未验证 提交 4c1ba73f 编写于 作者: R ronnywang 提交者: GitHub

[NPU] add one_hot_op_npu and tests (#34258)

* add one_hot_op and tests

* update

* make code clear
上级 56759ff4
......@@ -240,6 +240,38 @@ NpuOpRunner &NpuOpRunner::AddInput(std::vector<int64_t> &&dims) {
return *this;
}
NpuOpRunner &NpuOpRunner::AddInput(std::vector<float> &&values) {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto *dev_ctx =
static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
Tensor host_tensor;
TensorFromVector(values, *dev_ctx, &host_tensor);
host_tensors_.emplace_back(host_tensor);
// create aclTensorDesc
input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
// create aclDataBuffer
input_buffers_.emplace_back(CreateDataBuffer(host_tensor));
return *this;
}
NpuOpRunner &NpuOpRunner::AddInput(std::vector<double> &&values) {
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto *dev_ctx =
static_cast<platform::CPUDeviceContext *>(pool.Get(platform::CPUPlace()));
Tensor host_tensor;
TensorFromVector(values, *dev_ctx, &host_tensor);
host_tensors_.emplace_back(host_tensor);
// create aclTensorDesc
input_descs_.emplace_back(CreateTensorDesc(host_tensor, ACL_MEMTYPE_HOST));
// create aclDataBuffer
input_buffers_.emplace_back(CreateDataBuffer(host_tensor));
return *this;
}
NpuOpRunner &NpuOpRunner::AddOutput(const Tensor &tensor) {
// create aclTensorDesc
output_descs_.emplace_back(CreateTensorDesc(tensor));
......
......@@ -71,6 +71,10 @@ class NpuOpRunner {
NpuOpRunner &AddInput(std::vector<int64_t> &&dims);
NpuOpRunner &AddInput(std::vector<float> &&values);
NpuOpRunner &AddInput(std::vector<double> &&values);
NpuOpRunner &AddOutput(const Tensor &tensor);
NpuOpRunner &AddInputs(const std::vector<Tensor> &tensors);
......
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/one_hot_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class OneHotNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto& dev_ctx =
ctx.template device_context<paddle::platform::NPUDeviceContext>();
auto* in = ctx.Input<LoDTensor>("X");
auto* out = ctx.Output<LoDTensor>("Out");
int depth = ctx.Attr<int>("depth");
if (ctx.HasInput("depth_tensor")) {
auto* depth_tensor = ctx.Input<Tensor>("depth_tensor");
std::vector<int32_t> depth_data;
framework::TensorToVector(*depth_tensor, dev_ctx, &depth_data);
depth = depth_data[0];
auto in_dims = in->dims();
framework::DDim out_dims(in_dims);
out_dims[out_dims.size() - 1] = depth;
out->Resize(out_dims);
}
out->mutable_data<float>(ctx.GetPlace());
float on_value = 1.0f, off_value = 0.0f;
if (in->type() == framework::proto::VarType::INT32) {
NpuOpRunner runner;
runner.SetType("OneHot")
.AddInput(*in)
.AddInput(std::vector<int32_t>({static_cast<int32_t>(depth)}))
.AddInput(std::vector<float>({on_value}))
.AddInput(std::vector<float>({off_value}))
.AddAttr("axis", -1)
.AddOutput(*out);
runner.Run(dev_ctx.stream());
} else {
Tensor transformed_in;
transformed_in.mutable_data<int32_t>(in->dims(), dev_ctx.GetPlace());
const auto& cast_runner = NpuOpRunner("Cast", {*in}, {transformed_in},
{{"dst_type", ACL_INT32}});
cast_runner.Run(dev_ctx.stream());
NpuOpRunner runner;
runner.SetType("OneHot")
.AddInput(transformed_in)
.AddInput(std::vector<int32_t>({static_cast<int32_t>(depth)}))
.AddInput(std::vector<float>({on_value}))
.AddInput(std::vector<float>({off_value}))
.AddAttr("axis", -1)
.AddOutput(*out);
runner.Run(dev_ctx.stream());
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_NPU_KERNEL(one_hot, ops::OneHotNPUKernel<int32_t>,
ops::OneHotNPUKernel<int64_t>);
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import sys
import unittest
import numpy as np
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid.framework import Program, program_guard
paddle.enable_static()
class TestOneHotOp(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOp_attr(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOp_default_dtype(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot'
depth = 10
depth_np = np.array(10).astype('int32')
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
self.attrs = {}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOp_default_dtype_attr(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOp_out_of_range(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot'
depth = 10
x_lod = [[4, 1, 3, 3]]
x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth, 'allow_out_of_range': True}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
class TestOneHotOp_dtype_int64(OpTest):
def set_npu(self):
self.__class__.use_npu = True
def setUp(self):
self.set_npu()
self.op_type = 'one_hot'
depth = 10
dimension = 12
x_lod = [[4, 1, 3, 3]]
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
x = np.array(x).astype('int64').reshape([sum(x_lod[0]), 1])
out = np.zeros(shape=(np.product(x.shape[:-1]),
depth)).astype('float32')
for i in range(np.product(x.shape)):
out[i, x[i]] = 1.0
self.inputs = {'X': (x, x_lod)}
self.attrs = {'depth': depth}
self.outputs = {'Out': (out, x_lod)}
def test_check_output(self):
self.check_output_with_place(paddle.NPUPlace(0), check_dygraph=False)
if __name__ == '__main__':
paddle.enable_static()
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册