
:
public
VAddKernel
<
T
>
{
public:
void
Compute
(
const
int
n
,
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
override
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
explicit
VAddKernelImpl
(
int
d
)
:
VAddKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
*
x
,
const
T
*
y
,
T
*
z
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
z
[
i
]
=
x
[
i
]
+
y
[
i
];
}
}
};
#ifdef PADDLE_WITH_MKLML
#define MKL_FLOAT(isa, block)
\
template <>
\
void VAddKernelImpl<float, isa, block>::Compute(
\
const
int n, const
float* x, const float* y, float* z) const { \
platform::dynload::vsAdd(
n, x, y, z);
\
#define MKL_FLOAT(isa, block) \
template <> \
void VAddKernelImpl<float, isa, block>::Compute( \
const float* x, const float* y, float* z) const { \
platform::dynload::vsAdd(
this->num_, x, y, z);
\
}
#define MKL_DOUBLE(isa, block)
\
template <>
\
void VAddKernelImpl<double, isa, block>::Compute(
\
const
int n, const
double* x, const double* y, double* z) const { \
platform::dynload::vdAdd(
n, x, y, z);
\
#define MKL_DOUBLE(isa, block) \
template <> \
void VAddKernelImpl<double, isa, block>::Compute( \
const double* x, const double* y, double* z) const { \
platform::dynload::vdAdd(
this->num_, x, y, z);
\
}
FOR_EACH_ISA
(
MKL_FLOAT
,
kGT16
);
FOR_EACH_ISA_BLOCK
(
MKL_DOUBLE
);
#endif
#define INTRI8_FLOAT(isa)
\
template <>
\
void VAddKernelImpl<float, isa, kEQ8>::Compute(
\
const
int n, const
float* x, const float* y, float* z) const { \
__m256 tmpx, tmpy;
\
tmpx = _mm256_loadu_ps(x);
\
tmpy = _mm256_loadu_ps(y);
\
tmpx = _mm256_add_ps(tmpx, tmpy);
\
_mm256_storeu_ps(z, tmpx);
\
#define INTRI8_FLOAT(isa) \
template <> \
void VAddKernelImpl<float, isa, kEQ8>::Compute( \
const float* x, const float* y, float* z) const { \
__m256 tmpx, tmpy; \
tmpx = _mm256_loadu_ps(x); \
tmpy = _mm256_loadu_ps(y); \
tmpx = _mm256_add_ps(tmpx, tmpy); \
_mm256_storeu_ps(z, tmpx); \
}
#ifdef __AVX__
INTRI8_FLOAT
(
jit
::
avx
);
...
...
@@ -145,56 +147,57 @@ INTRI8_FLOAT(jit::avx512f);
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
class
VScalKernelImpl
:
public
VScalKernel
<
T
>
{
public:
void
Compute
(
const
int
n
,
const
T
a
,
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
explicit
VScalKernelImpl
(
int
d
)
:
VScalKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
a
,
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
a
*
x
[
i
];
}
}
void
Compute
(
const
int
n
,
const
T
a
,
T
*
x
)
const
override
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
void
Compute
(
const
T
a
,
T
*
x
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
x
[
i
]
=
a
*
x
[
i
];
}
}
};
#ifdef PADDLE_WITH_MKLML
#define MKL_FLOAT(isa, block)
\
template <>
\
void VScalKernelImpl<float, isa, block>::Compute(const
int n, const float a,
\
float* x) const {
\
platform::dynload::cblas_sscal(
n, a, x, 1);
\
#define MKL_FLOAT(isa, block) \
template <> \
void VScalKernelImpl<float, isa, block>::Compute(const
float a, float* x)
\
const {
\
platform::dynload::cblas_sscal(
this->num_, a, x, 1);
\
}
#define MKL_DOUBLE(isa, block) \
template <> \
void VScalKernelImpl<double, isa, block>::Compute(
\
const
int n, const double a, double* x) const {
\
platform::dynload::cblas_dscal(
n, a, x, 1);
\
#define MKL_DOUBLE(isa, block)
\
template <>
\
void VScalKernelImpl<double, isa, block>::Compute(
const double a, double* x)
\
const
{
\
platform::dynload::cblas_dscal(
this->num_, a, x, 1);
\
}
FOR_EACH_ISA
(
MKL_FLOAT
,
kGT16
);
FOR_EACH_ISA_BLOCK
(
MKL_DOUBLE
);
#endif
#define INTRI8_FLOAT(isa)
\
template <>
\
void VScalKernelImpl<float, isa, kEQ8>::Compute(
\
const
int n, const
float a, const float* x, float* y) const { \
__m256 tmp;
\
__m256 scalar = _mm256_set1_ps(a);
\
tmp = _mm256_loadu_ps(x);
\
tmp = _mm256_mul_ps(tmp, scalar);
\
_mm256_storeu_ps(y, tmp);
\
#define INTRI8_FLOAT(isa) \
template <> \
void VScalKernelImpl<float, isa, kEQ8>::Compute( \
const float a, const float* x, float* y) const { \
__m256 tmp; \
__m256 scalar = _mm256_set1_ps(a); \
tmp = _mm256_loadu_ps(x); \
tmp = _mm256_mul_ps(tmp, scalar); \
_mm256_storeu_ps(y, tmp); \
}
#define INTRI8_INPLACE_FLOAT(isa)
\
template <>
\
void VScalKernelImpl<float, isa, kEQ8>::Compute(const
int n, const float a,
\
float* x) const {
\
__m256 tmp;
\
__m256 scalar = _mm256_set1_ps(a);
\
tmp = _mm256_loadu_ps(x);
\
tmp = _mm256_mul_ps(tmp, scalar);
\
_mm256_storeu_ps(x, tmp);
\
#define INTRI8_INPLACE_FLOAT(isa) \
template <> \
void VScalKernelImpl<float, isa, kEQ8>::Compute(const
float a, float* x)
\
const {
\
__m256 tmp; \
__m256 scalar = _mm256_set1_ps(a); \
tmp = _mm256_loadu_ps(x); \
tmp = _mm256_mul_ps(tmp, scalar); \
_mm256_storeu_ps(x, tmp); \
}
#ifdef __AVX__
...
...
@@ -220,32 +223,33 @@ INTRI8_INPLACE_FLOAT(jit::avx512f);
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
,
jit_block
>
class
VAddBiasKernelImpl
:
public
VAddBiasKernel
<
T
>
{
public:
void
Compute
(
const
int
n
,
const
T
a
,
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
explicit
VAddBiasKernelImpl
(
int
d
)
:
VAddBiasKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
a
,
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
x
[
i
]
+
a
;
}
}
};
#define INTRI8_FLOAT(isa)
\
template <>
\
void VAddBiasKernelImpl<float, isa, kEQ8>::Compute(
\
const
int n, const
float a, const float* x, float* y) const { \
__m256 tmp = _mm256_loadu_ps(x);
\
tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a));
\
_mm256_storeu_ps(y, tmp);
\
#define INTRI8_FLOAT(isa) \
template <> \
void VAddBiasKernelImpl<float, isa, kEQ8>::Compute( \
const float a, const float* x, float* y) const { \
__m256 tmp = _mm256_loadu_ps(x); \
tmp = _mm256_add_ps(tmp, _mm256_set1_ps(a)); \
_mm256_storeu_ps(y, tmp); \
}
#define INTRI16_FLOAT(isa)
\
template <>
\
void VAddBiasKernelImpl<float, isa, kEQ16>::Compute(
\
const
int n, const
float a, const float* x, float* y) const { \
__m256 tmp0 = _mm256_loadu_ps(x);
\
__m256 tmp1 = _mm256_loadu_ps(x + 8);
\
tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a));
\
tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a));
\
_mm256_storeu_ps(y, tmp0);
\
_mm256_storeu_ps(y + 8, tmp1);
\
#define INTRI16_FLOAT(isa) \
template <> \
void VAddBiasKernelImpl<float, isa, kEQ16>::Compute( \
const float a, const float* x, float* y) const { \
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \
tmp0 = _mm256_add_ps(tmp0, _mm256_set1_ps(a)); \
tmp1 = _mm256_add_ps(tmp1, _mm256_set1_ps(a)); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \
}
#ifdef __AVX__
...
...
paddle/fluid/operators/math/jit_kernel_exp.cc
浏览文件 @
e6d8aca3
...
...
@@ -40,26 +40,27 @@ namespace jit = platform::jit;
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
class
VExpKernelImpl
:
public
VExpKernel
<
T
>
{
public:
void
Compute
(
const
int
n
,
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
explicit
VExpKernelImpl
(
int
d
)
:
VExpKernel
<
T
>
()
{
this
->
num_
=
d
;
}
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
std
::
exp
(
x
[
i
]);
}
}
};
#ifdef PADDLE_WITH_MKLML
#define MKL_FLOAT(isa, block)
\
template <>
\
void VExpKernelImpl<float, isa, block>::Compute(const
int n, const float* x,
\
float* y) const {
\
platform::dynload::vsExp(
n, x, y);
\
#define MKL_FLOAT(isa, block) \
template <> \
void VExpKernelImpl<float, isa, block>::Compute(const
float* x, float* y)
\
const {
\
platform::dynload::vsExp(
this->num_, x, y);
\
}
#define MKL_DOUBLE(isa, block) \
template <> \
void VExpKernelImpl<double, isa, block>::Compute(
\
const
int n, const double* x, double* y) const {
\
platform::dynload::vdExp(
n, x, y);
\
#define MKL_DOUBLE(isa, block)
\
template <>
\
void VExpKernelImpl<double, isa, block>::Compute(
const double* x, double* y)
\
const
{
\
platform::dynload::vdExp(
this->num_, x, y);
\
}
FOR_EACH_ISA
(
MKL_FLOAT
,
kLT8
);
FOR_EACH_ISA
(
MKL_FLOAT
,
kGT8LT16
);
...
...
@@ -67,24 +68,24 @@ FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK
(
MKL_DOUBLE
);
#endif
#define INTRI8_FLOAT(isa)
\
template <>
\
void VExpKernelImpl<float, isa, kEQ8>::Compute(const
int n, const float* x,
\
float* y) const {
\
__m256 tmp = _mm256_loadu_ps(x);
\
_mm256_storeu_ps(y, detail::Exp(tmp));
\
#define INTRI8_FLOAT(isa) \
template <> \
void VExpKernelImpl<float, isa, kEQ8>::Compute(const
float* x, float* y)
\
const {
\
__m256 tmp = _mm256_loadu_ps(x); \
_mm256_storeu_ps(y, detail::Exp(tmp)); \
}
#define INTRI16_FLOAT(isa)
\
template <>
\
void VExpKernelImpl<float, isa, kEQ16>::Compute(const
int n, const float* x,
\
float* y) const {
\
__m256 tmp0 = _mm256_loadu_ps(x);
\
__m256 tmp1 = _mm256_loadu_ps(x + 8);
\
tmp0 = detail::Exp(tmp0);
\
tmp1 = detail::Exp(tmp1);
\
_mm256_storeu_ps(y, tmp0);
\
_mm256_storeu_ps(y + 8, tmp1);
\
#define INTRI16_FLOAT(isa) \
template <> \
void VExpKernelImpl<float, isa, kEQ16>::Compute(const
float* x, float* y)
\
const {
\
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \
tmp0 = detail::Exp(tmp0); \
tmp1 = detail::Exp(tmp1); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \
}
#ifdef __AVX__
...
...
@@ -123,7 +124,7 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
y
[
i
]
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
static_cast
<
T
>
(
0
)
-
y
[
i
];
}
vexp_
->
Compute
(
this
->
num_
,
y
,
y
);
vexp_
->
Compute
(
y
,
y
);
for
(
int
i
=
0
;
i
<
this
->
num_
;
++
i
)
{
y
[
i
]
=
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
y
[
i
]);
}
...
...
@@ -166,64 +167,66 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
_mm256_storeu_ps(y + 8, tmp1); \
}
#define INTRI_GT8LT16_FLOAT(isa) \
template <> \
VSigmoidKernelImpl<float, isa, kGT8LT16>::VSigmoidKernelImpl(int d) \
: VSigmoidKernel<float>() { \
this->num_ = d; \
this->end_ = AVX_FLOAT_BLOCK; \
this->rest_ = d - this->end_; \
vexp_ = KernelPool::Instance().template Get<VExpKernel<float>>(d); \
} \
template <> \
void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute(const float* x, \
float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \
INTRI_SIGMOID(tmp, min, max); \
_mm256_storeu_ps(y, tmp); \
const float min_ = SIGMOID_THRESHOLD_MIN; \
const float max_ = SIGMOID_THRESHOLD_MAX; \
for (int i = this->end_; i < this->num_; ++i) { \
y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
y[i] = 0.f - y[i]; \
} \
vexp_->Compute(this->rest_, y + this->end_, y + this->end_); \
for (int i = this->end_; i < this->num_; ++i) { \
y[i] = 1.f / (1.f + y[i]); \
} \
#define INTRI_GT8LT16_FLOAT(isa) \
template <> \
VSigmoidKernelImpl<float, isa, kGT8LT16>::VSigmoidKernelImpl(int d) \
: VSigmoidKernel<float>() { \
this->num_ = d; \
this->end_ = AVX_FLOAT_BLOCK; \
this->rest_ = d - this->end_; \
vexp_ = \
KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
} \
template <> \
void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute(const float* x, \
float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \
INTRI_SIGMOID(tmp, min, max); \
_mm256_storeu_ps(y, tmp); \
const float min_ = SIGMOID_THRESHOLD_MIN; \
const float max_ = SIGMOID_THRESHOLD_MAX; \
for (int i = this->end_; i < this->num_; ++i) { \
y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
y[i] = 0.f - y[i]; \
} \
vexp_->Compute(y + this->end_, y + this->end_); \
for (int i = this->end_; i < this->num_; ++i) { \
y[i] = 1.f / (1.f + y[i]); \
} \
}
#define INTRI_GT16_FLOAT(isa) \
template <> \
VSigmoidKernelImpl<float, isa, kGT16>::VSigmoidKernelImpl(int d) \
: VSigmoidKernel<float>() { \
this->num_ = d; \
this->rest_ = d % AVX_FLOAT_BLOCK; \
this->end_ = d - this->rest_; \
vexp_ = KernelPool::Instance().template Get<VExpKernel<float>>(d); \
} \
template <> \
void VSigmoidKernelImpl<float, isa, kGT16>::Compute(const float* x, \
float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \
__m256 tmp = _mm256_loadu_ps(x + i); \
INTRI_SIGMOID(tmp, min, max); \
_mm256_storeu_ps(y + i, tmp); \
} \
const float min_ = SIGMOID_THRESHOLD_MIN; \
const float max_ = SIGMOID_THRESHOLD_MAX; \
for (int i = this->end_; i < this->num_; ++i) { \
y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
y[i] = 0.f - y[i]; \
} \
vexp_->Compute(this->rest_, y + this->end_, y + this->end_); \
for (int i = this->end_; i < this->num_; ++i) { \
y[i] = 1.f / (1.f + y[i]); \
} \
#define INTRI_GT16_FLOAT(isa) \
template <> \
VSigmoidKernelImpl<float, isa, kGT16>::VSigmoidKernelImpl(int d) \
: VSigmoidKernel<float>() { \
this->num_ = d; \
this->rest_ = d % AVX_FLOAT_BLOCK; \
this->end_ = d - this->rest_; \
vexp_ = \
KernelPool::Instance().template Get<VExpKernel<float>>(this->rest_); \
} \
template <> \
void VSigmoidKernelImpl<float, isa, kGT16>::Compute(const float* x, \
float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \
__m256 tmp = _mm256_loadu_ps(x + i); \
INTRI_SIGMOID(tmp, min, max); \
_mm256_storeu_ps(y + i, tmp); \
} \
const float min_ = SIGMOID_THRESHOLD_MIN; \
const float max_ = SIGMOID_THRESHOLD_MAX; \
for (int i = this->end_; i < this->num_; ++i) { \
y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
y[i] = 0.f - y[i]; \
} \
vexp_->Compute(y + this->end_, y + this->end_); \
for (int i = this->end_; i < this->num_; ++i) { \
y[i] = 1.f / (1.f + y[i]); \
} \
}
#ifdef __AVX__
...
...
@@ -251,12 +254,7 @@ INTRI16_FLOAT(jit::avx512f);
#undef INTRI_GT16_FLOAT
#undef INTRI_VSIGMOID
#define JITKERNEL_NEW_ACT_IMPL(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(d))
REGISTER_JITKERNEL_ARGS
(
vsigmoid
,
VSigmoidKernel
,
JITKERNEL_DECLARE
,
JITKERNEL_KEY
,
JITKERNEL_NEW_ACT_IMPL
);
REGISTER_JITKERNEL
(
vsigmoid
,
VSigmoidKernel
);
/* VTanh JitKernel */
template
<
typename
T
,
jit
::
cpu_isa_t
isa
,
jit_block
>
...
...
@@ -269,10 +267,10 @@ class VTanhKernelImpl : public VTanhKernel<T> {
vaddbias_
=
KernelPool
::
Instance
().
template
Get
<
VAddBiasKernel
<
T
>
>
(
d
);
}
void
Compute
(
const
T
*
x
,
T
*
y
)
const
override
{
vscal_
->
Compute
(
this
->
num_
,
static_cast
<
T
>
(
2
),
x
,
y
);
vscal_
->
Compute
(
static_cast
<
T
>
(
2
),
x
,
y
);
vsigmoid_
->
Compute
(
y
,
y
);
vscal_
->
Compute
(
this
->
num_
,
static_cast
<
T
>
(
2
),
y
);
vaddbias_
->
Compute
(
this
->
num_
,
static_cast
<
T
>
(
-
1
),
y
,
y
);
vscal_
->
Compute
(
static_cast
<
T
>
(
2
),
y
);
vaddbias_
->
Compute
(
static_cast
<
T
>
(
-
1
),
y
,
y
);
}
private:
...
...
@@ -332,10 +330,10 @@ class VTanhKernelImpl : public VTanhKernel<T> {
_mm256_storeu_ps(y, tmp); \
x += AVX_FLOAT_BLOCK; \
y += AVX_FLOAT_BLOCK; \
vscal_->Compute(
this->rest_, 2.f, x, y);
\
vscal_->Compute(
2.f, x, y);
\
vsigmoid_->Compute(y, y); \
vscal_->Compute(
this->rest_, 2.f, y);
\
vaddbias_->Compute(
this->rest_, -1.f, y, y);
\
vscal_->Compute(
2.f, y);
\
vaddbias_->Compute(
-1.f, y, y);
\
}
#define INTRI_GT16_FLOAT(isa) \
...
...
@@ -362,10 +360,10 @@ class VTanhKernelImpl : public VTanhKernel<T> {
} \
x += this->end_; \
y += this->end_; \
vscal_->Compute(
this->rest_, 2.f, x, y);
\
vscal_->Compute(
2.f, x, y);
\
vsigmoid_->Compute(y, y); \
vscal_->Compute(
this->rest_, 2.f, y);
\
vaddbias_->Compute(
this->rest_, -1.f, y, y);
\
vscal_->Compute(
2.f, y);
\
vaddbias_->Compute(
-1.f, y, y);
\
}
#ifdef __AVX__
...
...
@@ -391,8 +389,7 @@ INTRI16_FLOAT(jit::avx512f);
#undef INTRI_GT16_FLOAT
#undef INTRI_VTANH
REGISTER_JITKERNEL_ARGS
(
vtanh
,
VTanhKernel
,
JITKERNEL_DECLARE
,
JITKERNEL_KEY
,
JITKERNEL_NEW_ACT_IMPL
);
REGISTER_JITKERNEL
(
vtanh
,
VTanhKernel
);
#undef JITKERNEL_NEW_ACT_IMPL
...
...
paddle/fluid/operators/math/jit_kernel_macro.h
浏览文件 @
e6d8aca3
...
...
@@ -57,7 +57,7 @@ namespace jit = platform::jit;
#define JITKERNEL_NEW_IMPL(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>())
std::make_shared<ker##Impl<dtype, isa, k>>(
d
))
#define JITKERNEL_WITH_DTYPE(ker_key, ker_class, ker_dtype, dtype_key, \
marco_declare, macro_key, macro_impl) \
...
...
paddle/fluid/operators/math/jit_kernel_test.cc
浏览文件 @
e6d8aca3
...
...
@@ -73,7 +73,7 @@ TEST(JitKernel, vaddbias) {
auto
trefe
=
GetCurrentUS
();
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
d
,
a
,
x_data
,
ztgt_data
);
ker
->
Compute
(
a
,
x_data
,
ztgt_data
);
}
auto
ttgte
=
GetCurrentUS
();
...
...
@@ -99,7 +99,7 @@ void vexp_mkl(const int n, const float* x, float* y) {
TEST
(
JitKernel
,
vexp
)
{
namespace
jit
=
paddle
::
operators
::
math
::
jitkernel
;
for
(
int
d
:
{
7
,
8
,
15
,
16
,
30
,
128
})
{
for
(
int
d
:
{
7
,
8
,
15
,
16
,
30
,
128
,
256
})
{
std
::
vector
<
float
>
x
(
d
);
std
::
vector
<
float
>
zref
(
d
),
ztgt
(
d
);
RandomVec
<
float
>
(
d
,
x
.
data
(),
-
2.
f
,
2.
f
);
...
...
@@ -124,7 +124,7 @@ TEST(JitKernel, vexp) {
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
d
,
x_data
,
ztgt_data
);
ker
->
Compute
(
x_data
,
ztgt_data
);
}
auto
ttgte
=
GetCurrentUS
();
...
...
@@ -164,7 +164,7 @@ void vsigmoid_better(
y
[
i
]
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
0.
f
-
y
[
i
];
}
vexp
->
Compute
(
n
,
y
,
y
);
vexp
->
Compute
(
y
,
y
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
1.
f
/
(
1.
f
+
y
[
i
]);
}
...
...
@@ -226,10 +226,10 @@ void vtanh_better(
const
paddle
::
operators
::
math
::
jitkernel
::
VAddBiasKernel
<
float
>>&
vaddbias
,
const
int
n
,
const
float
*
x
,
float
*
y
)
{
vscal
->
Compute
(
n
,
2.
f
,
x
,
y
);
vscal
->
Compute
(
2.
f
,
x
,
y
);
vsigmoid
->
Compute
(
y
,
y
);
vscal
->
Compute
(
n
,
2.
f
,
y
);
vaddbias
->
Compute
(
n
,
-
1.
f
,
y
,
y
);
vscal
->
Compute
(
2.
f
,
y
);
vaddbias
->
Compute
(
-
1.
f
,
y
,
y
);
}
TEST
(
JitKernel
,
vtanh
)
{
...
...
@@ -359,12 +359,12 @@ TEST(JitKernel, vscal) {
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
d
,
a
,
x_data
,
ztgt_data
);
ker
->
Compute
(
a
,
x_data
,
ztgt_data
);
}
auto
ttgte
=
GetCurrentUS
();
auto
ttgts1
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
d
,
a
,
y_data
);
ker
->
Compute
(
a
,
y_data
);
}
auto
ttgte1
=
GetCurrentUS
();
VLOG
(
3
)
<<
"Vec size "
<<
d
<<
": refer takes: "
<<
(
trefe
-
trefs
)
/
repeat
...
...
@@ -444,7 +444,7 @@ TEST(JitKernel, vmul) {
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
d
,
x_data
,
y_data
,
ztgt_data
);
ker
->
Compute
(
x_data
,
y_data
,
ztgt_data
);
}
auto
ttgte
=
GetCurrentUS
();
...
...
@@ -523,7 +523,7 @@ TEST(JitKernel, vadd) {
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
d
,
x_data
,
y_data
,
ztgt_data
);
ker
->
Compute
(
x_data
,
y_data
,
ztgt_data
);
}
auto
ttgte
=
GetCurrentUS
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录