test_lr_scheduler.py 33.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import unittest

18 19
import numpy as np

20 21 22 23 24
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core


25 26 27
def reduce_lr_on_plateau(
    decay_rate, threshold, cooldown, patience, m, n, loss, var_list
):
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
    def is_better(current, best, m, n):
        if m == 'min' and n == 'rel':
            return current < best - best * threshold
        elif m == 'min' and n == 'abs':
            return current < best - threshold
        elif m == 'max' and n == 'rel':
            return current > best + best * threshold
        else:  # mode == 'max' and epsilon_mode == 'abs':
            return current > best + threshold

    if var_list[2] > 0:
        var_list[2] -= 1
        return var_list[1]

    if is_better(loss, var_list[0], m, n):
        var_list[0] = loss
        var_list[3] = 0
    else:
        var_list[3] += 1
        if var_list[3] > patience:
            var_list[2] = cooldown
            var_list[3] = 0
            new_lr = var_list[1] * decay_rate
            var_list[1] = new_lr if var_list[1] - new_lr > 1e-8 else var_list[1]

    return var_list[1]


56
class TestReduceOnPlateauDecay:
57 58 59
    def test_ReduceLR(self):
        # the decay rate must be less than 1.0
        with self.assertRaises(ValueError):
60
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=2.0)
61 62
        # the mode must be "min" or "max"
        with self.assertRaises(ValueError):
63
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, mode="test")
64 65
        # the threshold_mode must be "rel" or "abs"
        with self.assertRaises(ValueError):
66 67 68
            paddle.optimizer.lr.ReduceOnPlateau(
                learning_rate=1.0, threshold_mode="test"
            )
69
        with self.assertRaises(TypeError):
70
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate="test")
71
        with self.assertRaises(TypeError):
72
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=0.5).step("test")
73 74 75 76 77 78

        places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))

        for place in places:
79 80 81
            for m, n in zip(
                ['min', 'max', 'min', 'max'], ['rel', 'rel', 'abs', 'abs']
            ):
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
                kwargs = {
                    'learning_rate': 1.0,
                    'mode': m,
                    'factor': 0.5,
                    'patience': 3,
                    'threshold': 1e-4,
                    'threshold_mode': n,
                    'cooldown': 1,
                    'min_lr': 0,
                    'epsilon': 1e-8,
                    'verbose': False,
                }
                paddle.enable_static()
                self._test_static(place, kwargs)
                paddle.disable_static(place)
                self._test_dygraph(place, kwargs)
                paddle.enable_static()

    def _test_static(self, place, kwargs):
        paddle.enable_static()

        best = float("-10000") if kwargs['mode'] == "max" else float("10000")
        current_lr = 1.0
        cooldown_counter = 0
        num_bad_epochs = 0
        var_list = [best, current_lr, cooldown_counter, num_bad_epochs]

        main_prog = paddle.static.Program()
        start_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, start_prog):
112
            x = paddle.static.create_global_var(
113 114
                [1], 1, 'float32', persistable=True
            )
115 116
            paddle.increment(x)
            loss = paddle.sin(x)
117
            scheduler = paddle.optimizer.lr.ReduceOnPlateau(**kwargs)
118 119 120 121 122 123 124 125 126 127
            adam = paddle.optimizer.Adam(learning_rate=scheduler)
            adam.minimize(loss)
            lr_var = adam._global_learning_rate()
            test_prog = main_prog.clone()

        exe = paddle.static.Executor(place)
        exe.run(start_prog)

        for epoch in range(20):
            for batch_id in range(1):
128 129 130
                out, actual_lr = exe.run(
                    main_prog, fetch_list=[loss.name, lr_var.name]
                )
131
                expected_lr = reduce_lr_on_plateau(
132 133 134 135 136 137 138 139 140
                    kwargs['factor'],
                    kwargs['threshold'],
                    kwargs['cooldown'],
                    kwargs['patience'],
                    kwargs['mode'],
                    kwargs['threshold_mode'],
                    out[0],
                    var_list,
                )
141 142 143 144 145 146 147

            scheduler.step(out[0])
            actual_lr = scheduler()
            self.assertEqual(actual_lr, np.array(expected_lr))

        for epoch in range(10):
            for batch_id in range(1):
148 149 150
                out, actual_lr = exe.run(
                    test_prog, fetch_list=[loss.name, lr_var.name]
                )
151
                expected_lr = reduce_lr_on_plateau(
152 153 154 155 156 157 158 159 160
                    kwargs['factor'],
                    kwargs['threshold'],
                    kwargs['cooldown'],
                    kwargs['patience'],
                    kwargs['mode'],
                    kwargs['threshold_mode'],
                    out[0],
                    var_list,
                )
161 162 163 164 165 166 167 168 169 170 171 172 173 174
            scheduler.step(out[0])
            actual_lr = scheduler()
            self.assertEqual(actual_lr, np.array(expected_lr))

    def _test_dygraph(self, place, kwargs):
        paddle.disable_static(place)

        best = float("-10000") if kwargs['mode'] == "max" else float("10000")
        current_lr = 1.0
        cooldown_counter = 0
        num_bad_epochs = 0
        var_list = [best, current_lr, cooldown_counter, num_bad_epochs]

        linear = paddle.nn.Linear(10, 10)
175
        scheduler = paddle.optimizer.lr.ReduceOnPlateau(**kwargs)
176 177 178
        adam = paddle.optimizer.Adam(
            learning_rate=scheduler, parameters=linear.parameters()
        )
179 180 181 182 183 184 185 186 187 188 189 190 191 192

        for epoch in range(20):
            for batch_id in range(1):
                x = paddle.to_tensor(epoch).astype('float32')
                loss = paddle.sin(x)
                loss.backward()
                adam.step()
                adam.clear_grad()

            scheduler.step(loss)
            # get lr from paddle
            current_lr = adam.get_lr()
            # get lr form python
            expected_lr = reduce_lr_on_plateau(
193 194 195 196 197 198 199 200 201
                kwargs['factor'],
                kwargs['threshold'],
                kwargs['cooldown'],
                kwargs['patience'],
                kwargs['mode'],
                kwargs['threshold_mode'],
                loss,
                var_list,
            )
202 203
            self.assertEqual(current_lr, expected_lr)
        state_dict = adam.state_dict()
204
        scheduler1 = paddle.optimizer.lr.ReduceOnPlateau(**kwargs)
205 206 207
        adam1 = paddle.optimizer.Adam(
            learning_rate=scheduler1, parameters=linear.parameters()
        )
208
        adam1.set_state_dict(state_dict)
209 210 211
        self.assertEqual(
            scheduler.cooldown_counter, scheduler1.cooldown_counter
        )
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
        self.assertEqual(scheduler.best.numpy()[0], scheduler1.best)
        self.assertEqual(scheduler.num_bad_epochs, scheduler1.num_bad_epochs)
        self.assertEqual(scheduler.last_epoch, scheduler1.last_epoch)
        self.assertEqual(scheduler.last_lr, scheduler1.last_lr)


def noam_lr(epoch_num, d_model, warmup_steps, learning_rate=1.0, verbose=False):
    if epoch_num == 0:
        a = 1
    else:
        a = math.pow(epoch_num, -0.5)
    b = math.pow(warmup_steps, -1.5) * epoch_num
    return learning_rate * math.pow(d_model, -0.5) * min(a, b)


def lambda_lr(epoch_num, learning_rate, lr_lambda, verbose=False):
    return learning_rate * lr_lambda(epoch_num)


G
guguguzi 已提交
231 232 233 234 235 236 237
def multiplicative_lr(epoch_num, learning_rate, lr_lambda, verbose=False):
    latest_lr = learning_rate
    for i in range(epoch_num):
        latest_lr = latest_lr * lr_lambda(i + 1)
    return latest_lr


238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
def piecewise_lr(epoch_num, boundaries, values, verbose=False):
    assert len(boundaries) + 1 == len(values)
    for i in range(len(boundaries)):
        if epoch_num < boundaries[i]:
            return values[i]
    return values[len(values) - 1]


def exponential_lr(epoch_num, learning_rate, gamma, verbose=False):
    return learning_rate * gamma**epoch_num


def natural_exp_lr(epoch_num, learning_rate, gamma, verbose=False):
    return learning_rate * math.exp(-1 * gamma * epoch_num)


def inverse_time_lr(epoch_num, learning_rate, gamma, verbose=False):
    return learning_rate / (1 + gamma * epoch_num)


258 259 260 261 262 263 264 265 266
def polynomial_lr(
    epoch_num,
    learning_rate,
    decay_steps,
    end_lr=0.0001,
    power=1.0,
    cycle=False,
    verbose=False,
):
267 268 269 270 271 272 273 274 275

    if cycle:
        div = math.ceil(epoch_num / float(decay_steps))
        if epoch_num == 0:
            div = 1
        decay_steps = decay_steps * div
    else:
        epoch_num = min(epoch_num, decay_steps)
    return (learning_rate - end_lr) * (
276 277
        (1 - float(epoch_num) / float(decay_steps)) ** power
    ) + end_lr
278 279 280 281 282

    def get_lr(self):
        if self.last_epoch == 0:
            return self.base_lr
        elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
283 284 285 286 287 288
            return (
                self.last_lr
                + (self.base_lr - self.eta_min)
                * (1 - math.cos(math.pi / self.T_max))
                / 2
            )
289 290

        return (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / (
291 292
            1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)
        ) * (self.last_lr - self.eta_min) + self.eta_min
293 294 295 296 297


cosine_annealing_lr_current = None


298 299 300
def cosine_annealing_lr(
    epoch_num, learning_rate, T_max, eta_min=0, verbose=False
):
301 302 303 304
    global cosine_annealing_lr_current
    if epoch_num == 0:
        cosine_annealing_lr_current = learning_rate
    elif (epoch_num - 1 - T_max) % (2 * T_max) == 0:
305 306 307 308 309 310
        cosine_annealing_lr_current = (
            cosine_annealing_lr_current
            + (learning_rate - eta_min)
            * (1 - math.cos(math.pi / float(T_max)))
            / 2
        )
311
    else:
312
        cosine_annealing_lr_current = (
313 314 315 316
            1 + math.cos(math.pi * epoch_num / float(T_max))
        ) / (1 + math.cos(math.pi * (epoch_num - 1) / float(T_max))) * (
            cosine_annealing_lr_current - eta_min
        ) + eta_min
317 318 319
    return cosine_annealing_lr_current


320 321 322
def linear_warmup_lr(
    epoch_num, learning_rate, warmup_steps, start_lr, end_lr, verbose=False
):
323 324
    tmp = epoch_num - warmup_steps
    if tmp < 0:
325 326 327
        return start_lr + (end_lr - start_lr) * (
            float(epoch_num) / float(warmup_steps)
        )
328 329 330 331 332 333 334
    elif paddle.in_dynamic_mode():
        if tmp < 3:
            return 0.5
        elif tmp < 6:
            return 0.2
        else:
            return 0.1
335
    else:
336
        return 0.5
337 338


339 340 341
def multi_step_lr(
    epoch_num, learning_rate, milestones, gamma=0.1, verbose=False
):
342 343 344
    for i in range(len(milestones)):
        if epoch_num < milestones[i]:
            return learning_rate * (gamma**i)
345
    return learning_rate * (gamma ** len(milestones))
346 347 348 349 350 351


def step_lr(epoch_num, learning_rate, step_size, gamma=0.1, verbose=False):
    return learning_rate * math.pow(gamma, epoch_num // step_size)


352 353 354 355 356 357 358 359 360 361 362
def one_cycle_lr(
    epoch_num,
    max_learning_rate,
    total_steps,
    divide_factor=25,
    end_learning_rate=0.0001,
    phase_pct=0.3,
    anneal_strategy='cos',
    three_phase=False,
    verbose=False,
):
363 364 365 366
    initial_lr = max_learning_rate / divide_factor
    if three_phase:
        _end_steps = [
            float(phase_pct * total_steps) - 1,
367 368
            float(2 * phase_pct * total_steps) - 2,
            total_steps - 1,
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        ]
        _schedule_phases = [
            {
                'start_lr': initial_lr,
                'end_lr': max_learning_rate,
            },
            {
                'start_lr': max_learning_rate,
                'end_lr': initial_lr,
            },
            {
                'start_lr': initial_lr,
                'end_lr': end_learning_rate,
            },
        ]
    else:
        _end_steps = [float(phase_pct * total_steps) - 1, total_steps - 1]
        _schedule_phases = [
            {
                'start_lr': initial_lr,
                'end_lr': max_learning_rate,
            },
            {
                'start_lr': max_learning_rate,
                'end_lr': end_learning_rate,
            },
        ]

    if anneal_strategy == 'cos':

        def anneal_func(start, end, pct):
            cos_out = math.cos(math.pi * pct) + 1
            return end + (start - end) / 2.0 * cos_out
402

403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    else:

        def anneal_func(start, end, pct):
            return (end - start) * pct + start

    start_step = 0
    for i, phase in enumerate(_schedule_phases):
        end_step = _end_steps[i]
        if epoch_num <= end_step or i == len(_schedule_phases) - 1:
            pct = (epoch_num - start_step) / (end_step - start_step)
            computed_lr = anneal_func(phase['start_lr'], phase['end_lr'], pct)
            break
        start_step = end_step

    return computed_lr


420 421 422 423 424 425 426 427 428 429 430 431
def cyclic_lr(
    epoch_num,
    base_learning_rate,
    max_learning_rate,
    step_size_up,
    step_size_down,
    mode,
    exp_gamma=0.1,
    scale_fn=None,
    scale_mode='cycle',
    verbose=False,
):
432 433 434 435
    total_steps = step_size_up + step_size_down
    step_ratio = step_size_up / total_steps

    def triangular(x):
436
        return 1.0
437 438

    def triangular2(x):
439
        return 1 / (2.0 ** (x - 1))
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456

    def exp_range(x):
        return exp_gamma**x

    if scale_fn is None:
        if mode == 'triangular':
            scale_fn = triangular
            scale_mode = 'cycle'
        elif mode == 'triangular2':
            scale_fn = triangular2
            scale_mode = 'cycle'
        elif mode == 'exp_range':
            scale_fn = exp_range
            scale_mode = 'iterations'

    cycle = math.floor(1 + epoch_num / total_steps)
    iterations = epoch_num
457
    x = 1.0 + epoch_num / total_steps - cycle
458 459 460 461 462 463 464 465 466 467 468

    if x <= step_ratio:
        scale_factor = x / step_ratio
    else:
        scale_factor = (x - 1) / (step_ratio - 1)

    base_height = (max_learning_rate - base_learning_rate) * scale_factor

    return base_learning_rate + base_height * scale_fn(eval(scale_mode))


469 470
class TestLRScheduler(unittest.TestCase):
    def _test_static(self, python_func, paddle_api, kwarg, place):
471 472 473
        scheduler = paddle_api(**kwarg)
        adam = paddle.optimizer.Adam(learning_rate=scheduler)

474 475 476 477
        main_prog = paddle.static.Program()
        start_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, start_prog):
            x = paddle.static.data(name='x', shape=[3, 4, 5])
478 479
            loss = paddle.mean(x)

480 481 482 483 484 485 486
            adam.minimize(loss)
            lr_var = adam._global_learning_rate()
            test_prog = main_prog.clone()

        num = 0
        exe = paddle.static.Executor(place)
        exe.run(start_prog)
487

488 489 490 491
        for epoch in range(5):
            for batch_id in range(2):
                out = exe.run(
                    main_prog,
492
                    feed={'x': np.random.randn(3, 4, 5).astype('float32')},
493 494
                    fetch_list=lr_var.name,
                )
495 496 497 498 499 500 501 502
            self.assertEqual(out, np.array(python_func(num, **kwarg)))
            scheduler.step()
            num += 1

        for epoch in range(5):
            for batch_id in range(2):
                out = exe.run(
                    test_prog,
503
                    feed={'x': np.random.randn(3, 4, 5).astype('float32')},
504 505
                    fetch_list=lr_var.name,
                )
506 507 508 509 510 511
            self.assertEqual(out, np.array(python_func(num, **kwarg)))
            scheduler.step()
            num += 1

        if isinstance(place, paddle.CPUPlace):
            compiled_train_prog = paddle.static.CompiledProgram(
512 513 514 515
                main_prog
            ).with_data_parallel(
                loss_name=loss.name, places=fluid.cpu_places(4)
            )
516 517 518
            for epoch in range(5):
                python_result = python_func(num, **kwarg)
                for batch_id in range(2):
519 520 521
                    _ = exe.run(
                        compiled_train_prog,
                        feed={'x': np.random.randn(12, 4, 5).astype('float32')},
522 523
                        fetch_list=lr_var.name,
                    )
524 525 526 527 528 529 530 531 532 533 534 535 536
                scopes = compiled_train_prog._executor.local_scopes()
                out = np.array(scopes[0].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[1].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[2].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[3].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                scheduler.step()
                num += 1

            compiled_test_prog = paddle.static.CompiledProgram(
537 538 539 540 541 542
                test_prog
            ).with_data_parallel(
                loss_name=loss.name,
                share_vars_from=compiled_train_prog,
                places=fluid.cpu_places(4),
            )
543 544 545
            for epoch in range(5):
                python_result = python_func(num, **kwarg)
                for batch_id in range(2):
546 547 548
                    _ = exe.run(
                        compiled_test_prog,
                        feed={'x': np.random.randn(12, 4, 5).astype('float32')},
549 550
                        fetch_list=lr_var.name,
                    )
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
                scopes = compiled_test_prog._executor.local_scopes()
                out = np.array(scopes[0].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[1].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[2].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[3].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                scheduler.step()
                num += 1

    def _test_dygraph(self, python_func, paddle_api, kwarg, place):
        paddle.disable_static(place)
        x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
        linear = paddle.nn.Linear(10, 10)
567 568
        if paddle_api.__name__ == "LinearWarmup":
            kwarg['learning_rate'] = paddle.optimizer.lr.PiecewiseDecay(
569 570
                [3, 6], [0.5, 0.2, 0.1]
            )
571
        scheduler = paddle_api(**kwarg)
572 573 574
        adam = paddle.optimizer.Adam(
            learning_rate=scheduler, parameters=linear.parameters()
        )
575 576 577 578
        for epoch in range(20):
            for batch_id in range(2):
                x = paddle.to_tensor(x)
                out = linear(x)
C
chentianyu03 已提交
579
                loss = paddle.mean(out)
580 581 582 583 584
                loss.backward()
                adam.step()
                adam.clear_grad()
            current_lr = adam.get_lr()
            expected_lr = python_func(epoch, **kwarg)
585
            if paddle_api.__name__ == "CosineAnnealingDecay":
586 587
                self.assertAlmostEqual(current_lr, expected_lr)
                scheduler.step(epoch + 1)
588 589 590 591
            elif paddle_api.__name__ == "LinearWarmup":
                self.assertAlmostEqual(current_lr, expected_lr)
                state_dict = adam.state_dict()
                scheduler1 = paddle.optimizer.lr.LinearWarmup(**kwarg)
592 593 594
                adam1 = paddle.optimizer.Adam(
                    learning_rate=scheduler1, parameters=linear.parameters()
                )
595 596 597
                adam1.set_state_dict(state_dict)
                self.assertEqual(scheduler.last_epoch, scheduler1.last_epoch)
                self.assertEqual(scheduler.last_lr, scheduler1.last_lr)
598 599 600 601 602 603 604 605
                self.assertEqual(
                    scheduler.learning_rate.last_lr,
                    scheduler1.learning_rate.last_lr,
                )
                self.assertEqual(
                    scheduler.learning_rate.last_epoch,
                    scheduler1.learning_rate.last_epoch,
                )
606 607 608 609
                scheduler.step()
            else:
                self.assertEqual(current_lr, expected_lr)
                scheduler.step()
610 611 612

    def test_scheduler(self):
        with self.assertRaises(NotImplementedError):
613
            paddle.optimizer.lr.LRScheduler().step()
614
        with self.assertRaises(TypeError):
615 616 617
            paddle.optimizer.lr.MultiStepDecay(
                learning_rate="test", milestones=[1, 2, 3]
            )
618
        with self.assertRaises(TypeError):
619 620 621
            paddle.optimizer.lr.MultiStepDecay(
                learning_rate=0.5, milestones='test'
            )
622
        with self.assertRaises(ValueError):
623 624 625
            paddle.optimizer.lr.MultiStepDecay(
                learning_rate=0.5, milestones=[3, 2, 1]
            )
626
        with self.assertRaises(ValueError):
627 628 629
            paddle.optimizer.lr.MultiStepDecay(
                learning_rate=0.5, milestones=[1, 2, 3], gamma=2
            )
630
        # check type of max_learning_rate
631
        with self.assertRaises(TypeError):
632 633 634
            paddle.optimizer.lr.OneCycleLR(
                max_learning_rate='test', total_steps=20
            )
635
        # check value of max_learning_rate
636
        with self.assertRaises(ValueError):
637 638 639
            paddle.optimizer.lr.OneCycleLR(
                max_learning_rate=-1.5, total_steps=20
            )
640
        # check type of end_learning_rate
641
        with self.assertRaises(TypeError):
642 643 644
            paddle.optimizer.lr.OneCycleLR(
                max_learning_rate=0.1, total_steps=20, end_learning_rate='test'
            )
645
        # check value of end_learning_rate
646
        with self.assertRaises(ValueError):
647 648 649
            paddle.optimizer.lr.OneCycleLR(
                max_learning_rate=0.1, total_steps=20, end_learning_rate=-1
            )
650
        # check type of total_steps
651
        with self.assertRaises(TypeError):
652 653 654
            paddle.optimizer.lr.OneCycleLR(
                max_learning_rate=0.1, total_steps='test'
            )
655
        # check value of total_steps
656
        with self.assertRaises(ValueError):
657 658 659
            paddle.optimizer.lr.OneCycleLR(
                max_learning_rate=0.1, total_steps=-10
            )
660
        # check value of anneal_strategy
661
        with self.assertRaises(ValueError):
662 663 664
            paddle.optimizer.lr.OneCycleLR(
                max_learning_rate=0.1, total_steps=20, anneal_strategy='test'
            )
665
        # check value of phase_pct when three_phase is True
666
        with self.assertRaises(ValueError):
667 668 669 670 671 672
            paddle.optimizer.lr.OneCycleLR(
                max_learning_rate=0.1,
                total_steps=20,
                phase_pct=0.6,
                three_phase=True,
            )
673 674
        # check type of max_learning_rate
        with self.assertRaises(TypeError):
675 676 677 678 679
            paddle.optimizer.lr.CyclicLR(
                base_learning_rate=0.5,
                max_learning_rate='test',
                step_size_up=10,
            )
680 681
        # check value of max_learning_rate
        with self.assertRaises(ValueError):
682 683 684
            paddle.optimizer.lr.CyclicLR(
                base_learning_rate=0.5, max_learning_rate=-1, step_size_up=10
            )
685 686
        # check type of step_size_up
        with self.assertRaises(TypeError):
687 688 689 690 691
            paddle.optimizer.lr.CyclicLR(
                base_learning_rate=0.5,
                max_learning_rate=1.0,
                step_size_up='test',
            )
692 693
        # check value of step_size_up
        with self.assertRaises(ValueError):
694 695 696
            paddle.optimizer.lr.CyclicLR(
                base_learning_rate=0.5, max_learning_rate=1.0, step_size_up=-1
            )
697 698
        # check type of step_size_down
        with self.assertRaises(TypeError):
699 700 701 702 703 704
            paddle.optimizer.lr.CyclicLR(
                base_learning_rate=0.5,
                max_learning_rate=1.0,
                step_size_up=500,
                step_size_down='test',
            )
705 706
        # check type of step_size_down
        with self.assertRaises(ValueError):
707 708 709 710 711 712
            paddle.optimizer.lr.CyclicLR(
                base_learning_rate=0.5,
                max_learning_rate=1.0,
                step_size_up=500,
                step_size_down=-1,
            )
713 714
        # check value of mode
        with self.assertRaises(ValueError):
715 716 717 718 719 720 721
            paddle.optimizer.lr.CyclicLR(
                base_learning_rate=0.5,
                max_learning_rate=1.0,
                step_size_up=500,
                step_size_down=500,
                mode='test',
            )
722 723
        # check type value of scale_mode
        with self.assertRaises(ValueError):
724 725 726 727 728 729 730
            paddle.optimizer.lr.CyclicLR(
                base_learning_rate=0.5,
                max_learning_rate=1.0,
                step_size_up=500,
                step_size_down=-1,
                scale_mode='test',
            )
731 732

        func_api_kwargs = [
733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
            (
                noam_lr,
                paddle.optimizer.lr.NoamDecay,
                {"d_model": 0.01, "warmup_steps": 100, "verbose": False},
            ),
            (
                piecewise_lr,
                paddle.optimizer.lr.PiecewiseDecay,
                {
                    "boundaries": [3, 6, 9, 15, 20],
                    "values": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
                    "verbose": False,
                },
            ),
            (
                natural_exp_lr,
                paddle.optimizer.lr.NaturalExpDecay,
                {"learning_rate": 0.5, "gamma": 0.1, "verbose": True},
            ),
            (
                inverse_time_lr,
                paddle.optimizer.lr.InverseTimeDecay,
                {"learning_rate": 0.5, "gamma": 0.1, "verbose": False},
            ),
            (
                polynomial_lr,
                paddle.optimizer.lr.PolynomialDecay,
                {
                    "learning_rate": 0.5,
                    "decay_steps": 20,
                    "end_lr": 0,
                    "power": 1.0,
                    "cycle": False,
                },
            ),
            (
                polynomial_lr,
                paddle.optimizer.lr.PolynomialDecay,
                {
                    "learning_rate": 0.5,
                    "decay_steps": 20,
                    "end_lr": 0,
                    "power": 1.0,
                    "cycle": True,
                    "verbose": False,
                },
            ),
            (
                linear_warmup_lr,
                paddle.optimizer.lr.LinearWarmup,
                {
                    'learning_rate': 0.5,
                    'warmup_steps': 10,
                    'start_lr': 0,
                    'end_lr': 0.5,
                },
            ),
            (
                exponential_lr,
                paddle.optimizer.lr.ExponentialDecay,
                {"learning_rate": 0.5, "gamma": 0.9, "verbose": False},
            ),
            (
                multi_step_lr,
                paddle.optimizer.lr.MultiStepDecay,
                {
                    "learning_rate": 0.5,
                    "milestones": [3, 6, 9, 15, 20],
                    "gamma": 0.8,
                },
            ),
            (
                step_lr,
                paddle.optimizer.lr.StepDecay,
                {
                    "learning_rate": 0.5,
                    "step_size": 2,
                    "gamma": 0.8,
                    "verbose": False,
                },
            ),
            (
                lambda_lr,
                paddle.optimizer.lr.LambdaDecay,
                {
                    "learning_rate": 0.5,
                    "lr_lambda": lambda x: 0.95**x,
                    "verbose": True,
                },
            ),
            (
                multiplicative_lr,
                paddle.optimizer.lr.MultiplicativeDecay,
                {
                    "learning_rate": 0.5,
                    "lr_lambda": lambda x: 0.95,
                    "verbose": True,
                },
            ),
            (
                cosine_annealing_lr,
                paddle.optimizer.lr.CosineAnnealingDecay,
                {"learning_rate": 0.5, "T_max": 10, "verbose": False},
            ),
            (
                one_cycle_lr,
                paddle.optimizer.lr.OneCycleLR,
                {
                    "max_learning_rate": 0.1,
                    "total_steps": 20,
                    "divide_factor": 5,
                    "end_learning_rate": 0.0001,
                    "anneal_strategy": 'cos',
                    "phase_pct": 0.3,
                    "three_phase": False,
                },
            ),
            (
                one_cycle_lr,
                paddle.optimizer.lr.OneCycleLR,
                {
                    "max_learning_rate": 0.5,
                    "total_steps": 20,
                    "divide_factor": 10,
                    "end_learning_rate": 0.001,
                    "anneal_strategy": 'linear',
                    "phase_pct": 0.4,
                    "three_phase": False,
                },
            ),
            (
                one_cycle_lr,
                paddle.optimizer.lr.OneCycleLR,
                {
                    "max_learning_rate": 1.0,
                    "total_steps": 20,
                    "divide_factor": 9,
                    "end_learning_rate": 0.0001,
                    "anneal_strategy": 'cos',
                    "phase_pct": 0.3,
                    "three_phase": True,
                },
            ),
            (
                one_cycle_lr,
                paddle.optimizer.lr.OneCycleLR,
                {
                    "max_learning_rate": 0.3,
                    "total_steps": 20,
                    "divide_factor": 25,
                    "end_learning_rate": 0.0005,
                    "anneal_strategy": 'linear',
                    "phase_pct": 0.2,
                    "three_phase": True,
                },
            ),
            (
                cyclic_lr,
                paddle.optimizer.lr.CyclicLR,
                {
                    "base_learning_rate": 0.5,
                    "max_learning_rate": 1.0,
                    "step_size_up": 15,
                    "step_size_down": 5,
                    "mode": 'triangular',
                    "exp_gamma": 1.0,
                    "scale_fn": None,
                    "scale_mode": 'cycle',
                    "verbose": False,
                },
            ),
            (
                cyclic_lr,
                paddle.optimizer.lr.CyclicLR,
                {
                    "base_learning_rate": 0.5,
                    "max_learning_rate": 1.0,
                    "step_size_up": 15,
                    "step_size_down": 5,
                    "mode": 'triangular2',
                    "exp_gamma": 1.0,
                    "scale_fn": None,
                    "scale_mode": 'cycle',
                    "verbose": False,
                },
            ),
            (
                cyclic_lr,
                paddle.optimizer.lr.CyclicLR,
                {
                    "base_learning_rate": 0.5,
                    "max_learning_rate": 1.0,
                    "step_size_up": 15,
                    "step_size_down": 5,
                    "mode": 'exp_range',
                    "exp_gamma": 0.8,
                    "scale_fn": None,
                    "scale_mode": 'cycle',
                    "verbose": False,
                },
            ),
            (
                cyclic_lr,
                paddle.optimizer.lr.CyclicLR,
                {
                    "base_learning_rate": 0.5,
                    "max_learning_rate": 1.0,
                    "step_size_up": 15,
                    "step_size_down": 5,
                    "mode": 'exp_range',
                    "exp_gamma": 1.0,
                    "scale_fn": lambda x: 0.95**x,
                    "scale_mode": 'cycle',
                    "verbose": False,
                },
            ),
            (
                cyclic_lr,
                paddle.optimizer.lr.CyclicLR,
                {
                    "base_learning_rate": 0.5,
                    "max_learning_rate": 1.0,
                    "step_size_up": 15,
                    "step_size_down": 5,
                    "mode": 'exp_range',
                    "exp_gamma": 1.0,
                    "scale_fn": lambda x: 0.95,
                    "scale_mode": 'iterations',
                    "verbose": False,
                },
            ),
964
        ]
965 966 967 968 969 970 971 972

        for python_func, paddle_api, kwarg in func_api_kwargs:
            places = [paddle.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(paddle.CUDAPlace(0))

            for place in places:
                paddle.enable_static()
973
                self._test_static(python_func, paddle_api, kwarg, place)
974 975 976 977
                paddle.disable_static(place)
                self._test_dygraph(python_func, paddle_api, kwarg, place)
                paddle.enable_static()

978
    def test_linear_warmp(self):
979 980 981
        natural_lr = paddle.optimizer.lr.NaturalExpDecay(
            learning_rate=0.5, gamma=0.1
        )
982
        natural_lr_warmup = paddle.optimizer.lr.LinearWarmup(
983 984
            learning_rate=natural_lr, warmup_steps=10, start_lr=0.0, end_lr=0.1
        )
985 986
        for idx in range(30):
            if idx >= 10:
987 988 989
                self.assertEqual(
                    natural_lr_warmup.get_lr(), natural_lr.get_lr()
                )
990 991 992
                natural_lr.step()
            natural_lr_warmup.step()

993 994

if __name__ == '__main__':
H
hong 已提交
995
    paddle.enable_static()
996
    unittest.main()