Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
c4e04986
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2310
Star
20933
Fork
5423
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c4e04986
编写于
7月 12, 2021
作者:
P
pangyoki
提交者:
GitHub
7月 12, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[NPU] add dropout npu op (#34081)
* add dropout npu op * fix bugs * add unittest * fix bugs * support 1-D input
上级
4d842050
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
507 addition
and
3 deletion
+507
-3
paddle/fluid/operators/dropout_op_npu.cc
paddle/fluid/operators/dropout_op_npu.cc
+199
-0
paddle/fluid/operators/npu_op_runner.cc
paddle/fluid/operators/npu_op_runner.cc
+11
-3
python/paddle/fluid/tests/unittests/npu/test_dropout_op_npu.py
...n/paddle/fluid/tests/unittests/npu/test_dropout_op_npu.py
+297
-0
未找到文件。
paddle/fluid/operators/dropout_op_npu.cc
0 → 100644
浏览文件 @
c4e04986
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */
#include <memory>
#include <string>
#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/dropout_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
DeviceContext
,
typename
T
>
class
DropoutNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
x
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
seed_tensor
=
ctx
.
HasInput
(
"Seed"
)
?
ctx
.
Input
<
Tensor
>
(
"Seed"
)
:
nullptr
;
auto
*
out
=
ctx
.
Output
<
Tensor
>
(
"Out"
);
auto
*
mask
=
ctx
.
Output
<
Tensor
>
(
"Mask"
);
auto
dropout_prob
=
ctx
.
Attr
<
float
>
(
"dropout_prob"
);
auto
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
if
(
dropout_prob
==
1.
)
{
const
auto
&
runner_zeros_out
=
NpuOpRunner
(
"ZerosLike"
,
{
*
out
},
{
*
out
});
runner_zeros_out
.
Run
(
stream
);
mask
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
const
auto
&
runner_zeros_mask
=
NpuOpRunner
(
"ZerosLike"
,
{
*
mask
},
{
*
mask
});
runner_zeros_mask
.
Run
(
stream
);
return
;
}
// only achive the default `upscale_in_train` method
if
(
!
is_test
)
{
Tensor
tmp_x
(
x
->
type
());
Tensor
tmp_out
(
out
->
type
());
tmp_x
.
ShareDataWith
(
*
x
);
tmp_out
.
ShareDataWith
(
*
out
);
if
(
x
->
dims
().
size
()
==
1
)
{
// DropOutDoMask will get error result when input
// is 1-D. Make it become 2-D.
std
::
vector
<
int
>
vec_dim
=
framework
::
vectorize
<
int
>
(
x
->
dims
());
tmp_x
.
Resize
(
framework
::
make_ddim
({
vec_dim
[
0
],
1
}));
tmp_out
.
Resize
(
framework
::
make_ddim
({
vec_dim
[
0
],
1
}));
}
int
seed
=
0
;
int
seed2
=
0
;
float
keep_prob
=
1.
-
dropout_prob
;
if
(
seed_tensor
)
{
std
::
vector
<
int
>
seed_data
;
TensorToVector
(
*
seed_tensor
,
ctx
.
device_context
(),
&
seed_data
);
seed
=
seed_data
[
0
];
}
else
{
seed
=
ctx
.
Attr
<
bool
>
(
"fix_seed"
)
?
ctx
.
Attr
<
int
>
(
"seed"
)
:
0
;
}
Tensor
keep_prob_tensor
(
x
->
type
());
keep_prob_tensor
.
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
FillNpuTensorWithConstant
<
T
>
(
&
keep_prob_tensor
,
static_cast
<
T
>
(
keep_prob
));
mask
->
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
// mask used in `DropOutGenMask` NPU OP is different from
// the output `Mask`.
Tensor
npu_mask
(
framework
::
proto
::
VarType
::
UINT8
);
uint32_t
length
=
(
x
->
numel
()
+
128
-
1
)
/
128
*
128
;
npu_mask
.
Resize
(
framework
::
make_ddim
({
length
/
8
}));
npu_mask
.
mutable_data
<
uint8_t
>
(
ctx
.
GetPlace
());
// TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
// OP must be a scalar with shape[0]. At present, the shape
// of the `prob` Tensor of this OP is forced to be set to 0
// in `npu_op_runner.cc`, which needs to be optimized later.
NpuOpRunner
runner_gen_mask
;
runner_gen_mask
.
SetType
(
"DropOutGenMask"
)
.
AddInput
(
framework
::
vectorize
(
tmp_out
.
dims
()))
.
AddInput
(
keep_prob_tensor
)
.
AddOutput
(
npu_mask
)
.
AddAttr
(
"seed"
,
seed
)
.
AddAttr
(
"seed2"
,
seed2
);
runner_gen_mask
.
Run
(
stream
);
NpuOpRunner
runner_dropout
;
runner_dropout
.
SetType
(
"DropOutDoMask"
)
.
AddInput
(
tmp_x
)
.
AddInput
(
npu_mask
)
.
AddInput
(
keep_prob_tensor
)
.
AddOutput
(
tmp_out
);
runner_dropout
.
Run
(
stream
);
// cast `out` from float/float16 to bool
Tensor
cast_mask
(
framework
::
proto
::
VarType
::
BOOL
);
cast_mask
.
Resize
(
mask
->
dims
());
cast_mask
.
mutable_data
<
bool
>
(
ctx
.
GetPlace
());
auto
dst_dtype_bool
=
ConvertToNpuDtype
(
cast_mask
.
type
());
const
auto
&
runner_cast_mask_bool
=
NpuOpRunner
(
"Cast"
,
{
*
out
},
{
cast_mask
},
{{
"dst_type"
,
static_cast
<
int
>
(
dst_dtype_bool
)}});
runner_cast_mask_bool
.
Run
(
stream
);
// cast cast_mask from bool to uint8
auto
dst_dtype_uint8
=
ConvertToNpuDtype
(
mask
->
type
());
const
auto
&
runner_cast_mask_uint8
=
NpuOpRunner
(
"Cast"
,
{
cast_mask
},
{
*
mask
},
{{
"dst_type"
,
static_cast
<
int
>
(
dst_dtype_uint8
)}});
runner_cast_mask_uint8
.
Run
(
stream
);
}
else
{
framework
::
TensorCopy
(
*
x
,
ctx
.
GetPlace
(),
ctx
.
template
device_context
<
platform
::
DeviceContext
>(),
out
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
DropoutGradNPUKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
dx
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dout
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
mask
=
ctx
.
Input
<
Tensor
>
(
"Mask"
);
auto
dropout_prob
=
ctx
.
Attr
<
float
>
(
"dropout_prob"
);
auto
is_test
=
ctx
.
Attr
<
bool
>
(
"is_test"
);
PADDLE_ENFORCE_EQ
(
is_test
,
false
,
platform
::
errors
::
PreconditionNotMet
(
"GradOp is only callable when is_test is false"
));
dx
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
stream
=
ctx
.
template
device_context
<
paddle
::
platform
::
NPUDeviceContext
>()
.
stream
();
if
(
dropout_prob
==
1.
)
{
const
auto
&
runner_zeros
=
NpuOpRunner
(
"ZerosLike"
,
{
*
dx
},
{
*
dx
});
runner_zeros
.
Run
(
stream
);
return
;
}
// cast mask from uint8 to float32/float16
Tensor
cast_mask
(
dx
->
type
());
cast_mask
.
Resize
(
mask
->
dims
());
cast_mask
.
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
dst_dtype
=
ConvertToNpuDtype
(
dx
->
type
());
const
auto
&
runner_cast_mask
=
NpuOpRunner
(
"Cast"
,
{
*
mask
},
{
cast_mask
},
{{
"dst_type"
,
static_cast
<
int
>
(
dst_dtype
)}});
runner_cast_mask
.
Run
(
stream
);
const
auto
&
runner
=
NpuOpRunner
(
"MaskedScale"
,
{
*
dout
,
cast_mask
},
{
*
dx
},
{{
"value"
,
static_cast
<
float
>
(
1.
/
(
1
-
dropout_prob
))}});
runner
.
Run
(
stream
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_NPU_KERNEL
(
dropout
,
ops
::
DropoutNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
DropoutNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_NPU_KERNEL
(
dropout_grad
,
ops
::
DropoutGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
float
>
,
ops
::
DropoutGradNPUKernel
<
paddle
::
platform
::
NPUDeviceContext
,
paddle
::
platform
::
float16
>
);
paddle/fluid/operators/npu_op_runner.cc
浏览文件 @
c4e04986
...
...
@@ -32,6 +32,7 @@ namespace operators {
static
std
::
map
<
framework
::
proto
::
VarType
::
Type
,
aclDataType
>
DTYPE_2_ACL_DTYPE
=
{
{
framework
::
proto
::
VarType
::
BOOL
,
ACL_BOOL
},
{
framework
::
proto
::
VarType
::
UINT8
,
ACL_UINT8
},
{
framework
::
proto
::
VarType
::
INT16
,
ACL_INT16
},
{
framework
::
proto
::
VarType
::
INT32
,
ACL_INT32
},
{
framework
::
proto
::
VarType
::
INT64
,
ACL_INT64
},
...
...
@@ -325,17 +326,24 @@ aclTensorDesc *NpuOpRunner::CreateTensorDesc(Tensor tensor,
auto
dtype
=
ConvertToNpuDtype
(
tensor
.
type
());
auto
format
=
ConvertToNpuFormat
(
tensor
.
layout
());
auto
dims
=
framework
::
vectorize
(
tensor
.
dims
());
int
size
=
dims
.
size
();
// TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU
// OP must be a scalar with shape[0]. At present, the shape
// of the `prob` Tensor of this OP is forced to be set to 0
// in `npu_op_runner.cc`, which needs to be optimized later.
if
(
op_type_
==
"DropOutGenMask"
&&
size
==
1
&&
*
(
dims
.
data
())
==
1
)
{
size
=
0
;
}
VLOG
(
4
)
<<
"NPU dtype:"
<<
dtype
<<
" "
<<
"rank:"
<<
dims
.
size
()
<<
" dims:"
<<
tensor
.
dims
()
<<
" format:"
<<
format
;
auto
*
desc
=
aclCreateTensorDesc
(
dtype
,
dims
.
size
()
,
dims
.
data
(),
format
);
auto
*
desc
=
aclCreateTensorDesc
(
dtype
,
size
,
dims
.
data
(),
format
);
PADDLE_ENFORCE_NOT_NULL
(
desc
,
platform
::
errors
::
External
(
"Call aclCreateTensorDesc failed."
));
PADDLE_ENFORCE_NPU_SUCCESS
(
aclSetTensorStorageFormat
(
desc
,
format
));
PADDLE_ENFORCE_NPU_SUCCESS
(
aclSetTensorStorageShape
(
desc
,
dims
.
size
(),
dims
.
data
()));
PADDLE_ENFORCE_NPU_SUCCESS
(
aclSetTensorStorageShape
(
desc
,
size
,
dims
.
data
()));
if
(
mem_type
==
ACL_MEMTYPE_HOST
)
{
PADDLE_ENFORCE_NPU_SUCCESS
(
aclSetTensorPlaceMent
(
desc
,
mem_type
));
}
...
...
python/paddle/fluid/tests/unittests/npu/test_dropout_op_npu.py
0 → 100644
浏览文件 @
c4e04986
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
unittest
import
sys
sys
.
path
.
append
(
".."
)
from
op_test
import
OpTest
,
skip_check_grad_ci
import
paddle
import
paddle.fluid
as
fluid
paddle
.
enable_static
()
SEED
=
2021
EPOCH
=
100
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestDropoutOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
)).
astype
(
'uint8'
)
}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
def
test_check_grad_normal
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad_with_place
(
self
.
place
,
[
'X'
],
'Out'
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestDropoutOpInput1d
(
TestDropoutOp
):
# change input shape
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
3
,
62
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
3
,
62
)).
astype
(
'uint8'
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestDropoutOpInput1d
(
TestDropoutOp
):
# the input is 1-D
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
2000
,
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
2000
)).
astype
(
'uint8'
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestDropoutOp2
(
TestDropoutOp
):
# the dropout_prob is 1.0
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
1.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
np
.
zeros
((
32
,
64
)).
astype
(
'float32'
),
'Mask'
:
np
.
zeros
((
32
,
64
)).
astype
(
'uint8'
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestDropoutOp3
(
TestDropoutOp
):
# the input dim is 3
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
2
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'fix_seed'
:
True
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
,
2
)).
astype
(
'uint8'
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
@
skip_check_grad_ci
(
reason
=
"For inference, check_grad is not required."
)
class
TestDropoutOpInference
(
OpTest
):
# is_test = True
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
0.35
,
'fix_seed'
:
True
,
'is_test'
:
True
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]}
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float32
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
def
test_check_output
(
self
):
self
.
check_output_with_place
(
self
.
place
,
check_dygraph
=
False
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
@
skip_check_grad_ci
(
reason
=
"For inference, check_grad is not required."
)
class
TestDropoutOpInference2
(
TestDropoutOpInference
):
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
'X'
:
np
.
random
.
random
((
32
,
64
,
3
)).
astype
(
self
.
dtype
)}
self
.
attrs
=
{
'dropout_prob'
:
0.75
,
'is_test'
:
True
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
]}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestDropoutOpWithSeed
(
TestDropoutOp
):
# the seed is a Tensor
def
setUp
(
self
):
self
.
op_type
=
"dropout"
self
.
set_npu
()
self
.
init_dtype
()
self
.
inputs
=
{
"X"
:
np
.
random
.
random
((
32
,
64
)).
astype
(
self
.
dtype
),
"Seed"
:
np
.
asarray
(
[
125
],
dtype
=
"int32"
)
}
self
.
attrs
=
{
'dropout_prob'
:
0.0
,
'is_test'
:
False
,
'dropout_implementation'
:
'upscale_in_train'
}
self
.
outputs
=
{
'Out'
:
self
.
inputs
[
'X'
],
'Mask'
:
np
.
ones
((
32
,
64
)).
astype
(
'uint8'
)
}
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestDropoutOpFp16
(
TestDropoutOp
):
# float16
def
init_dtype
(
self
):
self
.
dtype
=
np
.
float16
def
set_npu
(
self
):
self
.
__class__
.
use_npu
=
True
self
.
__class__
.
no_need_check_grad
=
True
self
.
place
=
paddle
.
NPUPlace
(
0
)
@
unittest
.
skipIf
(
not
paddle
.
is_compiled_with_npu
(),
"core is not compiled with NPU"
)
class
TestDropoutAPI
(
unittest
.
TestCase
):
def
setUp
(
self
):
np
.
random
.
seed
(
123
)
self
.
places
=
[
fluid
.
CPUPlace
(),
paddle
.
NPUPlace
(
0
)]
def
check_static_result
(
self
,
place
):
with
fluid
.
program_guard
(
fluid
.
Program
(),
fluid
.
Program
()):
input
=
fluid
.
data
(
name
=
"input"
,
shape
=
[
40
,
40
],
dtype
=
"float32"
)
res1
=
paddle
.
nn
.
functional
.
dropout
(
x
=
input
,
p
=
0.
,
training
=
False
,
mode
=
'upscale_in_train'
)
res2
=
paddle
.
nn
.
functional
.
dropout
(
x
=
input
,
p
=
0.
,
axis
=
0
,
training
=
True
,
mode
=
'upscale_in_train'
)
res3
=
paddle
.
nn
.
functional
.
dropout
(
x
=
input
,
p
=
0.
,
axis
=
0
,
training
=
False
,
mode
=
'upscale_in_train'
)
res4
=
paddle
.
nn
.
functional
.
dropout
(
x
=
input
,
p
=
0.
,
axis
=
[
0
,
1
],
training
=
True
,
mode
=
'upscale_in_train'
)
res5
=
paddle
.
nn
.
functional
.
dropout
(
x
=
input
,
p
=
0.
,
axis
=
[
0
,
1
],
training
=
False
,
mode
=
'upscale_in_train'
)
res6
=
paddle
.
nn
.
functional
.
dropout
(
x
=
input
,
p
=
1.
,
training
=
True
,
mode
=
'upscale_in_train'
)
res7
=
paddle
.
fluid
.
layers
.
dropout
(
x
=
input
,
dropout_prob
=
0.
,
dropout_implementation
=
'upscale_in_train'
)
res8
=
paddle
.
nn
.
functional
.
dropout
(
x
=
input
,
p
=
0.
,
axis
=
(
0
,
1
),
training
=
False
,
mode
=
'upscale_in_train'
)
in_np
=
np
.
random
.
random
([
40
,
40
]).
astype
(
"float32"
)
res_np
=
in_np
res_np2
=
np
.
zeros_like
(
in_np
)
exe
=
fluid
.
Executor
(
place
)
res_list
=
[
res1
,
res2
,
res3
,
res4
,
res5
,
res7
,
res8
]
for
res
in
res_list
:
fetches
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input"
:
in_np
},
fetch_list
=
[
res
])
self
.
assertTrue
(
np
.
allclose
(
fetches
[
0
],
res_np
))
fetches2
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"input"
:
in_np
},
fetch_list
=
[
res6
])
self
.
assertTrue
(
np
.
allclose
(
fetches2
[
0
],
res_np2
))
def
test_static
(
self
):
for
place
in
self
.
places
:
self
.
check_static_result
(
place
=
place
)
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录