npu_op_runner.cc 18.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/platform/device/npu/npu_op_runner.h"
16 17 18 19 20 21 22 23 24 25 26 27 28

#include <paddle/fluid/framework/data_type.h>
#include <paddle/fluid/framework/operator.h>

#include <map>
#include <string>
#include <vector>

#include "acl/acl.h"
#include "acl/acl_op_compiler.h"

#include "paddle/fluid/framework/framework.pb.h"

A
Aganlengzi 已提交
29 30
DECLARE_string(npu_precision_mode);

31 32 33 34 35 36
namespace paddle {
namespace operators {

static std::map<framework::proto::VarType::Type, aclDataType>
    DTYPE_2_ACL_DTYPE = {
        {framework::proto::VarType::BOOL, ACL_BOOL},
P
pangyoki 已提交
37
        {framework::proto::VarType::UINT8, ACL_UINT8},
38
        {framework::proto::VarType::INT8, ACL_INT8},
39 40 41 42 43 44 45 46 47 48 49
        {framework::proto::VarType::INT16, ACL_INT16},
        {framework::proto::VarType::INT32, ACL_INT32},
        {framework::proto::VarType::INT64, ACL_INT64},
        {framework::proto::VarType::FP16, ACL_FLOAT16},
        {framework::proto::VarType::FP32, ACL_FLOAT},
        {framework::proto::VarType::FP64, ACL_DOUBLE},
};

static std::map<DataLayout, aclFormat> DATA_LAYOUT_2_ACL_FORMAT = {
    {DataLayout::kNCHW, ACL_FORMAT_NCHW},
    {DataLayout::kNHWC, ACL_FORMAT_NHWC},
50 51
    {DataLayout::kNCDHW, ACL_FORMAT_NCDHW},
    {DataLayout::kNDHWC, ACL_FORMAT_NDHWC},
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
    {DataLayout::kAnyLayout, ACL_FORMAT_ND},
};

aclDataType ConvertToNpuDtype(framework::proto::VarType::Type dtype) {
  auto iter = DTYPE_2_ACL_DTYPE.find(dtype);
  PADDLE_ENFORCE_NE(iter, DTYPE_2_ACL_DTYPE.end(),
                    platform::errors::NotFound(
                        "The data type (%s) can not convert to ACL data type.",
                        framework::DataTypeToString(dtype)));
  return iter->second;
}

aclFormat ConvertToNpuFormat(DataLayout layout) {
  auto iter = DATA_LAYOUT_2_ACL_FORMAT.find(layout);
  PADDLE_ENFORCE_NE(
      iter, DATA_LAYOUT_2_ACL_FORMAT.end(),
      platform::errors::NotFound(
          "The data type (%s) can not convert to ACL data type.", layout));
  return iter->second;
}

73 74 75 76
aclrtStream GetCurrentNPUStream(int device_id) {
  if (device_id == -1) {
    device_id = platform::GetCurrentNPUDeviceId();
  }
77 78 79 80 81 82
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx = static_cast<platform::NPUDeviceContext *>(
      pool.Get(platform::NPUPlace(device_id)));
  return dev_ctx->stream();
}

83 84 85
NpuOpRunner::NpuOpRunner() {}

NpuOpRunner::NpuOpRunner(const std::string &op_type) : op_type_(op_type) {}
86

87 88
NpuOpRunner::NpuOpRunner(const std::string &op_type,
                         const std::vector<Tensor> &inputs,
89
                         const std::vector<Tensor> &outputs,
90
                         const NPUAttributeMap &attrs)
91 92 93 94 95 96 97
    : op_type_(op_type) {
  AddInputs(inputs);
  AddOutputs(outputs);
  AddAttrs(attrs);
}

NpuOpRunner::~NpuOpRunner() {
L
Leo Chen 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
  VLOG(5) << "Free NpuOpRunner(" << this << ") of " << op_type_;
  // Is it safe to free the descs/buffers after run called in host ?
  aclopDestroyAttr(attr_);  // return void
  for (auto desc : input_descs_) {
    aclDestroyTensorDesc(desc);
  }
  for (auto desc : output_descs_) {
    aclDestroyTensorDesc(desc);
  }
  for (auto buffer : input_buffers_) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclDestroyDataBuffer(buffer));
  }
  for (auto buffer : output_buffers_) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclDestroyDataBuffer(buffer));
  }
113 114 115 116
}

const std::string &NpuOpRunner::Type() { return op_type_; }

117 118 119 120 121
NpuOpRunner &NpuOpRunner::SetType(const std::string &name) {
  op_type_ = name;
  return *this;
}

122
NpuOpRunner &NpuOpRunner::AddAttr(const std::string &name,
123
                                  const NPUAttribute &attr) {
124 125 126
  if (!attr_) {
    attr_ = aclopCreateAttr();
  }
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
  if (attr.type() == typeid(bool)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrBool(attr_, name.c_str(), BOOST_GET_CONST(bool, attr)));
  } else if (attr.type() == typeid(int)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int, attr)));

  } else if (attr.type() == typeid(int64_t)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrInt(attr_, name.c_str(), BOOST_GET_CONST(int64_t, attr)));
  } else if (attr.type() == typeid(float)) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrFloat(attr_, name.c_str(), BOOST_GET_CONST(float, attr)));
  } else if (attr.type() == typeid(std::vector<bool>)) {
    auto a = BOOST_GET_CONST(std::vector<bool>, attr);
    std::vector<uint8_t> cast_a;
    for (auto it : a) {
      cast_a.push_back(static_cast<uint8_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListBool(
        attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int>)) {
    auto a = BOOST_GET_CONST(std::vector<int>, attr);
    std::vector<int64_t> cast_a;
    for (auto it : a) {
      cast_a.push_back(static_cast<int64_t>(it));
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), cast_a.size(), cast_a.data()));
  } else if (attr.type() == typeid(std::vector<int64_t>)) {
    auto a = BOOST_GET_CONST(std::vector<int64_t>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListInt(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::vector<float>)) {
    auto a = BOOST_GET_CONST(std::vector<float>, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListFloat(attr_, name.c_str(), a.size(), a.data()));
  } else if (attr.type() == typeid(std::string)) {
    auto a = BOOST_GET_CONST(std::string, attr);
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrString(attr_, name.c_str(), a.c_str()));
  } else if (attr.type() == typeid(std::vector<std::string>)) {
    auto a = BOOST_GET_CONST(std::vector<std::string>, attr);
    std::vector<const char *> s;
    for (auto &it : a) {
      s.push_back(it.data());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclopSetAttrListString(attr_, name.c_str(), s.size(), s.data()));
176 177 178 179 180 181 182 183 184 185
  } else if (attr.type() == typeid(std::vector<std::vector<int64_t>>)) {
    auto a = BOOST_GET_CONST(std::vector<std::vector<int64_t>>, attr);
    std::vector<int64_t *> data;
    std::vector<int> num;
    for (auto &&v : a) {
      data.push_back(v.data());
      num.push_back(v.size());
    }
    PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrListListInt(
        attr_, name.c_str(), data.size(), num.data(), data.data()));
186 187 188 189 190 191 192
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Can not convert attribubte '%s' to convert to aclopAttr", name));
  }
  return *this;
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
NpuOpRunner &NpuOpRunner::AddAttrDataType(const std::string &name,
                                          const NPUAttribute &attr) {
  PADDLE_ENFORCE_EQ(
      (attr.type() == typeid(int)), true,
      platform::errors::InvalidArgument(
          "Attr type is NOT equal to framework::proto::VarType::Type."));
  if (!attr_) {
    attr_ = aclopCreateAttr();
  }
  auto dtype = ConvertToNpuDtype(
      static_cast<framework::proto::VarType::Type>(BOOST_GET_CONST(int, attr)));
  PADDLE_ENFORCE_NPU_SUCCESS(aclopSetAttrDataType(attr_, name.c_str(), dtype));
  return *this;
}

208
NpuOpRunner &NpuOpRunner::AddAttrs(const NPUAttributeMap &attrs) {
209 210 211 212 213 214 215 216 217 218 219 220 221 222
  for (const auto &pair : attrs) {
    AddAttr(pair.first, pair.second);
  }
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

223 224 225 226 227 228 229 230 231 232 233 234 235
NpuOpRunner &NpuOpRunner::AddInput(const Tensor &tensor, aclMemType mem_type) {
  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(tensor, mem_type));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<int32_t> &&dims) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
236
  paddle::framework::TensorFromVector(dims, *dev_ctx, &host_tensor);
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<int64_t> &&dims) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
252
  paddle::framework::TensorFromVector(dims, *dev_ctx, &host_tensor);
253 254 255 256 257 258 259 260 261 262
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

263 264 265 266 267
NpuOpRunner &NpuOpRunner::AddInput(std::vector<float> &&values) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
268
  paddle::framework::TensorFromVector(values, *dev_ctx, &host_tensor);
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

NpuOpRunner &NpuOpRunner::AddInput(std::vector<double> &&values) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  auto *dev_ctx =
      static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
  Tensor host_tensor;
284
  paddle::framework::TensorFromVector(values, *dev_ctx, &host_tensor);
285 286 287 288 289 290 291 292 293 294
  host_tensors_.emplace_back(host_tensor);

  // create aclTensorDesc
  input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
  // create aclDataBuffer
  input_buffers_.emplace_back(CreateDataBuffer(host_tensor));

  return *this;
}

295 296 297 298 299 300 301 302 303
NpuOpRunner &NpuOpRunner::AddOutput(const Tensor &tensor) {
  // create aclTensorDesc
  output_descs_.emplace_back(CreateTensorDesc(tensor));
  // create aclDataBuffer
  output_buffers_.emplace_back(CreateDataBuffer(tensor));
  return *this;
}

NpuOpRunner &NpuOpRunner::AddInputs(const std::vector<Tensor> &tensors) {
L
Leo Chen 已提交
304 305
  input_descs_.reserve(tensors.size());
  input_buffers_.reserve(tensors.size());
306 307 308 309 310 311 312 313 314
  for (auto tensor : tensors) {
    // create aclTensorDesc
    input_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    input_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
// NOTE(zhiqiu): For operators whose input is a list (such as concat, stack),
// It is needed to set the name of each input tensor.
NpuOpRunner &NpuOpRunner::AddInputNames(const std::vector<std::string> &names) {
  PADDLE_ENFORCE_EQ(names.size(), input_descs_.size(),
                    platform::errors::InvalidArgument(
                        "The size of input names should be "
                        "equal to the size of input descs, but got the size "
                        "of input names is %d, the size of input descs is %d.",
                        names.size(), input_descs_.size()));
  for (size_t i = 0; i < names.size(); ++i) {
    aclSetTensorDescName(input_descs_[i], names[i].c_str());
  }
  return *this;
}

330
NpuOpRunner &NpuOpRunner::AddOutputs(const std::vector<Tensor> &tensors) {
L
Leo Chen 已提交
331 332
  output_descs_.reserve(tensors.size());
  output_buffers_.reserve(tensors.size());
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
  for (auto tensor : tensors) {
    // create aclTensorDesc
    output_descs_.emplace_back(CreateTensorDesc(tensor));
    // create aclDataBuffer
    output_buffers_.emplace_back(CreateDataBuffer(tensor));
  }
  return *this;
}

aclTensorDesc *NpuOpRunner::GetInputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, input_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of inputs of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, input_descs_.size()));
  return input_descs_[index];
}

aclTensorDesc *NpuOpRunner::GetOutputDesc(size_t index) {
  PADDLE_ENFORCE_LT(index, output_descs_.size(),
                    platform::errors::OutOfRange(
                        "The index should be less than the size of output of "
                        "operator %s, but got index is %d and size is %d",
                        Type(), index, output_descs_.size()));
  return output_descs_[index];
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetInputDescs() {
  return input_descs_;
}

std::vector<aclTensorDesc *> &NpuOpRunner::GetOutputDescs() {
  return output_descs_;
}

std::vector<aclDataBuffer *> &NpuOpRunner::GetInputBuffers() {
  return input_buffers_;
}

std::vector<aclDataBuffer *> &NpuOpRunner::GetOutputBuffers() {
  return output_buffers_;
}

376 377
aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor,
                                             aclMemType mem_type) {
378 379
  auto dtype =
      ConvertToNpuDtype(framework::TransToProtoVarType(tensor.dtype()));
380
  auto format = ConvertToNpuFormat(tensor.layout());
381
  auto dims = phi::vectorize(tensor.dims());
P
pangyoki 已提交
382 383 384 385 386 387 388 389
  int size = dims.size();
  // TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
  // OP must be a scalar with shape[0]. At present, the shape
  // of the `prob` Tensor of this OP is forced to be set to 0
  // in `npu_op_runner.cc`, which needs to be optimized later.
  if (op_type_ == "DropOutGenMask" && size == 1 && *(dims.data()) == 1) {
    size = 0;
  }
390

391 392 393
  VLOG(4) << "NPU dtype:" << dtype << " "
          << "rank:" << dims.size() << " dims:" << tensor.dims()
          << " format:" << format;
394

P
pangyoki 已提交
395
  auto *desc = aclCreateTensorDesc(dtype, size, dims.data(), format);
396 397
  PADDLE_ENFORCE_NOT_NULL(
      desc, platform::errors::External("Call aclCreateTensorDesc failed."));
398
  PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageFormat(desc, format));
P
pangyoki 已提交
399
  PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorStorageShape(desc, size, dims.data()));
400 401 402
  if (mem_type == ACL_MEMTYPE_HOST) {
    PADDLE_ENFORCE_NPU_SUCCESS(aclSetTensorPlaceMent(desc, mem_type));
  }
403 404 405 406
  return desc;
}

aclDataBuffer *NpuOpRunner::CreateDataBuffer(Tensor tensor) {
407
  void *ptr = tensor.data();
408
  VLOG(4) << "NPU ptr: " << ptr << ", size: " << tensor.memory_size();
409 410 411 412 413 414
  auto *buffer = aclCreateDataBuffer(ptr, tensor.memory_size());
  PADDLE_ENFORCE_NOT_NULL(
      buffer, platform::errors::External("Call aclCreateDataBuffer failed."));
  return buffer;
}

L
Leo Chen 已提交
415
void NpuOpRunner::Run(aclrtStream stream) const {
416 417 418 419
  if (!stream) {
    VLOG(4) << "Run with default current npu stream: " << stream;
    stream = GetCurrentNPUStream();
  }
L
Leo Chen 已提交
420
  VLOG(5) << "NpuOpRunner(" << this << ") Run:";
421 422 423 424
  VLOG(4) << "op_type: " << op_type_;
  VLOG(4) << "input_desc.size: " << input_descs_.size();
  VLOG(4) << "output_desc.size: " << output_descs_.size();
  VLOG(4) << "attr: " << attr_;
425 426
  VLOG(4) << "stream: " << stream;

A
Aganlengzi 已提交
427 428 429 430 431 432
  if (!FLAGS_npu_precision_mode.empty()) {
    PADDLE_ENFORCE_NPU_SUCCESS(
        aclSetCompileopt(ACL_PRECISION_MODE, FLAGS_npu_precision_mode.c_str()));
    VLOG(4) << "set ACL_PRECISION_MODE: " << FLAGS_npu_precision_mode;
  }

433 434 435 436 437 438 439 440
  aclError ret = aclopCompileAndExecute(
      op_type_.c_str(), input_descs_.size(), input_descs_.data(),
      input_buffers_.data(), output_descs_.size(), output_descs_.data(),
      output_buffers_.data(), attr_, ACL_ENGINE_SYS, ACL_COMPILE_SYS, NULL,
      stream);
  VLOG(4) << "after aclopCompileAndExecute: " << ret;
  PADDLE_ENFORCE_NPU_SUCCESS(ret);
}
441

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
void NpuOpRunner::TypeAdapter(
    const std::vector<Tensor> &inputs, const std::vector<Tensor> &outputs,
    const NPUAttributeMap &attrs, const platform::NPUDeviceContext &dev_ctx,
    std::function<void(const std::vector<Tensor> &, const std::vector<Tensor> &,
                       const NPUAttributeMap &,
                       const platform::NPUDeviceContext &)>
        op_runner,
    const std::vector<framework::proto::VarType::Type> &input_type,
    const std::vector<framework::proto::VarType::Type> &output_type) {
  PADDLE_ENFORCE_EQ(
      inputs.size(), input_type.size(),
      platform::errors::InvalidArgument(
          "The number of inputs must be equal to input_type.size()."));
  PADDLE_ENFORCE_EQ(
      outputs.size(), output_type.size(),
      platform::errors::InvalidArgument(
          "The number of outputs must be equal to output_type.size()."));

  std::vector<Tensor> tmp_inputs(inputs.size());
  std::vector<Tensor> tmp_outputs(outputs.size());

  for (size_t i = 0; i < input_type.size(); ++i) {
    bool cast_input =
465 466
        (input_type[i] == -1 ||
         input_type[i] != framework::TransToProtoVarType(inputs[i].dtype()));
467 468 469 470
    if (!cast_input) {
      tmp_inputs[i].ShareDataWith(inputs[i]);
    } else {
      tmp_inputs[i].Resize(inputs[i].dims());
471
      tmp_inputs[i].mutable_data(dev_ctx.GetPlace(),
472
                                 framework::TransToPhiDataType(input_type[i]));
473 474 475 476 477 478 479 480 481

      const auto &cast_runner = NpuOpRunner(
          "Cast", {inputs[i]}, {tmp_inputs[i]},
          {{"dst_type", static_cast<int>(ConvertToNpuDtype(input_type[i]))}});
      cast_runner.Run(dev_ctx.stream());
    }
  }
  for (size_t i = 0; i < output_type.size(); ++i) {
    bool cast_output =
482 483
        (output_type[i] == -1 ||
         output_type[i] != framework::TransToProtoVarType(outputs[i].dtype()));
484 485 486 487
    if (!cast_output) {
      tmp_outputs[i].ShareDataWith(outputs[i]);
    } else {
      tmp_outputs[i].Resize(outputs[i].dims());
488
      tmp_outputs[i].mutable_data(
489
          dev_ctx.GetPlace(), framework::TransToPhiDataType(output_type[i]));
490 491 492 493 494 495 496
    }
  }

  op_runner(tmp_inputs, tmp_outputs, attrs, dev_ctx);

  for (size_t i = 0; i < output_type.size(); ++i) {
    bool cast_output =
497 498
        (output_type[i] == -1 ||
         output_type[i] != framework::TransToProtoVarType(outputs[i].dtype()));
499 500 501 502
    if (cast_output) {
      const auto &cast_runner = NpuOpRunner(
          "Cast", {tmp_outputs[i]}, {outputs[i]},
          {{"dst_type",
503 504
            static_cast<int>(ConvertToNpuDtype(
                framework::TransToProtoVarType(outputs[i].dtype())))}});
505 506 507 508 509
      cast_runner.Run(dev_ctx.stream());
    }
  }
}

510 511
}  // namespace operators
}  // namespace paddle