test_lr_scheduler.py 27.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import copy
import math
import numpy as np
import unittest

import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.framework as framework
import paddle.fluid.core as core


def reduce_lr_on_plateau(decay_rate, threshold, cooldown, patience, m, n, loss,
                         var_list):
31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    def is_better(current, best, m, n):
        if m == 'min' and n == 'rel':
            return current < best - best * threshold
        elif m == 'min' and n == 'abs':
            return current < best - threshold
        elif m == 'max' and n == 'rel':
            return current > best + best * threshold
        else:  # mode == 'max' and epsilon_mode == 'abs':
            return current > best + threshold

    if var_list[2] > 0:
        var_list[2] -= 1
        return var_list[1]

    if is_better(loss, var_list[0], m, n):
        var_list[0] = loss
        var_list[3] = 0
    else:
        var_list[3] += 1
        if var_list[3] > patience:
            var_list[2] = cooldown
            var_list[3] = 0
            new_lr = var_list[1] * decay_rate
            var_list[1] = new_lr if var_list[1] - new_lr > 1e-8 else var_list[1]

    return var_list[1]


60
class TestReduceOnPlateauDecay(object):
61

62 63 64
    def test_ReduceLR(self):
        # the decay rate must be less than 1.0
        with self.assertRaises(ValueError):
65
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, factor=2.0)
66 67
        # the mode must be "min" or "max"
        with self.assertRaises(ValueError):
68
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0, mode="test")
69 70
        # the threshold_mode must be "rel" or "abs"
        with self.assertRaises(ValueError):
71 72
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=1.0,
                                                threshold_mode="test")
73
        with self.assertRaises(TypeError):
74
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate="test")
75
        with self.assertRaises(TypeError):
76
            paddle.optimizer.lr.ReduceOnPlateau(learning_rate=0.5).step("test")
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114

        places = [paddle.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(paddle.CUDAPlace(0))

        for place in places:
            for m, n in zip(['min', 'max', 'min', 'max'],
                            ['rel', 'rel', 'abs', 'abs']):
                kwargs = {
                    'learning_rate': 1.0,
                    'mode': m,
                    'factor': 0.5,
                    'patience': 3,
                    'threshold': 1e-4,
                    'threshold_mode': n,
                    'cooldown': 1,
                    'min_lr': 0,
                    'epsilon': 1e-8,
                    'verbose': False,
                }
                paddle.enable_static()
                self._test_static(place, kwargs)
                paddle.disable_static(place)
                self._test_dygraph(place, kwargs)
                paddle.enable_static()

    def _test_static(self, place, kwargs):
        paddle.enable_static()

        best = float("-10000") if kwargs['mode'] == "max" else float("10000")
        current_lr = 1.0
        cooldown_counter = 0
        num_bad_epochs = 0
        var_list = [best, current_lr, cooldown_counter, num_bad_epochs]

        main_prog = paddle.static.Program()
        start_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, start_prog):
115 116 117 118
            x = fluid.layers.create_global_var([1],
                                               1,
                                               'float32',
                                               persistable=True)
119 120
            paddle.increment(x)
            loss = paddle.sin(x)
121
            scheduler = paddle.optimizer.lr.ReduceOnPlateau(**kwargs)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            adam = paddle.optimizer.Adam(learning_rate=scheduler)
            adam.minimize(loss)
            lr_var = adam._global_learning_rate()
            test_prog = main_prog.clone()

        exe = paddle.static.Executor(place)
        exe.run(start_prog)

        for epoch in range(20):
            for batch_id in range(1):
                out, actual_lr = exe.run(main_prog,
                                         fetch_list=[loss.name, lr_var.name])
                expected_lr = reduce_lr_on_plateau(
                    kwargs['factor'], kwargs['threshold'], kwargs['cooldown'],
                    kwargs['patience'], kwargs['mode'],
                    kwargs['threshold_mode'], out[0], var_list)

            scheduler.step(out[0])
            actual_lr = scheduler()
            self.assertEqual(actual_lr, np.array(expected_lr))

        for epoch in range(10):
            for batch_id in range(1):
                out, actual_lr = exe.run(test_prog,
                                         fetch_list=[loss.name, lr_var.name])
                expected_lr = reduce_lr_on_plateau(
                    kwargs['factor'], kwargs['threshold'], kwargs['cooldown'],
                    kwargs['patience'], kwargs['mode'],
                    kwargs['threshold_mode'], out[0], var_list)
            scheduler.step(out[0])
            actual_lr = scheduler()
            self.assertEqual(actual_lr, np.array(expected_lr))

    def _test_dygraph(self, place, kwargs):
        paddle.disable_static(place)

        best = float("-10000") if kwargs['mode'] == "max" else float("10000")
        current_lr = 1.0
        cooldown_counter = 0
        num_bad_epochs = 0
        var_list = [best, current_lr, cooldown_counter, num_bad_epochs]

        linear = paddle.nn.Linear(10, 10)
165
        scheduler = paddle.optimizer.lr.ReduceOnPlateau(**kwargs)
166 167
        adam = paddle.optimizer.Adam(learning_rate=scheduler,
                                     parameters=linear.parameters())
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

        for epoch in range(20):
            for batch_id in range(1):
                x = paddle.to_tensor(epoch).astype('float32')
                loss = paddle.sin(x)
                loss.backward()
                adam.step()
                adam.clear_grad()

            scheduler.step(loss)
            # get lr from paddle
            current_lr = adam.get_lr()
            # get lr form python
            expected_lr = reduce_lr_on_plateau(
                kwargs['factor'], kwargs['threshold'], kwargs['cooldown'],
                kwargs['patience'], kwargs['mode'], kwargs['threshold_mode'],
                loss, var_list)
            self.assertEqual(current_lr, expected_lr)
        state_dict = adam.state_dict()
187
        scheduler1 = paddle.optimizer.lr.ReduceOnPlateau(**kwargs)
188 189
        adam1 = paddle.optimizer.Adam(learning_rate=scheduler1,
                                      parameters=linear.parameters())
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        adam1.set_state_dict(state_dict)
        self.assertEqual(scheduler.cooldown_counter,
                         scheduler1.cooldown_counter)
        self.assertEqual(scheduler.best.numpy()[0], scheduler1.best)
        self.assertEqual(scheduler.num_bad_epochs, scheduler1.num_bad_epochs)
        self.assertEqual(scheduler.last_epoch, scheduler1.last_epoch)
        self.assertEqual(scheduler.last_lr, scheduler1.last_lr)


def noam_lr(epoch_num, d_model, warmup_steps, learning_rate=1.0, verbose=False):
    if epoch_num == 0:
        a = 1
    else:
        a = math.pow(epoch_num, -0.5)
    b = math.pow(warmup_steps, -1.5) * epoch_num
    return learning_rate * math.pow(d_model, -0.5) * min(a, b)


def lambda_lr(epoch_num, learning_rate, lr_lambda, verbose=False):
    return learning_rate * lr_lambda(epoch_num)


G
guguguzi 已提交
212 213 214 215 216 217 218
def multiplicative_lr(epoch_num, learning_rate, lr_lambda, verbose=False):
    latest_lr = learning_rate
    for i in range(epoch_num):
        latest_lr = latest_lr * lr_lambda(i + 1)
    return latest_lr


219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
def piecewise_lr(epoch_num, boundaries, values, verbose=False):
    assert len(boundaries) + 1 == len(values)
    for i in range(len(boundaries)):
        if epoch_num < boundaries[i]:
            return values[i]
    return values[len(values) - 1]


def exponential_lr(epoch_num, learning_rate, gamma, verbose=False):
    return learning_rate * gamma**epoch_num


def natural_exp_lr(epoch_num, learning_rate, gamma, verbose=False):
    return learning_rate * math.exp(-1 * gamma * epoch_num)


def inverse_time_lr(epoch_num, learning_rate, gamma, verbose=False):
    return learning_rate / (1 + gamma * epoch_num)


def polynomial_lr(epoch_num,
                  learning_rate,
                  decay_steps,
                  end_lr=0.0001,
                  power=1.0,
                  cycle=False,
                  verbose=False):

    if cycle:
        div = math.ceil(epoch_num / float(decay_steps))
        if epoch_num == 0:
            div = 1
        decay_steps = decay_steps * div
    else:
        epoch_num = min(epoch_num, decay_steps)
    return (learning_rate - end_lr) * (
        (1 - float(epoch_num) / float(decay_steps))**power) + end_lr

    def get_lr(self):
        if self.last_epoch == 0:
            return self.base_lr
        elif (self.last_epoch - 1 - self.T_max) % (2 * self.T_max) == 0:
261 262
            return self.last_lr + (self.base_lr - self.eta_min) * (
                1 - math.cos(math.pi / self.T_max)) / 2
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281

        return (1 + math.cos(math.pi * self.last_epoch / self.T_max)) / (
            1 + math.cos(math.pi * (self.last_epoch - 1) / self.T_max)) * (
                self.last_lr - self.eta_min) + self.eta_min


cosine_annealing_lr_current = None


def cosine_annealing_lr(epoch_num,
                        learning_rate,
                        T_max,
                        eta_min=0,
                        verbose=False):
    global cosine_annealing_lr_current
    if epoch_num == 0:
        cosine_annealing_lr_current = learning_rate
    elif (epoch_num - 1 - T_max) % (2 * T_max) == 0:
        cosine_annealing_lr_current = cosine_annealing_lr_current + (
282 283
            learning_rate - eta_min) * (1 -
                                        math.cos(math.pi / float(T_max))) / 2
284
    else:
285 286 287 288
        cosine_annealing_lr_current = (
            1 + math.cos(math.pi * epoch_num / float(T_max))) / (
                1 + math.cos(math.pi * (epoch_num - 1) / float(T_max))) * (
                    cosine_annealing_lr_current - eta_min) + eta_min
289 290 291 292 293 294 295 296 297
    return cosine_annealing_lr_current


def linear_warmup_lr(epoch_num,
                     learning_rate,
                     warmup_steps,
                     start_lr,
                     end_lr,
                     verbose=False):
298 299
    tmp = epoch_num - warmup_steps
    if tmp < 0:
300 301
        return start_lr + (end_lr - start_lr) * (float(epoch_num) /
                                                 float(warmup_steps))
302 303 304 305 306 307 308
    elif paddle.in_dynamic_mode():
        if tmp < 3:
            return 0.5
        elif tmp < 6:
            return 0.2
        else:
            return 0.1
309
    else:
310
        return 0.5
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327


def multi_step_lr(epoch_num,
                  learning_rate,
                  milestones,
                  gamma=0.1,
                  verbose=False):
    for i in range(len(milestones)):
        if epoch_num < milestones[i]:
            return learning_rate * (gamma**i)
    return learning_rate * (gamma**len(milestones))


def step_lr(epoch_num, learning_rate, step_size, gamma=0.1, verbose=False):
    return learning_rate * math.pow(gamma, epoch_num // step_size)


328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
def one_cycle_lr(epoch_num,
                 max_learning_rate,
                 total_steps,
                 divide_factor=25,
                 end_learning_rate=0.0001,
                 phase_pct=0.3,
                 anneal_strategy='cos',
                 three_phase=False,
                 verbose=False):
    initial_lr = max_learning_rate / divide_factor
    if three_phase:
        _end_steps = [
            float(phase_pct * total_steps) - 1,
            float(2 * phase_pct * total_steps) - 2, total_steps - 1
        ]
        _schedule_phases = [
            {
                'start_lr': initial_lr,
                'end_lr': max_learning_rate,
            },
            {
                'start_lr': max_learning_rate,
                'end_lr': initial_lr,
            },
            {
                'start_lr': initial_lr,
                'end_lr': end_learning_rate,
            },
        ]
    else:
        _end_steps = [float(phase_pct * total_steps) - 1, total_steps - 1]
        _schedule_phases = [
            {
                'start_lr': initial_lr,
                'end_lr': max_learning_rate,
            },
            {
                'start_lr': max_learning_rate,
                'end_lr': end_learning_rate,
            },
        ]

    if anneal_strategy == 'cos':

        def anneal_func(start, end, pct):
            cos_out = math.cos(math.pi * pct) + 1
            return end + (start - end) / 2.0 * cos_out
    else:

        def anneal_func(start, end, pct):
            return (end - start) * pct + start

    start_step = 0
    for i, phase in enumerate(_schedule_phases):
        end_step = _end_steps[i]
        if epoch_num <= end_step or i == len(_schedule_phases) - 1:
            pct = (epoch_num - start_step) / (end_step - start_step)
            computed_lr = anneal_func(phase['start_lr'], phase['end_lr'], pct)
            break
        start_step = end_step

    return computed_lr


392
class TestLRScheduler(unittest.TestCase):
393

394
    def _test_static(self, python_func, paddle_api, kwarg, place):
395 396 397
        scheduler = paddle_api(**kwarg)
        adam = paddle.optimizer.Adam(learning_rate=scheduler)

398 399 400 401
        main_prog = paddle.static.Program()
        start_prog = paddle.static.Program()
        with paddle.static.program_guard(main_prog, start_prog):
            x = paddle.static.data(name='x', shape=[3, 4, 5])
402 403
            loss = paddle.mean(x)

404 405 406 407 408 409 410
            adam.minimize(loss)
            lr_var = adam._global_learning_rate()
            test_prog = main_prog.clone()

        num = 0
        exe = paddle.static.Executor(place)
        exe.run(start_prog)
411

412 413 414 415
        for epoch in range(5):
            for batch_id in range(2):
                out = exe.run(
                    main_prog,
416
                    feed={'x': np.random.randn(3, 4, 5).astype('float32')},
417 418 419 420 421 422 423 424 425
                    fetch_list=lr_var.name)
            self.assertEqual(out, np.array(python_func(num, **kwarg)))
            scheduler.step()
            num += 1

        for epoch in range(5):
            for batch_id in range(2):
                out = exe.run(
                    test_prog,
426
                    feed={'x': np.random.randn(3, 4, 5).astype('float32')},
427 428 429 430 431 432 433
                    fetch_list=lr_var.name)
            self.assertEqual(out, np.array(python_func(num, **kwarg)))
            scheduler.step()
            num += 1

        if isinstance(place, paddle.CPUPlace):
            compiled_train_prog = paddle.static.CompiledProgram(
434 435
                main_prog).with_data_parallel(loss_name=loss.name,
                                              places=fluid.cpu_places(4))
436 437 438
            for epoch in range(5):
                python_result = python_func(num, **kwarg)
                for batch_id in range(2):
439 440 441 442
                    _ = exe.run(
                        compiled_train_prog,
                        feed={'x': np.random.randn(12, 4, 5).astype('float32')},
                        fetch_list=lr_var.name)
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
                scopes = compiled_train_prog._executor.local_scopes()
                out = np.array(scopes[0].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[1].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[2].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[3].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                scheduler.step()
                num += 1

            compiled_test_prog = paddle.static.CompiledProgram(
                test_prog).with_data_parallel(
                    loss_name=loss.name,
                    share_vars_from=compiled_train_prog,
                    places=fluid.cpu_places(4))
            for epoch in range(5):
                python_result = python_func(num, **kwarg)
                for batch_id in range(2):
463 464 465 466
                    _ = exe.run(
                        compiled_test_prog,
                        feed={'x': np.random.randn(12, 4, 5).astype('float32')},
                        fetch_list=lr_var.name)
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
                scopes = compiled_test_prog._executor.local_scopes()
                out = np.array(scopes[0].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[1].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[2].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                out = np.array(scopes[3].var(lr_var.name).get_tensor())
                self.assertEqual(out, np.array(python_result))
                scheduler.step()
                num += 1

    def _test_dygraph(self, python_func, paddle_api, kwarg, place):
        paddle.disable_static(place)
        x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
        linear = paddle.nn.Linear(10, 10)
483 484 485
        if paddle_api.__name__ == "LinearWarmup":
            kwarg['learning_rate'] = paddle.optimizer.lr.PiecewiseDecay(
                [3, 6], [0.5, 0.2, 0.1])
486
        scheduler = paddle_api(**kwarg)
487 488
        adam = paddle.optimizer.Adam(learning_rate=scheduler,
                                     parameters=linear.parameters())
489 490 491 492
        for epoch in range(20):
            for batch_id in range(2):
                x = paddle.to_tensor(x)
                out = linear(x)
C
chentianyu03 已提交
493
                loss = paddle.mean(out)
494 495 496 497 498
                loss.backward()
                adam.step()
                adam.clear_grad()
            current_lr = adam.get_lr()
            expected_lr = python_func(epoch, **kwarg)
499
            if paddle_api.__name__ == "CosineAnnealingDecay":
500 501
                self.assertAlmostEqual(current_lr, expected_lr)
                scheduler.step(epoch + 1)
502 503 504 505
            elif paddle_api.__name__ == "LinearWarmup":
                self.assertAlmostEqual(current_lr, expected_lr)
                state_dict = adam.state_dict()
                scheduler1 = paddle.optimizer.lr.LinearWarmup(**kwarg)
506 507
                adam1 = paddle.optimizer.Adam(learning_rate=scheduler1,
                                              parameters=linear.parameters())
508 509 510 511 512 513 514 515 516 517 518
                adam1.set_state_dict(state_dict)
                self.assertEqual(scheduler.last_epoch, scheduler1.last_epoch)
                self.assertEqual(scheduler.last_lr, scheduler1.last_lr)
                self.assertEqual(scheduler.learning_rate.last_lr,
                                 scheduler1.learning_rate.last_lr)
                self.assertEqual(scheduler.learning_rate.last_epoch,
                                 scheduler1.learning_rate.last_epoch)
                scheduler.step()
            else:
                self.assertEqual(current_lr, expected_lr)
                scheduler.step()
519 520 521

    def test_scheduler(self):
        with self.assertRaises(NotImplementedError):
522
            paddle.optimizer.lr.LRScheduler().step()
523
        with self.assertRaises(TypeError):
524 525
            paddle.optimizer.lr.MultiStepDecay(learning_rate="test",
                                               milestones=[1, 2, 3])
526
        with self.assertRaises(TypeError):
527 528
            paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5,
                                               milestones='test')
529
        with self.assertRaises(ValueError):
530 531
            paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5,
                                               milestones=[3, 2, 1])
532
        with self.assertRaises(ValueError):
533 534 535
            paddle.optimizer.lr.MultiStepDecay(learning_rate=0.5,
                                               milestones=[1, 2, 3],
                                               gamma=2)
536
        with self.assertRaises(TypeError):
537 538
            paddle.optimizer.lr.OneCycleLR(max_learning_rate='test',
                                           total_steps=20)
539
        with self.assertRaises(ValueError):
540 541
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=-1.5,
                                           total_steps=20)
542
        with self.assertRaises(TypeError):
543 544 545
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps=20,
                                           end_learning_rate='test')
546
        with self.assertRaises(ValueError):
547 548 549
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps=20,
                                           end_learning_rate=-1)
550
        with self.assertRaises(TypeError):
551 552
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps='test')
553
        with self.assertRaises(ValueError):
554 555
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps=-10)
556
        with self.assertRaises(ValueError):
557 558 559
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps=20,
                                           anneal_strategy='test')
560
        with self.assertRaises(ValueError):
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
            paddle.optimizer.lr.OneCycleLR(max_learning_rate=0.1,
                                           total_steps=20,
                                           phase_pct=0.6,
                                           three_phase=True)

        func_api_kwargs = [
            (noam_lr, paddle.optimizer.lr.NoamDecay, {
                "d_model": 0.01,
                "warmup_steps": 100,
                "verbose": False
            }),
            (piecewise_lr, paddle.optimizer.lr.PiecewiseDecay, {
                "boundaries": [3, 6, 9, 15, 20],
                "values": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
                "verbose": False
            }),
            (natural_exp_lr, paddle.optimizer.lr.NaturalExpDecay, {
                "learning_rate": 0.5,
                "gamma": 0.1,
                "verbose": True
            }),
            (inverse_time_lr, paddle.optimizer.lr.InverseTimeDecay, {
                "learning_rate": 0.5,
                "gamma": 0.1,
                "verbose": False
            }),
            (polynomial_lr, paddle.optimizer.lr.PolynomialDecay, {
                "learning_rate": 0.5,
                "decay_steps": 20,
                "end_lr": 0,
                "power": 1.0,
                "cycle": False
            }),
            (polynomial_lr, paddle.optimizer.lr.PolynomialDecay, {
                "learning_rate": 0.5,
                "decay_steps": 20,
                "end_lr": 0,
                "power": 1.0,
                "cycle": True,
                "verbose": False
            }),
            (linear_warmup_lr, paddle.optimizer.lr.LinearWarmup, {
                'learning_rate': 0.5,
                'warmup_steps': 10,
                'start_lr': 0,
                'end_lr': 0.5
            }),
            (exponential_lr, paddle.optimizer.lr.ExponentialDecay, {
                "learning_rate": 0.5,
                "gamma": 0.9,
                "verbose": False
            }),
            (multi_step_lr, paddle.optimizer.lr.MultiStepDecay, {
                "learning_rate": 0.5,
                "milestones": [3, 6, 9, 15, 20],
                "gamma": 0.8
            }),
            (step_lr, paddle.optimizer.lr.StepDecay, {
                "learning_rate": 0.5,
                "step_size": 2,
                "gamma": 0.8,
                "verbose": False
            }),
            (lambda_lr, paddle.optimizer.lr.LambdaDecay, {
                "learning_rate": 0.5,
                "lr_lambda": lambda x: 0.95**x,
                "verbose": True
            }),
            (multiplicative_lr, paddle.optimizer.lr.MultiplicativeDecay, {
                "learning_rate": 0.5,
                "lr_lambda": lambda x: 0.95,
                "verbose": True
            }),
            (cosine_annealing_lr, paddle.optimizer.lr.CosineAnnealingDecay, {
                "learning_rate": 0.5,
                "T_max": 10,
                "verbose": False
            }),
            (one_cycle_lr, paddle.optimizer.lr.OneCycleLR, {
                "max_learning_rate": 0.1,
                "total_steps": 20,
                "divide_factor": 5,
                "end_learning_rate": 0.0001,
                "anneal_strategy": 'cos',
                "phase_pct": 0.3,
                "three_phase": False,
            }),
            (one_cycle_lr, paddle.optimizer.lr.OneCycleLR, {
                "max_learning_rate": 0.5,
                "total_steps": 20,
                "divide_factor": 10,
                "end_learning_rate": 0.001,
                "anneal_strategy": 'linear',
                "phase_pct": 0.4,
                "three_phase": False,
            }),
            (one_cycle_lr, paddle.optimizer.lr.OneCycleLR, {
                "max_learning_rate": 1.0,
                "total_steps": 20,
                "divide_factor": 9,
                "end_learning_rate": 0.0001,
                "anneal_strategy": 'cos',
                "phase_pct": 0.3,
                "three_phase": True,
            }),
            (one_cycle_lr, paddle.optimizer.lr.OneCycleLR, {
                "max_learning_rate": 0.3,
                "total_steps": 20,
                "divide_factor": 25,
                "end_learning_rate": 0.0005,
                "anneal_strategy": 'linear',
                "phase_pct": 0.2,
                "three_phase": True,
            })
        ]
676 677 678 679 680 681 682 683

        for python_func, paddle_api, kwarg in func_api_kwargs:
            places = [paddle.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(paddle.CUDAPlace(0))

            for place in places:
                paddle.enable_static()
684
                self._test_static(python_func, paddle_api, kwarg, place)
685 686 687 688
                paddle.disable_static(place)
                self._test_dygraph(python_func, paddle_api, kwarg, place)
                paddle.enable_static()

689
    def test_linear_warmp(self):
690 691
        natural_lr = paddle.optimizer.lr.NaturalExpDecay(learning_rate=0.5,
                                                         gamma=0.1)
692 693 694 695 696 697 698 699 700
        natural_lr_warmup = paddle.optimizer.lr.LinearWarmup(
            learning_rate=natural_lr, warmup_steps=10, start_lr=0.0, end_lr=0.1)
        for idx in range(30):
            if idx >= 10:
                self.assertEqual(natural_lr_warmup.get_lr(),
                                 natural_lr.get_lr())
                natural_lr.step()
            natural_lr_warmup.step()

701 702

if __name__ == '__main__':
H
hong 已提交
703
    paddle.enable_static()
704
    unittest.main()