test_elementwise_div_op.py 8.8 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
G
gongweibao 已提交
16 17
import unittest
import numpy as np
18 19
import paddle
import paddle.fluid as fluid
20
import paddle.fluid.core as core
21
from op_test import OpTest, skip_check_grad_ci
G
gongweibao 已提交
22 23 24 25 26


class ElementwiseDivOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
27
        self.dtype = np.float64
W
Wu Yi 已提交
28
        self.init_dtype()
G
gongweibao 已提交
29 30 31 32 33 34
        """ Warning
        CPU gradient check error!
        'X': np.random.random((32,84)).astype("float32"),
        'Y': np.random.random((32,84)).astype("float32")
        """
        self.inputs = {
W
Wu Yi 已提交
35 36
            'X': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype),
            'Y': np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
G
gongweibao 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.05)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=0.05, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Y'))

W
Wu Yi 已提交
54 55 56
    def init_dtype(self):
        pass

G
gongweibao 已提交
57

58 59
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
60 61 62 63
class TestElementwiseDivOp_scalar(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
64
            'X': np.random.uniform(0.1, 1, [20, 3, 4]).astype(np.float64),
65
            'Y': np.random.uniform(0.1, 1, [1]).astype(np.float64)
66 67 68 69
        }
        self.outputs = {'Out': self.inputs['X'] / self.inputs['Y']}


G
gongweibao 已提交
70 71 72 73
class TestElementwiseDivOp_Vector(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
74 75
            'X': np.random.uniform(0.1, 1, [100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
76 77 78 79 80 81 82 83
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_0(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
84 85
            'X': np.random.uniform(0.1, 1, [100, 3, 4]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
86 87 88 89 90
        }

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out':
91
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(100, 1, 1))
G
gongweibao 已提交
92 93 94 95 96 97 98
        }


class TestElementwiseDivOp_broadcast_1(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
99 100
            'X': np.random.uniform(0.1, 1, [2, 100, 4]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
101 102 103 104 105
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
106
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 100, 1))
G
gongweibao 已提交
107 108 109 110 111 112 113
        }


class TestElementwiseDivOp_broadcast_2(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
114 115
            'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [100]).astype("float64")
G
gongweibao 已提交
116 117 118 119
        }

        self.outputs = {
            'Out':
120
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 100))
G
gongweibao 已提交
121 122 123 124 125 126 127
        }


class TestElementwiseDivOp_broadcast_3(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
128 129
            'X': np.random.uniform(0.1, 1, [2, 10, 12, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [10, 12]).astype("float64")
G
gongweibao 已提交
130 131 132 133 134
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out':
135
            np.divide(self.inputs['X'], self.inputs['Y'].reshape(1, 10, 12, 1))
G
gongweibao 已提交
136 137 138
        }


139 140 141 142
class TestElementwiseDivOp_broadcast_4(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
143 144
            'X': np.random.uniform(0.1, 1, [2, 3, 50]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 1, 50]).astype("float64")
145 146 147 148 149 150 151 152
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_broadcast_5(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
153 154
            'X': np.random.uniform(0.1, 1, [2, 3, 4, 20]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 1, 20]).astype("float64")
155 156 157 158
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


159 160 161 162
class TestElementwiseDivOp_commonuse_1(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
163 164
            'X': np.random.uniform(0.1, 1, [2, 3, 100]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [1, 1, 100]).astype("float64"),
165 166 167 168 169 170 171 172
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_commonuse_2(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
173 174
            'X': np.random.uniform(0.1, 1, [30, 3, 1, 5]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [30, 1, 4, 1]).astype("float64"),
175 176 177 178 179 180 181 182
        }
        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


class TestElementwiseDivOp_xsize_lessthan_ysize(ElementwiseDivOp):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.inputs = {
183 184
            'X': np.random.uniform(0.1, 1, [10, 12]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [2, 3, 10, 12]).astype("float64"),
185 186 187 188 189 190 191
        }

        self.attrs = {'axis': 2}

        self.outputs = {'Out': np.divide(self.inputs['X'], self.inputs['Y'])}


192 193 194 195 196 197 198
class TestElementwiseDivOp_INT(OpTest):
    def setUp(self):
        self.op_type = "elementwise_div"
        self.dtype = np.int32
        self.init_dtype()
        self.inputs = {
            'X': np.random.randint(
199
                1, 5, size=[13, 17]).astype(self.dtype),
200
            'Y': np.random.randint(
201
                1, 5, size=[13, 17]).astype(self.dtype)
202 203 204 205 206 207 208 209 210 211
        }
        self.outputs = {'Out': self.inputs['X'] // self.inputs['Y']}

    def test_check_output(self):
        self.check_output()

    def init_dtype(self):
        pass


212 213
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
W
Wu Yi 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
class TestElementwiseDivOpFp16(ElementwiseDivOp):
    def init_dtype(self):
        self.dtype = np.float16

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out', max_relative_error=1)

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'], 'Out', max_relative_error=1, no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'], 'Out', max_relative_error=1, no_grad_set=set('Y'))


230 231 232 233 234 235 236 237 238 239 240 241 242
class TestElementwiseDivBroadcast(unittest.TestCase):
    def test_shape_with_batch_sizes(self):
        with fluid.program_guard(fluid.Program()):
            x_var = fluid.data(
                name='x', dtype='float32', shape=[None, 3, None, None])
            one = 2.
            out = one / x_var
            exe = fluid.Executor(fluid.CPUPlace())
            x = np.random.uniform(0.1, 0.6, (1, 3, 32, 32)).astype("float32")
            out_result, = exe.run(feed={'x': x}, fetch_list=[out])
            self.assertEqual((out_result == (2 / x)).all(), True)


S
ShenLiang 已提交
243 244 245 246 247
class TestDivideOp(unittest.TestCase):
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="float32")
            y = fluid.data(name='y', shape=[2, 3], dtype='float32')
248

S
ShenLiang 已提交
249 250
            y_1 = paddle.divide(x, y, name='div_res')
            self.assertEqual(('div_res' in y_1.name), True)
251 252

    def test_dygraph(self):
S
ShenLiang 已提交
253 254 255 256 257 258 259 260 261
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 4]).astype('float64')
            np_y = np.array([1, 5, 2]).astype('float64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.divide(x, y)
            np_z = z.numpy()
            z_expected = np.array([2., 0.6, 2.])
            self.assertEqual((np_z == z_expected).all(), True)
262 263


G
gongweibao 已提交
264 265
if __name__ == '__main__':
    unittest.main()