allocator_facade.cc 43.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/memory/allocation/allocator_facade.h"

17
#include "gflags/gflags.h"
18
#include "paddle/fluid/memory/allocation/aligned_allocator.h"
19
#include "paddle/fluid/memory/allocation/allocator.h"
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
21
#include "paddle/fluid/memory/allocation/auto_growth_best_fit_allocator.h"
22
#include "paddle/fluid/memory/allocation/cpu_allocator.h"
23
#include "paddle/fluid/memory/allocation/naive_best_fit_allocator.h"
S
sneaxiy 已提交
24
#include "paddle/fluid/memory/allocation/retry_allocator.h"
25
#include "paddle/fluid/memory/allocation/stat_allocator.h"
S
sneaxiy 已提交
26
#include "paddle/fluid/platform/enforce.h"
27
#include "paddle/fluid/platform/place.h"
28

29
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
30
#include <shared_mutex>
31

32
#include "paddle/fluid/memory/allocation/cuda_allocator.h"
33
#include "paddle/fluid/memory/allocation/cuda_managed_allocator.h"
S
sneaxiy 已提交
34
#include "paddle/fluid/memory/allocation/pinned_allocator.h"
35
#include "paddle/fluid/memory/allocation/stream_safe_cuda_allocator.h"
36
#include "paddle/fluid/memory/allocation/thread_local_allocator.h"
37
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
38
#include "paddle/fluid/platform/device_context.h"
39
#include "paddle/phi/backends/gpu/gpu_context.h"
40 41

#ifdef PADDLE_WITH_CUDA
42
#include "paddle/fluid/platform/device/gpu/cuda/cuda_graph.h"
43
#endif
44

45 46 47 48 49
#if CUDA_VERSION >= 10020
#include "paddle/fluid/memory/allocation/cuda_virtual_mem_allocator.h"
#include "paddle/fluid/memory/allocation/virtual_memory_auto_growth_best_fit_allocator.h"
#include "paddle/fluid/platform/dynload/cuda_driver.h"
#endif
50
#endif
51

52
#ifdef PADDLE_WITH_XPU
53
#include "paddle/fluid/platform/device/xpu/xpu_info.h"
54
#endif
55 56 57 58

#ifdef PADDLE_WITH_ASCEND_CL
#include "paddle/fluid/memory/allocation/npu_pinned_allocator.h"
#endif
59

J
jianghaicheng 已提交
60 61 62 63
#ifdef PADDLE_WITH_IPU
#include "paddle/fluid/platform/device/ipu/ipu_info.h"
#endif

F
fwenguang 已提交
64 65 66 67
#ifdef PADDLE_WITH_MLU
#include "paddle/fluid/platform/device/mlu/mlu_info.h"
#endif

68 69 70 71 72
#ifdef PADDLE_WITH_CUSTOM_DEVICE
#include "paddle/fluid/memory/allocation/custom_allocator.h"
#include "paddle/fluid/platform/device/device_wrapper.h"
#endif

Z
Zeng Jinle 已提交
73
PADDLE_DEFINE_EXPORTED_int64(
74 75
    gpu_allocator_retry_time,
    10000,
S
sneaxiy 已提交
76 77 78
    "The retry time (milliseconds) when allocator fails "
    "to allocate memory. No retry if this value is not greater than 0");

Z
Zeng Jinle 已提交
79
PADDLE_DEFINE_EXPORTED_bool(
80 81
    use_system_allocator,
    false,
Z
Zeng Jinle 已提交
82 83
    "Whether to use system allocator to allocate CPU and GPU memory. "
    "Only used for unittests.");
84

85 86
PADDLE_DEFINE_EXPORTED_bool(use_virtual_memory_auto_growth,
                            false,
87 88
                            "Use VirtualMemoryAutoGrowthBestFitAllocator.");

89 90 91
// NOTE(Ruibiao): This FLAGS is just to be compatibled with
// the old single-stream CUDA allocator. It will be removed
// after StreamSafeCudaAllocator has been fully tested.
92 93
PADDLE_DEFINE_EXPORTED_bool(use_stream_safe_cuda_allocator,
                            true,
94 95
                            "Enable StreamSafeCUDAAllocator");

96 97
PADDLE_DEFINE_EXPORTED_bool(use_cuda_managed_memory,
                            false,
98 99 100 101
                            "Whether to use CUDAManagedAllocator to allocate "
                            "managed memory, only available for auto_growth "
                            "strategy");

102 103
DECLARE_string(allocator_strategy);

104 105 106 107
namespace paddle {
namespace memory {
namespace allocation {

108 109 110 111 112 113 114 115
#ifdef PADDLE_WITH_CUDA
class CUDAGraphAllocator
    : public Allocator,
      public std::enable_shared_from_this<CUDAGraphAllocator> {
 private:
  class PrivateAllocation : public Allocation {
   public:
    PrivateAllocation(CUDAGraphAllocator* allocator,
116
                      DecoratedAllocationPtr underlying_allocation)
117 118 119 120
        : Allocation(underlying_allocation->ptr(),
                     underlying_allocation->base_ptr(),
                     underlying_allocation->size(),
                     underlying_allocation->place()),
121 122 123 124 125
          allocator_(allocator->shared_from_this()),
          underlying_allocation_(std::move(underlying_allocation)) {}

   private:
    std::shared_ptr<Allocator> allocator_;
126
    DecoratedAllocationPtr underlying_allocation_;
127 128 129 130 131 132
  };

  explicit CUDAGraphAllocator(const std::shared_ptr<Allocator>& allocator)
      : underlying_allocator_(allocator) {}

 public:
133 134
  ~CUDAGraphAllocator() { VLOG(10) << "CUDAGraphAllocator destructed"; }

135 136 137 138 139 140
  static std::shared_ptr<Allocator> Create(
      const std::shared_ptr<Allocator>& allocator) {
    return std::shared_ptr<Allocator>(new CUDAGraphAllocator(allocator));
  }

 protected:
141
  phi::Allocation* AllocateImpl(size_t size) {
142
    VLOG(10) << "Allocate " << size << " for CUDA Graph";
143 144 145
    return new PrivateAllocation(this,
                                 static_unique_ptr_cast<Allocation>(
                                     underlying_allocator_->Allocate(size)));
146 147
  }

148
  void FreeImpl(phi::Allocation* allocation) {
149 150 151 152 153 154 155 156 157
    VLOG(10) << "delete for CUDA Graph";
    delete allocation;
  }

 private:
  std::shared_ptr<Allocator> underlying_allocator_;
};
#endif

158 159 160 161 162 163 164 165
static bool IsCUDAGraphCapturing() {
#ifdef PADDLE_WITH_CUDA
  return UNLIKELY(platform::CUDAGraph::IsThisThreadCapturing());
#else
  return false;
#endif
}

Y
Yu Yang 已提交
166 167
class AllocatorFacadePrivate {
 public:
168 169
  using AllocatorMap = std::map<platform::Place, std::shared_ptr<Allocator>>;

170 171 172 173 174 175
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  using CUDAAllocatorMap =
      std::map<platform::CUDAPlace,
               std::map<gpuStream_t, std::shared_ptr<Allocator>>>;
#endif

176 177
  explicit AllocatorFacadePrivate(bool allow_free_idle_chunk = true) {
    strategy_ = GetAllocatorStrategy();
178 179
    is_stream_safe_cuda_allocator_used_ = false;

180
    switch (strategy_) {
181 182
      case AllocatorStrategy::kNaiveBestFit: {
        InitNaiveBestFitCPUAllocator();
J
jianghaicheng 已提交
183 184 185 186 187
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
188
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
189
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
190 191 192
          InitNaiveBestFitCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
193
#endif
194 195 196 197 198
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
199 200 201 202
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
203
        InitNaiveBestFitNPUPinnedAllocator();
F
fwenguang 已提交
204 205 206 207 208
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
209 210
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
211
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
212 213
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
214
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
215 216 217 218 219
               ++dev_id) {
            InitNaiveBestFitCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id));
          }
        }
220
#endif
Z
Zeng Jinle 已提交
221 222
        break;
      }
223 224 225

      case AllocatorStrategy::kAutoGrowth: {
        InitNaiveBestFitCPUAllocator();
226 227
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
        allow_free_idle_chunk_ = allow_free_idle_chunk;
228 229 230 231 232
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
          InitAutoGrowthCUDAAllocator(platform::CUDAPlace(dev_id),
                                      allow_free_idle_chunk_);
        }

233 234 235 236 237 238 239 240 241 242 243 244 245
        // Note(Ruibiao): For GPU multi-stream case without CUDA graph
        // capturing, the 'allocators_' map(place -> Allocator) hold the
        // StreamSafeCUDAAllocator releate to defaultstream (i.e., the stream
        // directly got from DeviceContex), while the 'cuda_allocators_' map
        // (place -> map(stream -> Allocator)) hold the StreamSafeCUDAAllocator
        // releate to non-default stream (i.e., the stream users pass in). The
        // default stream Allocator is built in the structure of
        // AllocatorFacadePrivate, while the non-default stream is build in a
        // manner in GetAllocator function with 'create_if_not_found = ture'.
        // We make special treatment for the default stream for performance
        // reasons. Since most Alloc calls are for default stream in
        // application, treating it separately can avoid lots of overhead of
        // acquiring default stream and applying read-write lock.
246
        if (FLAGS_use_stream_safe_cuda_allocator) {
247 248 249 250
          if (LIKELY(!IsCUDAGraphCapturing())) {
            WrapStreamSafeCUDAAllocatorForDefault();
          }
          is_stream_safe_cuda_allocator_used_ = true;
251
        }
252

253 254
        InitNaiveBestFitCUDAPinnedAllocator();
#endif
255 256 257 258 259 260
#ifdef PADDLE_WITH_ASCEND_CL
        for (int dev_id = 0; dev_id < platform::GetNPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitNPUAllocator(platform::NPUPlace(dev_id));
        }
        InitNaiveBestFitNPUPinnedAllocator();
#endif
261 262 263 264
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
J
jianghaicheng 已提交
265 266 267 268 269
#endif
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
F
fwenguang 已提交
270 271 272 273 274
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
275 276
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
277
        auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
278 279
        for (const auto& dev_type : device_types) {
          for (size_t dev_id = 0;
280
               dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
281 282 283 284 285
               ++dev_id) {
            InitAutoGrowthCustomDeviceAllocator(
                platform::CustomPlace(dev_type, dev_id), allow_free_idle_chunk);
          }
        }
286
#endif
Z
Zeng Jinle 已提交
287 288
        break;
      }
289

290 291
      case AllocatorStrategy::kThreadLocal: {
        InitNaiveBestFitCPUAllocator();
292 293 294 295 296
#ifdef PADDLE_WITH_XPU
        for (int dev_id = 0; dev_id < platform::GetXPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitXPUAllocator(platform::XPUPlace(dev_id));
        }
#endif
J
jianghaicheng 已提交
297 298 299 300 301
#ifdef PADDLE_WITH_IPU
        for (int dev_id = 0; dev_id < platform::GetIPUDeviceCount(); ++dev_id) {
          InitNaiveBestFitIPUAllocator(platform::IPUPlace(dev_id));
        }
#endif
302
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
303
        for (int dev_id = 0; dev_id < platform::GetGPUDeviceCount(); ++dev_id) {
304 305 306
          InitThreadLocalCUDAAllocator(platform::CUDAPlace(dev_id));
        }
        InitNaiveBestFitCUDAPinnedAllocator();
F
fwenguang 已提交
307 308 309 310 311
#endif
#ifdef PADDLE_WITH_MLU
        for (int dev_id = 0; dev_id < platform::GetMLUDeviceCount(); ++dev_id) {
          InitNaiveBestFitMLUAllocator(platform::MLUPlace(dev_id));
        }
312 313 314 315
#endif
        break;
      }

Z
Zeng Jinle 已提交
316
      default: {
317
        PADDLE_THROW(platform::errors::InvalidArgument(
318
            "Unsupported allocator strategy: %d", static_cast<int>(strategy_)));
Z
Zeng Jinle 已提交
319
      }
Y
Yu Yang 已提交
320
    }
Z
Zeng Jinle 已提交
321
    InitZeroSizeAllocators();
322
    InitSystemAllocators();
323 324 325 326 327

    if (FLAGS_gpu_allocator_retry_time > 0) {
      WrapCUDARetryAllocator(FLAGS_gpu_allocator_retry_time);
    }

328 329
    WrapStatAllocator();

330
    CheckAllocThreadSafe();
331 332

#ifdef PADDLE_WITH_CUDA
333 334 335
    // No need to wrap CUDAGraphAllocator for StreamSafeCUDAAllocator
    if (!is_stream_safe_cuda_allocator_used_ &&
        UNLIKELY(IsCUDAGraphCapturing())) {
336 337 338
      WrapCUDAGraphAllocator();
    }
#endif
Z
Zeng Jinle 已提交
339 340 341 342
  }

  inline const std::shared_ptr<Allocator>& GetAllocator(
      const platform::Place& place, size_t size) {
343
    VLOG(6) << "GetAllocator"
L
Leo Chen 已提交
344
            << " " << place << " " << size;
345 346
    const auto& allocators =
        (size > 0 ? (UNLIKELY(FLAGS_use_system_allocator) ? system_allocators_
347
                                                          : GetAllocatorMap())
348
                  : zero_size_allocators_);
Z
Zeng Jinle 已提交
349
    auto iter = allocators.find(place);
350 351
    PADDLE_ENFORCE_NE(iter,
                      allocators.end(),
352 353
                      platform::errors::NotFound(
                          "No allocator found for the place, %s", place));
Z
Zeng Jinle 已提交
354
    return iter->second;
355 356
  }

357
  void* GetBasePtr(const std::shared_ptr<phi::Allocation>& allocation) {
358 359 360
    return static_cast<Allocation*>(allocation.get())->base_ptr();
  }

361 362 363 364 365
  bool IsStreamSafeCUDAAllocatorUsed() {
    return is_stream_safe_cuda_allocator_used_ &&
           LIKELY(FLAGS_use_system_allocator == false);
  }

366
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
367
  bool HasCUDAAllocator(const platform::CUDAPlace& place, gpuStream_t stream) {
368 369 370 371 372 373 374 375 376
    auto it = cuda_allocators_.find(place);
    if (it == cuda_allocators_.end()) {
      return false;
    }
    const std::map<gpuStream_t, std::shared_ptr<Allocator>>& allocator_map =
        it->second;
    return allocator_map.find(stream) != allocator_map.end();
  }

377
  const std::shared_ptr<Allocator>& GetAllocator(
378 379
      const platform::CUDAPlace& place,
      gpuStream_t stream,
380
      bool create_if_not_found = false) {
381 382 383 384 385
    if (LIKELY(!IsCUDAGraphCapturing())) {
      if (stream == GetDefaultStream(place)) {
        VLOG(7) << "Get Allocator by passing in a default stream";
        return GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
      }
386 387 388
    }

    /* shared_lock_guard */ {
389 390 391
      std::shared_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      if (LIKELY(HasCUDAAllocator(place, stream))) {
392 393
        return cuda_allocators_[place][stream];
      } else {
394 395
        PADDLE_ENFORCE_NE(create_if_not_found,
                          false,
396 397 398
                          platform::errors::NotFound(
                              "No allocator found for stream %s in place %s "
                              "with create_if_not_found = false",
399 400
                              stream,
                              place));
401 402 403
      }
    }

404
    /* unique_lock_guard */ {
405 406 407 408
      std::unique_lock<std::shared_timed_mutex> lock_guard(
          cuda_allocator_mutex_);
      InitStreamSafeCUDAAllocator(place, stream);
      return cuda_allocators_[place][stream];
409
    }
410 411
  }

412 413 414 415
  const std::shared_ptr<StreamSafeCUDAAllocator>
  GetDefaultStreamSafeCUDAAllocator(const platform::CUDAPlace& place) const {
    const auto iter = default_stream_safe_cuda_allocators_.find(place);
    PADDLE_ENFORCE_NE(
416 417
        iter,
        default_stream_safe_cuda_allocators_.end(),
418 419 420 421 422
        platform::errors::NotFound(
            "No StreamSafeCUDAAllocator found for the place, %s", place));
    return iter->second;
  }

423
  gpuStream_t GetDefaultStream(const platform::CUDAPlace& place) const {
424 425 426 427 428
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
    return allocator->GetDefaultStream();
  }

429
  void SetDefaultStream(const platform::CUDAPlace& place, gpuStream_t stream) {
430 431
    const std::shared_ptr<StreamSafeCUDAAllocator>& allocator =
        GetDefaultStreamSafeCUDAAllocator(place);
432

433
    PADDLE_ENFORCE_EQ(
434 435
        allocator->GetDefaultStream(),
        nullptr,
436 437 438
        platform::errors::Unavailable(
            "The default stream for StreamSafeCUDAAllocator(%p) in %s has been "
            "set to %p, not allow to change it to %p.",
439 440 441 442
            allocator.get(),
            place,
            allocator->GetDefaultStream(),
            stream));
443

444 445 446 447 448 449
    allocator->SetDefaultStream(stream);
    VLOG(8) << "Set default stream to " << stream
            << " for StreamSafeCUDAAllocator(" << allocator.get() << ") in "
            << place;
  }

450
  void RecordStream(std::shared_ptr<phi::Allocation> allocation,
451
                    gpuStream_t stream) {
452 453 454 455 456 457
    std::shared_ptr<StreamSafeCUDAAllocation> stream_safe_cuda_allocation =
        std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      stream_safe_cuda_allocation->RecordStream(stream);
    } else {
      VLOG(6) << "RecordStream for a non-StreamSafeCUDAAllocation";
458
    }
459 460
  }

461
  gpuStream_t GetStream(
462
      const std::shared_ptr<phi::Allocation>& allocation) const {
463 464 465 466 467 468 469 470 471 472 473
    const std::shared_ptr<StreamSafeCUDAAllocation>
        stream_safe_cuda_allocation =
            std::dynamic_pointer_cast<StreamSafeCUDAAllocation>(allocation);
    if (stream_safe_cuda_allocation != nullptr) {
      return stream_safe_cuda_allocation->GetOwningStream();
    }

    VLOG(6) << "GetStream for a non-StreamSafeCUDAAllocation";
    return static_cast<phi::GPUContext*>(
               platform::DeviceContextPool::Instance().Get(allocation->place()))
        ->stream();
474 475 476 477 478 479 480 481 482 483
  }
#endif

 private:
  class ZeroSizeAllocator : public Allocator {
   public:
    explicit ZeroSizeAllocator(platform::Place place) : place_(place) {}
    bool IsAllocThreadSafe() const override { return true; }

   protected:
484
    phi::Allocation* AllocateImpl(size_t size) override {
485 486
      return new Allocation(nullptr, 0, place_);
    }
487
    void FreeImpl(phi::Allocation* allocation) override { delete allocation; }
488 489 490 491 492

   private:
    platform::Place place_;
  };

493
  const AllocatorMap& GetAllocatorMap() { return allocators_; }
494

495 496 497
  void InitNaiveBestFitCPUAllocator() {
    allocators_[platform::CPUPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CPUPlace());
Y
Yu Yang 已提交
498 499
  }

500
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
501 502 503
  void InitNaiveBestFitCUDAPinnedAllocator() {
    allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<NaiveBestFitAllocator>(platform::CUDAPinnedPlace());
504 505
  }

506 507 508 509 510 511 512 513
  void InitNaiveBestFitCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  // Create a new CUDAAllocator or CUDAManagedAllocator for the given device
  std::shared_ptr<Allocator> CreateCUDAAllocator(platform::CUDAPlace p) {
    if (FLAGS_use_cuda_managed_memory) {
      PADDLE_ENFORCE_EQ(
514 515
          strategy_,
          AllocatorStrategy::kAutoGrowth,
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
          platform::errors::InvalidArgument(
              "CUDA managed memory is only implemented for auto_growth "
              "strategy, not support %s strategy.\n"
              "Please use auto_growth strategy by command `export "
              "FLAGS_allocator_strategy=\"auto_growth\"`, or disable managed "
              "memory by command `export FLAGS_use_cuda_managed_memory=false`",
              FLAGS_allocator_strategy));

      if (!platform::IsGPUManagedMemorySupported(p.device)) {
        PADDLE_THROW(platform::errors::Unavailable(
            "Failed to create CUDAManagedAllocator on GPU %d.\n\n"
            "You have enabled CUDA managed memory, but the gpu device does not "
            "support allocating managed memory.\n"
            "If you don't actually need to use managed memory, please disable "
            "it with command `export FLAGS_use_cuda_managed_memory=false`.\n"
531 532
            "Or you must use the gpu device that supports managed memory.",
            p.device));
533 534 535 536 537 538
      }
      return std::make_shared<CUDAManagedAllocator>(p);
    }
    return std::make_shared<CUDAAllocator>(p);
  }

539 540
  void InitStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    PADDLE_ENFORCE_EQ(
541 542
        strategy_,
        AllocatorStrategy::kAutoGrowth,
543 544 545 546
        platform::errors::Unimplemented(
            "Only support auto-growth strategey for StreamSafeCUDAAllocator, "
            "the allocator strategy %d is unsupported for multi-stream",
            static_cast<int>(strategy_)));
547 548 549
    if (LIKELY(!HasCUDAAllocator(p, stream))) {
      VLOG(8) << "Init CUDA allocator for stream " << stream << " in place "
              << p;
550 551 552
      InitAutoGrowthCUDAAllocator(p, stream);
      WrapStreamSafeCUDAAllocator(p, stream);
      WrapCUDARetryAllocator(p, stream, FLAGS_gpu_allocator_retry_time);
553
      WrapStatAllocator(p, stream);
554 555 556 557 558
    }
  }

  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
#if defined(PADDLE_WITH_HIP)
559
    auto cuda_allocator = CreateCUDAAllocator(p);
560
    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
561
        cuda_allocator, platform::GpuMinChunkSize(), 0, allow_free_idle_chunk_);
562 563 564 565 566 567 568
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
569
      PADDLE_ENFORCE_GPU_SUCCESS(
570 571
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

572
      PADDLE_ENFORCE_GPU_SUCCESS(
573
          paddle::platform::dynload::cuDeviceGetAttribute(
574 575
              &val,
              CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
576 577 578 579 580 581 582 583 584 585 586
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      cuda_allocators_[p][stream] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
587
      auto cuda_allocator = CreateCUDAAllocator(p);
588 589
      cuda_allocators_[p][stream] =
          std::make_shared<AutoGrowthBestFitAllocator>(
590 591
              cuda_allocator,
              platform::GpuMinChunkSize(),
592 593 594
              allow_free_idle_chunk_);
    }
#else
595
    auto cuda_allocator = CreateCUDAAllocator(p);
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }

    cuda_allocators_[p][stream] = std::make_shared<AutoGrowthBestFitAllocator>(
        underlying_allocator, alignment, 0, allow_free_idle_chunk_);
#endif
#endif
632 633
  }

634
  // NOTE(Ruibiao): Old single-stream version, will be removed later
635 636
  void InitAutoGrowthCUDAAllocator(platform::CUDAPlace p,
                                   bool allow_free_idle_chunk) {
637
#if defined(PADDLE_WITH_HIP)
638
    auto cuda_allocator = CreateCUDAAllocator(p);
639 640 641 642 643 644 645 646 647
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
        cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
#endif

#if defined(PADDLE_WITH_CUDA)
#if CUDA_VERSION >= 10020
    CUdevice device;
    int val;
    try {
648
      PADDLE_ENFORCE_GPU_SUCCESS(
649 650
          paddle::platform::dynload::cuDeviceGet(&device, p.GetDeviceId()));

651
      PADDLE_ENFORCE_GPU_SUCCESS(
652
          paddle::platform::dynload::cuDeviceGetAttribute(
653 654
              &val,
              CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
655 656 657 658 659 660 661 662 663 664 665
              device));
    } catch (...) {
      val = 0;
    }

    if (val > 0 && FLAGS_use_virtual_memory_auto_growth) {
      auto cuda_allocator = std::make_shared<CUDAVirtualMemAllocator>(p);
      allocators_[p] =
          std::make_shared<VirtualMemoryAutoGrowthBestFitAllocator>(
              cuda_allocator, platform::GpuMinChunkSize(), p);
    } else {
666
      auto cuda_allocator = CreateCUDAAllocator(p);
667 668 669 670 671
      allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
          cuda_allocator, platform::GpuMinChunkSize(), allow_free_idle_chunk);
    }

#else
672
    auto cuda_allocator = CreateCUDAAllocator(p);
L
Leo Chen 已提交
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
    auto alignment = platform::GpuMinChunkSize();
    bool need_addr_align = true;
    // NOTE: sometimes, since cuda runtime can not be forked, calling any cuda
    // API in that case may got cuda error(3), i.e.,
    // cudaErrorInitializationError. And, the CUDAAllocator is only initialized
    // but not really used.
    // Here, the try-catch block is added to handle the case that
    // GetDeviceProperties() may failed in the multiple process(for example, in
    // dataloader with num_worker > 0)
    try {
      const auto& prop = platform::GetDeviceProperties(p.GetDeviceId());
      need_addr_align = prop.textureAlignment < alignment;
      VLOG(4) << "GetDeviceProperties ok, textureAlignment: "
              << prop.textureAlignment
              << ", set need_addr_align=" << need_addr_align;
    } catch (...) {
      need_addr_align = true;
      VLOG(4) << "GetDeviceProperties failed, set need_addr_align=true";
    }
    // The address returned is aligned already,
    // ref:
    // https://stackoverflow.com/questions/14082964/cuda-alignment-256bytes-seriously/14083295#14083295
    std::shared_ptr<Allocator> underlying_allocator{nullptr};
    if (need_addr_align) {
      VLOG(10) << "use AlignedAllocator with alignment: " << alignment;
      underlying_allocator =
          std::make_shared<AlignedAllocator>(underlying_allocator, alignment);
    } else {
      VLOG(10) << "not use AlignedAllocator with alignment: " << alignment;
      underlying_allocator = cuda_allocator;
    }
704
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
L
Leo Chen 已提交
705
        underlying_allocator, alignment, 0, allow_free_idle_chunk);
706 707
#endif
#endif
S
sneaxiy 已提交
708
  }
709 710 711 712 713 714

  void InitThreadLocalCUDAAllocator(platform::CUDAPlace p) {
    allocators_[p] = std::make_shared<ThreadLocalCUDAAllocator>(p);
  }

  void WrapStreamSafeCUDAAllocator(platform::CUDAPlace p, gpuStream_t stream) {
715 716
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StreamSafeCUDAAllocator>(
717 718 719
        allocator,
        p,
        stream,
720
        /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
721 722
  }

723 724 725 726 727 728
  void WrapStreamSafeCUDAAllocatorForDefault() {
    for (auto& pair : allocators_) {
      auto& place = pair.first;
      if (platform::is_gpu_place(place)) {
        std::shared_ptr<StreamSafeCUDAAllocator>&& allocator =
            std::make_shared<StreamSafeCUDAAllocator>(
729 730
                pair.second,
                place,
731
                /* default_stream = */ nullptr,
732 733 734 735 736 737 738 739 740 741 742 743 744
                /* in_cuda_graph_capturing = */ !allow_free_idle_chunk_);
        pair.second = allocator;

        // NOTE(Ruibiao): A tricky implement to give StreamSafeCUDAAllocator an
        // ability to interact with the outside world, i.e., change default
        // stream from outside
        default_stream_safe_cuda_allocators_[place] = allocator;
        VLOG(8) << "WrapStreamSafeCUDAAllocator for " << place
                << ", allocator address = " << pair.second.get();
      }
    }
  }

745 746
  void WrapCUDARetryAllocator(platform::CUDAPlace p,
                              gpuStream_t stream,
747 748
                              size_t retry_time) {
    PADDLE_ENFORCE_GT(
749 750
        retry_time,
        0,
751 752
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
753
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
754 755 756
    allocator = std::make_shared<RetryAllocator>(allocator, retry_time);
  }

757 758 759 760 761
  void WrapStatAllocator(platform::CUDAPlace p, gpuStream_t stream) {
    std::shared_ptr<Allocator>& allocator = cuda_allocators_[p][stream];
    allocator = std::make_shared<StatAllocator>(allocator);
  }

762 763 764 765 766 767 768 769 770
#ifdef PADDLE_WITH_CUDA
  void WrapCUDAGraphAllocator() {
    for (auto& item : allocators_) {
      auto& allocator = item.second;
      allocator = CUDAGraphAllocator::Create(allocator);
    }
  }
#endif

771 772 773
  static void CheckCUDAAllocThreadSafe(const CUDAAllocatorMap& allocators) {
    for (auto& place_pair : allocators) {
      for (auto& stream_pair : place_pair.second) {
774 775
        PADDLE_ENFORCE_EQ(stream_pair.second->IsAllocThreadSafe(),
                          true,
776 777 778 779 780
                          platform::errors::InvalidArgument(
                              "Public allocators must be thread safe"));
      }
    }
  }
781
#endif
S
sneaxiy 已提交
782

783 784 785 786 787 788
#ifdef PADDLE_WITH_XPU
  void InitNaiveBestFitXPUAllocator(platform::XPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

J
jianghaicheng 已提交
789 790 791 792 793 794
#ifdef PADDLE_WITH_IPU
  void InitNaiveBestFitIPUAllocator(platform::IPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

F
fwenguang 已提交
795 796 797 798 799 800
#ifdef PADDLE_WITH_MLU
  void InitNaiveBestFitMLUAllocator(platform::MLUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
#endif

801 802 803 804
#ifdef PADDLE_WITH_ASCEND_CL
  void InitNaiveBestFitNPUAllocator(platform::NPUPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }
805 806 807 808 809

  void InitNaiveBestFitNPUPinnedAllocator() {
    allocators_[platform::NPUPinnedPlace()] =
        std::make_shared<paddle::memory::allocation::NPUPinnedAllocator>();
  }
810 811
#endif

812 813 814 815 816 817 818 819 820 821
#ifdef PADDLE_WITH_CUSTOM_DEVICE
  void InitNaiveBestFitCustomDeviceAllocator(platform::CustomPlace p) {
    allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
  }

  void InitAutoGrowthCustomDeviceAllocator(platform::CustomPlace p,
                                           bool allow_free_idle_chunk) {
    auto custom_allocator =
        std::make_shared<paddle::memory::allocation::CustomAllocator>(p);
    allocators_[p] = std::make_shared<AutoGrowthBestFitAllocator>(
822 823
        custom_allocator,
        phi::DeviceManager::GetMinChunkSize(p),
824 825 826 827
        allow_free_idle_chunk);
  }
#endif

828 829 830 831 832 833 834 835
  void InitSystemAllocators() {
    if (!system_allocators_.empty()) return;
    system_allocators_[platform::CPUPlace()] = std::make_shared<CPUAllocator>();
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::XPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
Z
Zeng Jinle 已提交
836
    }
837
#endif
J
jianghaicheng 已提交
838 839 840 841 842 843 844
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
      platform::IPUPlace p(i);
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
#endif
845 846 847
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
    system_allocators_[platform::CUDAPinnedPlace()] =
        std::make_shared<CPUPinnedAllocator>();
848
    int device_count = platform::GetGPUDeviceCount();
849 850
    for (int i = 0; i < device_count; ++i) {
      platform::CUDAPlace p(i);
851
      system_allocators_[p] = CreateCUDAAllocator(p);
852
    }
F
fwenguang 已提交
853 854 855 856
#endif
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int i = 0; i < device_count; ++i) {
857
      platform::MLUPlace p(i);
F
fwenguang 已提交
858 859
      system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
    }
860 861 862 863 864
#endif
#ifdef PADDLE_WITH_CUSTOM_DEVICE
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
865 866
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
           dev_id++) {
867 868 869 870
        platform::CustomPlace p(dev_type, dev_id);
        system_allocators_[p] = std::make_shared<NaiveBestFitAllocator>(p);
      }
    }
871 872
#endif
  }
Z
Zeng Jinle 已提交
873 874

  void InitZeroSizeAllocators() {
875
    if (!zero_size_allocators_.empty()) return;
Z
Zeng Jinle 已提交
876 877
    std::vector<platform::Place> places;
    places.emplace_back(platform::CPUPlace());
878
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
879
    int device_count = platform::GetGPUDeviceCount();
Z
Zeng Jinle 已提交
880 881 882 883 884
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::CUDAPlace(dev_id));
    }
    places.emplace_back(platform::CUDAPinnedPlace());
#endif
885 886 887 888 889 890
#ifdef PADDLE_WITH_XPU
    int device_count = platform::GetXPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::XPUPlace(dev_id));
    }
#endif
891 892 893 894 895 896
#ifdef PADDLE_WITH_ASCEND_CL
    int device_count = platform::GetNPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::NPUPlace(dev_id));
    }
#endif
J
jianghaicheng 已提交
897 898 899 900 901 902
#ifdef PADDLE_WITH_IPU
    int device_count = platform::GetIPUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::IPUPlace(dev_id));
    }
#endif
F
fwenguang 已提交
903 904 905 906 907 908
#ifdef PADDLE_WITH_MLU
    int device_count = platform::GetMLUDeviceCount();
    for (int dev_id = 0; dev_id < device_count; ++dev_id) {
      places.emplace_back(platform::MLUPlace(dev_id));
    }
#endif
909
#ifdef PADDLE_WITH_CUSTOM_DEVICE
910
    auto device_types = phi::DeviceManager::GetAllCustomDeviceTypes();
911 912
    for (const auto& dev_type : device_types) {
      for (size_t dev_id = 0;
913 914
           dev_id < phi::DeviceManager::GetDeviceCount(dev_type);
           dev_id++) {
915 916 917 918
        places.emplace_back(platform::CustomPlace(dev_type, dev_id));
      }
    }
#endif
Z
Zeng Jinle 已提交
919 920 921

    for (auto& p : places) {
      zero_size_allocators_[p] = std::make_shared<ZeroSizeAllocator>(p);
Y
Yu Yang 已提交
922 923
    }
  }
Z
Zeng Jinle 已提交
924

925 926
  static void CheckAllocThreadSafe(const AllocatorMap& allocators) {
    for (auto& pair : allocators) {
927 928
      PADDLE_ENFORCE_EQ(pair.second->IsAllocThreadSafe(),
                        true,
929 930
                        platform::errors::InvalidArgument(
                            "Public allocators must be thread safe"));
931
    }
932
  }
933

934 935 936 937
  void CheckAllocThreadSafe() const {
    CheckAllocThreadSafe(allocators_);
    CheckAllocThreadSafe(zero_size_allocators_);
    CheckAllocThreadSafe(system_allocators_);
938
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
939
    if (is_stream_safe_cuda_allocator_used_) {
940 941 942
      CheckCUDAAllocThreadSafe(cuda_allocators_);
    }
#endif
943 944 945
  }

  void WrapCUDARetryAllocator(size_t retry_time) {
946
    PADDLE_ENFORCE_GT(
947 948
        retry_time,
        0,
949 950
        platform::errors::InvalidArgument(
            "Retry time should be larger than 0, but got %d", retry_time));
951 952 953 954 955 956 957
    for (auto& pair : allocators_) {
      if (platform::is_gpu_place(pair.first)) {
        pair.second = std::make_shared<RetryAllocator>(pair.second, retry_time);
      }
    }
  }

958 959
  void WrapStatAllocator() {
    for (auto& pair : allocators_) {
960 961 962 963 964 965 966
      // Now memory stats is only supported for CPU and GPU
      const platform::Place& place = pair.first;
      if (platform::is_cpu_place(place) ||
          platform::is_cuda_pinned_place(place) ||
          platform::is_gpu_place(place)) {
        pair.second = std::make_shared<StatAllocator>(pair.second);
      }
967 968 969
    }
  }

970 971
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  // a standalone CUDA allocator to support multi-stream GC in new executor
972 973
  std::map<platform::Place, std::shared_ptr<StreamSafeCUDAAllocator>>
      default_stream_safe_cuda_allocators_;
974
  CUDAAllocatorMap cuda_allocators_;
975
  std::shared_timed_mutex cuda_allocator_mutex_;
976 977
#endif
  AllocatorStrategy strategy_;
978
  AllocatorMap allocators_;
979 980
  static AllocatorMap zero_size_allocators_;
  static AllocatorMap system_allocators_;
981
  bool allow_free_idle_chunk_;
982
  bool is_stream_safe_cuda_allocator_used_;
983
};
984 985 986 987
AllocatorFacadePrivate::AllocatorMap
    AllocatorFacadePrivate::zero_size_allocators_;
AllocatorFacadePrivate::AllocatorMap AllocatorFacadePrivate::system_allocators_;

Y
Refine  
Yu Yang 已提交
988
// Pimpl. Make interface clean.
989
AllocatorFacade::AllocatorFacade() : m_(new AllocatorFacadePrivate()) {}
990 991 992
// delete m_ may cause core dump when the destructor of python in conflict with
// cpp.
AllocatorFacade::~AllocatorFacade() {}
993 994

AllocatorFacade& AllocatorFacade::Instance() {
995 996 997 998 999 1000
  static AllocatorFacade* instance = new AllocatorFacade;
  return *instance;
}

AllocatorFacadePrivate* AllocatorFacade::GetPrivate() const {
#ifdef PADDLE_WITH_CUDA
1001
  if (UNLIKELY(IsCUDAGraphCapturing())) {
1002
    auto id = platform::CUDAGraph::CapturingPoolID();
1003 1004
    auto iter = cuda_graph_map_.find(id);
    PADDLE_ENFORCE_NE(
1005 1006
        iter,
        cuda_graph_map_.end(),
1007 1008 1009 1010 1011 1012 1013
        platform::errors::PermissionDenied(
            "No memory pool is prepared for CUDA Graph capturing."));
    VLOG(10) << "Choose CUDA Graph memory pool";
    return iter->second.get();
  }
#endif
  return m_;
1014 1015
}

1016 1017
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
    const platform::Place& place) {
1018 1019
  return GetPrivate()->GetAllocator(
      place, /* A non-zero num to choose allocator_ */ 1);
1020 1021
}

1022
void* AllocatorFacade::GetBasePtr(
1023
    const std::shared_ptr<phi::Allocation>& allocation) {
1024 1025
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(),
                    AllocatorStrategy::kAutoGrowth,
1026 1027 1028 1029
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for auto_growth "
                        "strategy, not support allocator strategy: %d",
                        static_cast<int>(GetAllocatorStrategy())));
1030 1031
  PADDLE_ENFORCE_EQ(platform::is_gpu_place(allocation->place()),
                    true,
1032 1033 1034 1035
                    paddle::platform::errors::Unimplemented(
                        "GetBasePtr() is only implemented for CUDAPlace(), not "
                        "suppot place: %s",
                        allocation->place()));
1036
  return GetPrivate()->GetBasePtr(allocation);
1037 1038
}

1039 1040
const std::shared_ptr<Allocator>& AllocatorFacade::GetZeroAllocator(
    const platform::Place& place) {
1041
  return GetPrivate()->GetAllocator(place, /* zero size */ 0);
1042 1043
}

1044
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
1045
    const platform::Place& place, size_t size) {
1046
  return std::shared_ptr<phi::Allocation>(Alloc(place, size));
1047 1048
}

1049 1050
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size) {
1051
  return GetPrivate()->GetAllocator(place, size)->Allocate(size);
1052 1053
}

W
Wilber 已提交
1054
uint64_t AllocatorFacade::Release(const platform::Place& place) {
1055 1056
  return GetPrivate()
      ->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1)
1057 1058 1059
      ->Release(place);
}

1060 1061
std::shared_ptr<phi::Allocation> AllocatorFacade::AllocShared(
    const platform::Place& place, size_t size, const phi::Stream& stream) {
1062
  return std::shared_ptr<phi::Allocation>(Alloc(place, size, stream));
1063 1064
}

1065 1066
AllocationPtr AllocatorFacade::Alloc(const platform::Place& place,
                                     size_t size,
1067
                                     const phi::Stream& stream) {
1068
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1069 1070 1071 1072 1073
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Alloc(place, size);
  }
1074

1075 1076 1077
  platform::CUDAPlace p(place.GetDeviceId());
  if (LIKELY(size > 0 && FLAGS_use_system_allocator == false)) {
    gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
1078
    return m->GetAllocator(p, s, /* create_if_not_found = */ true)
1079 1080
        ->Allocate(size);
  } else {
1081
    return m->GetAllocator(p, size)->Allocate(size);
1082
  }
1083
#elif defined(PADDLE_WITH_XPU) || defined(PADDLE_WITH_ASCEND_CL)
1084
  return GetAllocator(place)->Allocate(size);
1085
#else
1086 1087
  PADDLE_THROW(platform::errors::PreconditionNotMet(
      "Not compiled with GPU or XPU or NPU."));
1088 1089 1090
#endif
}

1091 1092 1093
bool AllocatorFacade::InSameStream(
    const std::shared_ptr<phi::Allocation>& allocation,
    const phi::Stream& stream) {
1094
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1095 1096 1097 1098
  gpuStream_t s = reinterpret_cast<gpuStream_t>(stream.id());
  return s == GetStream(allocation);
#else
  PADDLE_THROW(platform::errors::PreconditionNotMet("Not compiled with GPU."));
1099
#endif
1100 1101
}

1102 1103 1104 1105
bool AllocatorFacade::IsStreamSafeCUDAAllocatorUsed() {
  return GetPrivate()->IsStreamSafeCUDAAllocatorUsed();
}

1106
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
1107
uint64_t AllocatorFacade::Release(const platform::CUDAPlace& place,
1108
                                  gpuStream_t stream) {
1109 1110 1111 1112 1113 1114 1115
  AllocatorFacadePrivate* m = GetPrivate();
  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return Release(place);
  }

  return m->GetAllocator(place, stream)->Release(place);
1116 1117
}

1118
void AllocatorFacade::RecordStream(std::shared_ptr<phi::Allocation> allocation,
1119
                                   gpuStream_t stream) {
1120
  GetPrivate()->RecordStream(allocation, stream);
1121 1122
}

1123
const std::shared_ptr<Allocator>& AllocatorFacade::GetAllocator(
1124
    const platform::Place& place, gpuStream_t stream) {
1125 1126 1127 1128 1129
  AllocatorFacadePrivate* m = GetPrivate();

  if (!m->IsStreamSafeCUDAAllocatorUsed()) {
    VLOG(6) << "Warning: StreamSafeCUDAAllocator is not used!";
    return GetAllocator(place);
1130
  }
1131 1132

  if (platform::is_gpu_place(place) && FLAGS_use_system_allocator == false) {
1133 1134
    return m->GetAllocator(place,
                           stream,
1135 1136 1137
                           /*create_if_not_found=*/true);
  }
  return m->GetAllocator(place, /* A non-zero num to choose allocator_ */ 1);
1138 1139
}

1140
gpuStream_t AllocatorFacade::GetStream(
1141
    const std::shared_ptr<phi::Allocation>& allocation) const {
1142
  return GetPrivate()->GetStream(allocation);
1143 1144
}

1145
void AllocatorFacade::SetDefaultStream(const platform::CUDAPlace& place,
1146
                                       gpuStream_t stream) {
1147 1148
  if (m_->IsStreamSafeCUDAAllocatorUsed()) {
    m_->SetDefaultStream(place, stream);
1149 1150 1151
  }
}

1152
#ifdef PADDLE_WITH_CUDA
1153
void AllocatorFacade::PrepareMemoryPoolForCUDAGraph(int64_t id) {
1154 1155
  PADDLE_ENFORCE_EQ(GetAllocatorStrategy(),
                    AllocatorStrategy::kAutoGrowth,
1156 1157 1158 1159 1160 1161
                    platform::errors::InvalidArgument(
                        "CUDA Graph is only supported when the "
                        "FLAGS_allocator_strategy=\"auto_growth\", but got "
                        "FLAGS_allocator_strategy=\"%s\"",
                        FLAGS_allocator_strategy));
  auto& allocator = cuda_graph_map_[id];
1162 1163 1164 1165 1166 1167 1168 1169 1170
  auto& ref_cnt = cuda_graph_ref_cnt_[id];
  if (allocator.get() == nullptr) {
    allocator.reset(
        new AllocatorFacadePrivate(/*allow_free_idle_chunk=*/false));
    VLOG(10) << "Create memory pool for CUDA Graph with memory ID " << id;
  } else {
    VLOG(10) << "Use created memory pool for CUDA Graph with memory ID " << id;
  }
  ++ref_cnt;
1171 1172
}

1173 1174
void AllocatorFacade::RemoveMemoryPoolOfCUDAGraph(int64_t id) {
  auto ref_cnt_iter = cuda_graph_ref_cnt_.find(id);
1175 1176
  PADDLE_ENFORCE_NE(ref_cnt_iter,
                    cuda_graph_ref_cnt_.end(),
1177
                    platform::errors::InvalidArgument(
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
                        "Cannot find CUDA Graph with memory ID = %d", id));
  auto& ref_cnt = ref_cnt_iter->second;
  --ref_cnt;
  if (ref_cnt == 0) {
    cuda_graph_map_.erase(id);
    cuda_graph_ref_cnt_.erase(ref_cnt_iter);
    VLOG(10) << "Remove memory pool of CUDA Graph with memory ID " << id;
  } else {
    VLOG(10) << "Decrease memory pool ID " << id << " reference count to be "
             << ref_cnt;
  }
1189 1190
}
#endif
1191
#endif
1192 1193 1194
}  // namespace allocation
}  // namespace memory
}  // namespace paddle