test_lr_scheduler.py 33.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy as np
import unittest

import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core


def reduce_lr_on_plateau(decay_rate, threshold, cooldown, patience, m, n, loss,
                         var_list):
26

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    def is_better(current, best, m, n):
        if m == 'min' and n == 'rel':
            return current < best - best * threshold
        elif m == 'min' and n == 'abs':
            return current < best - threshold
        elif m == 'max' and n == 'rel':
            return current > best + best * threshold
        else:  # mode == 'max' and epsilon_mode == 'abs':
            return current > best + threshold

    if var_list[2] > 0:
        var_list[2] -= 1
        return var_list[1]

    if is_better(loss, var_list[0], m, n):
        var_list[0] = loss
        var_list[3] = 0
    else:
        var_list[3] += 1
        if var_list[3] > patience:
            var_list[2] = cooldown
            var_list[3] = 0
            new_lr = var_list[1] * decay_rate
            var_list[1] = new_lr if var_list[1] - new_lr > 1e-8 else var_list[1]

    return var_list[1]


55
class TestReduceOnPlateauDecay(object):
56

57 58 59
    def test_ReduceLR(self):
        # the decay rate must be less than 1.0
        with self.assertRaises(ValueError):
60
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=2.0)
61 62
        # the mode must be "min" or "max"
        with self.assertRaises(ValueError):
63
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, mode="test")
64 65
        # the threshold_mode must be "rel" or "abs"
        with self.assertRaises(ValueError):
66 67
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0,
                                                threshold_mode="test")
68
        with self.assertRaises(TypeError):
69
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate="test")
70
        with self.assertRaises(TypeError):
71
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=0.5).step("test")
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

        places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))

        for place in places:
            for m, n in zip(['min', 'max', 'min', 'max'],
                            ['rel', 'rel', 'abs', 'abs']):
                kwargs = {
                    'learning_rate': 1.0,
                    'mode': m,
                    'factor': 0.5,
                    'patience': 3,
                    'threshold': 1e-4,
                    'threshold_mode': n,
                    'cooldown': 1,
                    'min_lr': 0,
                    'epsilon': 1e-8,
                    'verbose': False,
                }
                paddle.enable_static()
                self._test_static(place, kwargs)
                paddle.disable_static(place)
                self._test_dygraph(place, kwargs)
                paddle.enable_static()

    def _test_static(self, place, kwargs):
        paddle.enable_static()

        best = float("-10000") if kwargs['mode'] == "max" else float("10000")
        current_lr = 1.0
        cooldown_counter = 0
        num_bad_epochs = 0
        var_list = [best, current_lr, cooldown_counter, num_bad_epochs]

        main_prog = paddle.static.Program()
        start_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, start_prog):
110 111 112 113
            x = fluid.layers.create_global_var([1],
                                               1,
                                               'float32',
                                               persistable=True)
114 115
            paddle.increment(x)
            loss = paddle.sin(x)
116
            scheduler = paddle.optimizer.lr.ReduceOnPlateau(**kwargs)
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
            adam = paddle.optimizer.Adam(learning_rate=scheduler)
            adam.minimize(loss)
            lr_var = adam._global_learning_rate()
            test_prog = main_prog.clone()

        exe = paddle.static.Executor(place)
        exe.run(start_prog)

        for epoch in range(20):
            for batch_id in range(1):
                out, actual_lr = exe.run(main_prog,
                                         fetch_list=[loss.name, lr_var.name])
                expected_lr = reduce_lr_on_plateau(
                    kwargs['factor'], kwargs['threshold'], kwargs['cooldown'],
                    kwargs['patience'], kwargs['mode'],
                    kwargs['threshold_mode'], out[0], var_list)

            scheduler.step(out[0])
            actual_lr = scheduler()
            self.assertEqual(actual_lr, np.array(expected_lr))

        for epoch in range(10):
            for batch_id in range(1):
                out, actual_lr = exe.run(test_prog,
                                         fetch_list=[loss.name, lr_var.name])
                expected_lr = reduce_lr_on_plateau(
                    kwargs['factor'], kwargs['threshold'], kwargs['cooldown'],
                    kwargs['patience'], kwargs['mode'],
                    kwargs['threshold_mode'], out[0], var_list)
            scheduler.step(out[0])
            actual_lr = scheduler()
            self.assertEqual(actual_lr, np.array(expected_lr))

    def _test_dygraph(self, place, kwargs):
        paddle.disable_static(place)

        best = float("-10000") if kwargs['mode'] == "max" else float("10000")
        current_lr = 1.0
        cooldown_counter = 0
        num_bad_epochs = 0
        var_list = [best, current_lr, cooldown_counter, num_bad_epochs]

        linear = paddle.nn.Linear(10, 10)
160
        scheduler = paddle.optimizer.lr.ReduceOnPlateau(**kwargs)
161 162
        adam = paddle.optimizer.Adam(learning_rate=scheduler,
                                     parameters=linear.parameters())
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

        for epoch in range(20):
            for batch_id in range(1):
                x = paddle.to_tensor(epoch).astype('float32')
                loss = paddle.sin(x)
                loss.backward()
                adam.step()
                adam.clear_grad()

            scheduler.step(loss)
            # get lr from paddle
            current_lr = adam.get_lr()
            # get lr form python
            expected_lr = reduce_lr_on_plateau(
                kwargs['factor'], kwargs['threshold'], kwargs['cooldown'],
                kwargs['patience'], kwargs['mode'], kwargs['threshold_mode'],
                loss, var_list)
            self.assertEqual(current_lr, expected_lr)
        state_dict = adam.state_dict()
182
        scheduler1 = paddle.optimizer.lr.ReduceOnPlateau(**kwargs)
183 184
        adam1 = paddle.optimizer.Adam(learning_rate=scheduler1,
                                      parameters=linear.parameters())
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
        adam1.set_state_dict(state_dict)
        self.assertEqual(scheduler.cooldown_counter,
                         scheduler1.cooldown_counter)
        self.assertEqual(scheduler.best.numpy()[0], scheduler1.best)
        self.assertEqual(scheduler.num_bad_epochs, scheduler1.num_bad_epochs)
        self.assertEqual(scheduler.last_epoch, scheduler1.last_epoch)
        self.assertEqual(scheduler.last_lr, scheduler1.last_lr)


def noam_lr(epoch_num, d_model, warmup_steps, learning_rate=1.0, verbose=False):
    if epoch_num == 0:
        a = 1
    else:
        a = math.pow(epoch_num, -0.5)
    b = math.pow(warmup_steps, -1.5) * epoch_num
    return learning_rate * math.pow(d_model, -0.5) * min(a, b)


def lambda_lr(epoch_num, learning_rate, lr_lambda, verbose=False):
    return learning_rate * lr_lambda(epoch_num)


G
guguguzi 已提交
207 208 209 210 211 212 213
def multiplicative_lr(epoch_num, learning_rate, lr_lambda, verbose=False):
    latest_lr = learning_rate
    for i in range(epoch_num):
        latest_lr = latest_lr * lr_lambda(i + 1)
    return latest_lr


214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
def piecewise_lr(epoch_num, boundaries, values, verbose=False):
    assert len(boundaries) + 1 == len(values)
    for i in range(len(boundaries)):
        if epoch_num < boundaries[i]:
            return values[i]
    return values[len(values) - 1]


def exponential_lr(epoch_num, learning_rate, gamma, verbose=False):
    return learning_rate * gamma**epoch_num


def natural_exp_lr(epoch_num, learning_rate, gamma, verbose=False):
    return learning_rate * math.exp(-1 * gamma * epoch_num)


def inverse_time_lr(epoch_num, learning_rate, gamma, verbose=False):
    return learning_rate / (1 + gamma * epoch_num)


def polynomial_lr(epoch_num,
                  learning_rate,
                  decay_steps,
                  end_lr=0.0001,
                  power=1.0,
                  cycle=False,
                  verbose=False):

    if cycle:
        div = math.ceil(epoch_num / float(decay_steps))
        if epoch_num == 0:
            div = 1
        decay_steps = decay_steps * div
    else:
        epoch_num = min(epoch_num, decay_steps)
    return (learning_rate - end_lr) * (
        (1 - float(epoch_num) / float(decay_steps))**power) + end_lr

    def get_lr(self):
        if self.last_epoch == 0:
            return self.base_lr
        elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
256 257
            return self.last_lr + (self.base_lr - self.eta_min) * (
                1 - math.cos(math.pi / self.T_max)) / 2
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

        return (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / (
            1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) * (
                self.last_lr - self.eta_min) + self.eta_min


cosine_annealing_lr_current = None


def cosine_annealing_lr(epoch_num,
                        learning_rate,
                        T_max,
                        eta_min=0,
                        verbose=False):
    global cosine_annealing_lr_current
    if epoch_num == 0:
        cosine_annealing_lr_current = learning_rate
    elif (epoch_num - 1 - T_max) % (2 * T_max) == 0:
        cosine_annealing_lr_current = cosine_annealing_lr_current + (
277 278
            learning_rate - eta_min) * (1 -
                                        math.cos(math.pi / float(T_max))) / 2
279
    else:
280 281 282 283
        cosine_annealing_lr_current = (
            1 + math.cos(math.pi * epoch_num / float(T_max))) / (
                1 + math.cos(math.pi * (epoch_num - 1) / float(T_max))) * (
                    cosine_annealing_lr_current - eta_min) + eta_min
284 285 286 287 288 289 290 291 292
    return cosine_annealing_lr_current


def linear_warmup_lr(epoch_num,
                     learning_rate,
                     warmup_steps,
                     start_lr,
                     end_lr,
                     verbose=False):
293 294
    tmp = epoch_num - warmup_steps
    if tmp < 0:
295 296
        return start_lr + (end_lr - start_lr) * (float(epoch_num) /
                                                 float(warmup_steps))
297 298 299 300 301 302 303
    elif paddle.in_dynamic_mode():
        if tmp < 3:
            return 0.5
        elif tmp < 6:
            return 0.2
        else:
            return 0.1
304
    else:
305
        return 0.5
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322


def multi_step_lr(epoch_num,
                  learning_rate,
                  milestones,
                  gamma=0.1,
                  verbose=False):
    for i in range(len(milestones)):
        if epoch_num < milestones[i]:
            return learning_rate * (gamma**i)
    return learning_rate * (gamma**len(milestones))


def step_lr(epoch_num, learning_rate, step_size, gamma=0.1, verbose=False):
    return learning_rate * math.pow(gamma, epoch_num // step_size)


323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
def one_cycle_lr(epoch_num,
                 max_learning_rate,
                 total_steps,
                 divide_factor=25,
                 end_learning_rate=0.0001,
                 phase_pct=0.3,
                 anneal_strategy='cos',
                 three_phase=False,
                 verbose=False):
    initial_lr = max_learning_rate / divide_factor
    if three_phase:
        _end_steps = [
            float(phase_pct * total_steps) - 1,
            float(2 * phase_pct * total_steps) - 2, total_steps - 1
        ]
        _schedule_phases = [
            {
                'start_lr': initial_lr,
                'end_lr': max_learning_rate,
            },
            {
                'start_lr': max_learning_rate,
                'end_lr': initial_lr,
            },
            {
                'start_lr': initial_lr,
                'end_lr': end_learning_rate,
            },
        ]
    else:
        _end_steps = [float(phase_pct * total_steps) - 1, total_steps - 1]
        _schedule_phases = [
            {
                'start_lr': initial_lr,
                'end_lr': max_learning_rate,
            },
            {
                'start_lr': max_learning_rate,
                'end_lr': end_learning_rate,
            },
        ]

    if anneal_strategy == 'cos':

        def anneal_func(start, end, pct):
            cos_out = math.cos(math.pi * pct) + 1
            return end + (start - end) / 2.0 * cos_out
    else:

        def anneal_func(start, end, pct):
            return (end - start) * pct + start

    start_step = 0
    for i, phase in enumerate(_schedule_phases):
        end_step = _end_steps[i]
        if epoch_num <= end_step or i == len(_schedule_phases) - 1:
            pct = (epoch_num - start_step) / (end_step - start_step)
            computed_lr = anneal_func(phase['start_lr'], phase['end_lr'], pct)
            break
        start_step = end_step

    return computed_lr


387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
def cyclic_lr(epoch_num,
              base_learning_rate,
              max_learning_rate,
              step_size_up,
              step_size_down,
              mode,
              exp_gamma=0.1,
              scale_fn=None,
              scale_mode='cycle',
              verbose=False):
    total_steps = step_size_up + step_size_down
    step_ratio = step_size_up / total_steps

    def triangular(x):
        return 1.

    def triangular2(x):
        return 1 / (2.**(x - 1))

    def exp_range(x):
        return exp_gamma**x

    if scale_fn is None:
        if mode == 'triangular':
            scale_fn = triangular
            scale_mode = 'cycle'
        elif mode == 'triangular2':
            scale_fn = triangular2
            scale_mode = 'cycle'
        elif mode == 'exp_range':
            scale_fn = exp_range
            scale_mode = 'iterations'

    cycle = math.floor(1 + epoch_num / total_steps)
    iterations = epoch_num
    x = 1. + epoch_num / total_steps - cycle

    if x <= step_ratio:
        scale_factor = x / step_ratio
    else:
        scale_factor = (x - 1) / (step_ratio - 1)

    base_height = (max_learning_rate - base_learning_rate) * scale_factor

    return base_learning_rate + base_height * scale_fn(eval(scale_mode))


434
class TestLRScheduler(unittest.TestCase):
435

436
    def _test_static(self, python_func, paddle_api, kwarg, place):
437 438 439
        scheduler = paddle_api(**kwarg)
        adam = paddle.optimizer.Adam(learning_rate=scheduler)

440 441 442 443
        main_prog = paddle.static.Program()
        start_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, start_prog):
            x = paddle.static.data(name='x', shape=[3, 4, 5])
444 445
            loss = paddle.mean(x)

446 447 448 449 450 451 452
            adam.minimize(loss)
            lr_var = adam._global_learning_rate()
            test_prog = main_prog.clone()

        num = 0
        exe = paddle.static.Executor(place)
        exe.run(start_prog)
453

454 455 456 457
        for epoch in range(5):
            for batch_id in range(2):
                out = exe.run(
                    main_prog,
458
                    feed={'x': np.random.randn(3, 4, 5).astype('float32')},
459 460 461 462 463 464 465 466 467
                    fetch_list=lr_var.name)
            self.assertEqual(out, np.array(python_func(num, **kwarg)))
            scheduler.step()
            num += 1

        for epoch in range(5):
            for batch_id in range(2):
                out = exe.run(
                    test_prog,
468
                    feed={'x': np.random.randn(3, 4, 5).astype('float32')},
469 470 471 472 473 474 475
                    fetch_list=lr_var.name)
            self.assertEqual(out, np.array(python_func(num, **kwarg)))
            scheduler.step()
            num += 1

        if isinstance(place, paddle.CPUPlace):
            compiled_train_prog = paddle.static.CompiledProgram(
476 477
                main_prog).with_data_parallel(loss_name=loss.name,
                                              places=fluid.cpu_places(4))
478 479 480
            for epoch in range(5):
                python_result = python_func(num, **kwarg)
                for batch_id in range(2):
481 482 483 484
                    _ = exe.run(
                        compiled_train_prog,
                        feed={'x': np.random.randn(12, 4, 5).astype('float32')},
                        fetch_list=lr_var.name)
485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
                scopes = compiled_train_prog._executor.local_scopes()
                out = np.array(scopes[0].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[1].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[2].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[3].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                scheduler.step()
                num += 1

            compiled_test_prog = paddle.static.CompiledProgram(
                test_prog).with_data_parallel(
                    loss_name=loss.name,
                    share_vars_from=compiled_train_prog,
                    places=fluid.cpu_places(4))
            for epoch in range(5):
                python_result = python_func(num, **kwarg)
                for batch_id in range(2):
505 506 507 508
                    _ = exe.run(
                        compiled_test_prog,
                        feed={'x': np.random.randn(12, 4, 5).astype('float32')},
                        fetch_list=lr_var.name)
509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
                scopes = compiled_test_prog._executor.local_scopes()
                out = np.array(scopes[0].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[1].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[2].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[3].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                scheduler.step()
                num += 1

    def _test_dygraph(self, python_func, paddle_api, kwarg, place):
        paddle.disable_static(place)
        x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
        linear = paddle.nn.Linear(10, 10)
525 526 527
        if paddle_api.__name__ == "LinearWarmup":
            kwarg['learning_rate'] = paddle.optimizer.lr.PiecewiseDecay(
                [3, 6], [0.5, 0.2, 0.1])
528
        scheduler = paddle_api(**kwarg)
529 530
        adam = paddle.optimizer.Adam(learning_rate=scheduler,
                                     parameters=linear.parameters())
531 532 533 534
        for epoch in range(20):
            for batch_id in range(2):
                x = paddle.to_tensor(x)
                out = linear(x)
C
chentianyu03 已提交
535
                loss = paddle.mean(out)
536 537 538 539 540
                loss.backward()
                adam.step()
                adam.clear_grad()
            current_lr = adam.get_lr()
            expected_lr = python_func(epoch, **kwarg)
541
            if paddle_api.__name__ == "CosineAnnealingDecay":
542 543
                self.assertAlmostEqual(current_lr, expected_lr)
                scheduler.step(epoch + 1)
544 545 546 547
            elif paddle_api.__name__ == "LinearWarmup":
                self.assertAlmostEqual(current_lr, expected_lr)
                state_dict = adam.state_dict()
                scheduler1 = paddle.optimizer.lr.LinearWarmup(**kwarg)
548 549
                adam1 = paddle.optimizer.Adam(learning_rate=scheduler1,
                                              parameters=linear.parameters())
550 551 552 553 554 555 556 557 558 559 560
                adam1.set_state_dict(state_dict)
                self.assertEqual(scheduler.last_epoch, scheduler1.last_epoch)
                self.assertEqual(scheduler.last_lr, scheduler1.last_lr)
                self.assertEqual(scheduler.learning_rate.last_lr,
                                 scheduler1.learning_rate.last_lr)
                self.assertEqual(scheduler.learning_rate.last_epoch,
                                 scheduler1.learning_rate.last_epoch)
                scheduler.step()
            else:
                self.assertEqual(current_lr, expected_lr)
                scheduler.step()
561 562 563

    def test_scheduler(self):
        with self.assertRaises(NotImplementedError):
564
            paddle.optimizer.lr.LRScheduler().step()
565
        with self.assertRaises(TypeError):
566 567
            paddle.optimizer.lr.MultiStepDecay(learning_rate="test",
                                               milestones=[1, 2, 3])
568
        with self.assertRaises(TypeError):
569 570
            paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5,
                                               milestones='test')
571
        with self.assertRaises(ValueError):
572 573
            paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5,
                                               milestones=[3, 2, 1])
574
        with self.assertRaises(ValueError):
575 576 577
            paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5,
                                               milestones=[1, 2, 3],
                                               gamma=2)
578
        # check type of max_learning_rate
579
        with self.assertRaises(TypeError):
580 581
            paddle.optimizer.lr.OneCycleLR(max_learning_rate='test',
                                           total_steps=20)
582
        # check value of max_learning_rate
583
        with self.assertRaises(ValueError):
584 585
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=-1.5,
                                           total_steps=20)
586
        # check type of end_learning_rate
587
        with self.assertRaises(TypeError):
588 589 590
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps=20,
                                           end_learning_rate='test')
591
        # check value of end_learning_rate
592
        with self.assertRaises(ValueError):
593 594 595
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps=20,
                                           end_learning_rate=-1)
596
        # check type of total_steps
597
        with self.assertRaises(TypeError):
598 599
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps='test')
600
        # check value of total_steps
601
        with self.assertRaises(ValueError):
602 603
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps=-10)
604
        # check value of anneal_strategy
605
        with self.assertRaises(ValueError):
606 607 608
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps=20,
                                           anneal_strategy='test')
609
        # check value of phase_pct when three_phase is True
610
        with self.assertRaises(ValueError):
611 612 613 614
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps=20,
                                           phase_pct=0.6,
                                           three_phase=True)
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
        # check type of max_learning_rate
        with self.assertRaises(TypeError):
            paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                                         max_learning_rate='test',
                                         step_size_up=10)
        # check value of max_learning_rate
        with self.assertRaises(ValueError):
            paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                                         max_learning_rate=-1,
                                         step_size_up=10)
        # check type of step_size_up
        with self.assertRaises(TypeError):
            paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                                         max_learning_rate=1.0,
                                         step_size_up='test')
        # check value of step_size_up
        with self.assertRaises(ValueError):
            paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                                         max_learning_rate=1.0,
                                         step_size_up=-1)
        # check type of step_size_down
        with self.assertRaises(TypeError):
            paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                                         max_learning_rate=1.0,
                                         step_size_up=500,
                                         step_size_down='test')
        # check type of step_size_down
        with self.assertRaises(ValueError):
            paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                                         max_learning_rate=1.0,
                                         step_size_up=500,
                                         step_size_down=-1)
        # check value of mode
        with self.assertRaises(ValueError):
            paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                                         max_learning_rate=1.0,
                                         step_size_up=500,
                                         step_size_down=500,
                                         mode='test')
        # check type value of scale_mode
        with self.assertRaises(ValueError):
            paddle.optimizer.lr.CyclicLR(base_learning_rate=0.5,
                                         max_learning_rate=1.0,
                                         step_size_up=500,
                                         step_size_down=-1,
                                         scale_mode='test')
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769

        func_api_kwargs = [
            (noam_lr, paddle.optimizer.lr.NoamDecay, {
                "d_model": 0.01,
                "warmup_steps": 100,
                "verbose": False
            }),
            (piecewise_lr, paddle.optimizer.lr.PiecewiseDecay, {
                "boundaries": [3, 6, 9, 15, 20],
                "values": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
                "verbose": False
            }),
            (natural_exp_lr, paddle.optimizer.lr.NaturalExpDecay, {
                "learning_rate": 0.5,
                "gamma": 0.1,
                "verbose": True
            }),
            (inverse_time_lr, paddle.optimizer.lr.InverseTimeDecay, {
                "learning_rate": 0.5,
                "gamma": 0.1,
                "verbose": False
            }),
            (polynomial_lr, paddle.optimizer.lr.PolynomialDecay, {
                "learning_rate": 0.5,
                "decay_steps": 20,
                "end_lr": 0,
                "power": 1.0,
                "cycle": False
            }),
            (polynomial_lr, paddle.optimizer.lr.PolynomialDecay, {
                "learning_rate": 0.5,
                "decay_steps": 20,
                "end_lr": 0,
                "power": 1.0,
                "cycle": True,
                "verbose": False
            }),
            (linear_warmup_lr, paddle.optimizer.lr.LinearWarmup, {
                'learning_rate': 0.5,
                'warmup_steps': 10,
                'start_lr': 0,
                'end_lr': 0.5
            }),
            (exponential_lr, paddle.optimizer.lr.ExponentialDecay, {
                "learning_rate": 0.5,
                "gamma": 0.9,
                "verbose": False
            }),
            (multi_step_lr, paddle.optimizer.lr.MultiStepDecay, {
                "learning_rate": 0.5,
                "milestones": [3, 6, 9, 15, 20],
                "gamma": 0.8
            }),
            (step_lr, paddle.optimizer.lr.StepDecay, {
                "learning_rate": 0.5,
                "step_size": 2,
                "gamma": 0.8,
                "verbose": False
            }),
            (lambda_lr, paddle.optimizer.lr.LambdaDecay, {
                "learning_rate": 0.5,
                "lr_lambda": lambda x: 0.95**x,
                "verbose": True
            }),
            (multiplicative_lr, paddle.optimizer.lr.MultiplicativeDecay, {
                "learning_rate": 0.5,
                "lr_lambda": lambda x: 0.95,
                "verbose": True
            }),
            (cosine_annealing_lr, paddle.optimizer.lr.CosineAnnealingDecay, {
                "learning_rate": 0.5,
                "T_max": 10,
                "verbose": False
            }),
            (one_cycle_lr, paddle.optimizer.lr.OneCycleLR, {
                "max_learning_rate": 0.1,
                "total_steps": 20,
                "divide_factor": 5,
                "end_learning_rate": 0.0001,
                "anneal_strategy": 'cos',
                "phase_pct": 0.3,
                "three_phase": False,
            }),
            (one_cycle_lr, paddle.optimizer.lr.OneCycleLR, {
                "max_learning_rate": 0.5,
                "total_steps": 20,
                "divide_factor": 10,
                "end_learning_rate": 0.001,
                "anneal_strategy": 'linear',
                "phase_pct": 0.4,
                "three_phase": False,
            }),
            (one_cycle_lr, paddle.optimizer.lr.OneCycleLR, {
                "max_learning_rate": 1.0,
                "total_steps": 20,
                "divide_factor": 9,
                "end_learning_rate": 0.0001,
                "anneal_strategy": 'cos',
                "phase_pct": 0.3,
                "three_phase": True,
            }),
            (one_cycle_lr, paddle.optimizer.lr.OneCycleLR, {
                "max_learning_rate": 0.3,
                "total_steps": 20,
                "divide_factor": 25,
                "end_learning_rate": 0.0005,
                "anneal_strategy": 'linear',
                "phase_pct": 0.2,
                "three_phase": True,
770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
            }),
            (cyclic_lr, paddle.optimizer.lr.CyclicLR, {
                "base_learning_rate": 0.5,
                "max_learning_rate": 1.0,
                "step_size_up": 15,
                "step_size_down": 5,
                "mode": 'triangular',
                "exp_gamma": 1.,
                "scale_fn": None,
                "scale_mode": 'cycle',
                "verbose": False
            }),
            (cyclic_lr, paddle.optimizer.lr.CyclicLR, {
                "base_learning_rate": 0.5,
                "max_learning_rate": 1.0,
                "step_size_up": 15,
                "step_size_down": 5,
                "mode": 'triangular2',
                "exp_gamma": 1.,
                "scale_fn": None,
                "scale_mode": 'cycle',
                "verbose": False
            }),
            (cyclic_lr, paddle.optimizer.lr.CyclicLR, {
                "base_learning_rate": 0.5,
                "max_learning_rate": 1.0,
                "step_size_up": 15,
                "step_size_down": 5,
                "mode": 'exp_range',
                "exp_gamma": 0.8,
                "scale_fn": None,
                "scale_mode": 'cycle',
                "verbose": False
            }),
            (cyclic_lr, paddle.optimizer.lr.CyclicLR, {
                "base_learning_rate": 0.5,
                "max_learning_rate": 1.0,
                "step_size_up": 15,
                "step_size_down": 5,
                "mode": 'exp_range',
                "exp_gamma": 1.,
                "scale_fn": lambda x: 0.95**x,
                "scale_mode": 'cycle',
                "verbose": False
            }),
            (cyclic_lr, paddle.optimizer.lr.CyclicLR, {
                "base_learning_rate": 0.5,
                "max_learning_rate": 1.0,
                "step_size_up": 15,
                "step_size_down": 5,
                "mode": 'exp_range',
                "exp_gamma": 1.,
                "scale_fn": lambda x: 0.95,
                "scale_mode": 'iterations',
                "verbose": False
825 826
            })
        ]
827 828 829 830 831 832 833 834

        for python_func, paddle_api, kwarg in func_api_kwargs:
            places = [paddle.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(paddle.CUDAPlace(0))

            for place in places:
                paddle.enable_static()
835
                self._test_static(python_func, paddle_api, kwarg, place)
836 837 838 839
                paddle.disable_static(place)
                self._test_dygraph(python_func, paddle_api, kwarg, place)
                paddle.enable_static()

840
    def test_linear_warmp(self):
841 842
        natural_lr = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5,
                                                         gamma=0.1)
843 844 845 846 847 848 849 850 851
        natural_lr_warmup = paddle.optimizer.lr.LinearWarmup(
            learning_rate=natural_lr, warmup_steps=10, start_lr=0.0, end_lr=0.1)
        for idx in range(30):
            if idx >= 10:
                self.assertEqual(natural_lr_warmup.get_lr(),
                                 natural_lr.get_lr())
                natural_lr.step()
            natural_lr_warmup.step()

852 853

if __name__ == '__main__':
H
hong 已提交
854
    paddle.enable_static()
855
    unittest.main()