composite_backward_api.h 52.0 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

G
GGBond8488 已提交
17 18 19 20 21 22
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

#include <math.h>

23
#include "paddle/fluid/prim/api/all.h"
X
xiaoguoguo626807 已提交
24
#include "paddle/fluid/prim/api/composite_backward/composite_double_backward_api.h"
25
#include "paddle/fluid/prim/api/generated_prim/prim_generated_api.h"
C
cxxly 已提交
26
#include "paddle/phi/common/amp_type_traits.h"
27 28
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/ddim.h"
C
cxxly 已提交
29

J
Jiabin Yang 已提交
30 31
namespace paddle {
namespace prim {
32 33
using Tensor = paddle::Tensor;
using IntArray = paddle::experimental::IntArrayBase<paddle::Tensor>;
34 35
//  This function should have as same signature as phi, which defined in
//  paddle/phi/api/backward/backward_api.h
J
Jiabin Yang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
template <typename T>
void hardswish_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto offset = full<T>(phi::vectorize(x.dims()), 3.0, x.dtype());
    auto condition = less_equal<T>(x, offset);
    auto tmp1 = where<T>(condition, out_grad * ((x / 3.0) + 0.5), out_grad);
    auto res = where<T>(
        less_than<T>(x, full<T>(phi::vectorize(x.dims()), -3.0, x.dtype())),
        full<T>(phi::vectorize(x.dims()), 0.0, x.dtype()),
        tmp1);
    set_output<T>(res, x_grad);
  }
}

template <typename T>
void leaky_relu_grad(const Tensor& out,
                     const Tensor& out_grad,
                     float negative_slope,
                     Tensor* x_grad) {
  if (x_grad) {
    auto condition = greater_than<T>(
        out, full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    auto res = where<T>(condition, out_grad, out_grad * negative_slope);
    set_output<T>(res, x_grad);
  }
}

template <typename T>
64 65 66 67
void silu_grad(const Tensor& x,
               const Tensor& out,
               const Tensor& out_grad,
               Tensor* x_grad) {
J
Jiabin Yang 已提交
68
  if (x_grad) {
69
    auto sigmoid = out / x;
J
Jiabin Yang 已提交
70 71 72 73 74
    auto res = out_grad * sigmoid * (1.0 + x * (1.0 - sigmoid));
    set_output<T>(res, x_grad);
  }
}

J
Jiabin Yang 已提交
75 76 77 78 79 80 81 82 83 84 85 86
template <typename T>
void relu_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto condition = greater_than<T>(
        out, full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    auto res = where<T>(condition,
                        out_grad,
                        full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    set_output<T>(res, x_grad);
  }
}

J
Jiabin Yang 已提交
87
template <typename T>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
void softmax_grad(const Tensor& out,
                  const Tensor& out_grad,
                  int axis,
                  Tensor* x_grad) {
  if (x_grad) {
    if (out_grad.dims().size() > 0) {
      if (axis >= 0) {
        auto new_out_grad = out_grad * out;
        auto tmp_x_grad = new_out_grad -
                          out * sum<T>(new_out_grad, {axis}, out.dtype(), true);
        set_output<T>(tmp_x_grad, x_grad);
      } else {
        auto new_out_grad = out_grad * out;
        auto tmp_x_grad =
            new_out_grad - out * sum<T>(new_out_grad,
                                        {out.dims().size() + axis},
                                        out.dtype(),
                                        true);
        set_output<T>(tmp_x_grad, x_grad);
      }
    } else {
      set_output<T>(
          full<T>(phi::vectorize(out_grad.dims()), 0.0, out_grad.dtype()),
          x_grad);
    }
  }
}

template <typename T>
117
void cast_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
118
  if (x_grad) {
119
    auto res = cast<T>(out_grad, x.dtype());
120 121 122
    set_output<T>(res, x_grad);
  }
}
123

124
template <typename T>
J
Jiabin Yang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
void gather_grad(const Tensor& x,
                 const Tensor& index,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 Tensor* grad_x) {
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int> tmp_perm;

  // change axis to rank 0
  int axis_value = axis.to<int>();
  tmp_perm.push_back(axis_value);
  // make other ranks
  for (int i = 0; i < x.dims().size(); ++i) {
    if (i != axis_value) {
      tmp_perm.push_back(i);
    }
  }
  std::vector<int> reverse_perm(tmp_perm);
  // make origin ranks
  for (int i = 0; i < static_cast<int>(tmp_perm.size()); ++i) {
145 146 147 148 149
    if (tmp_perm[i] >= 0) {
      reverse_perm[tmp_perm[i]] = i;
    } else {
      reverse_perm[tmp_perm[i] + tmp_perm.size()] = i;
    }
J
Jiabin Yang 已提交
150 151 152 153 154 155 156 157 158 159 160
  }

  // transpose out_grad and zero grad to target rank.
  auto tmp_zero_x_grad = transpose<T>(zero_tensor, tmp_perm);
  auto tmp_out_grad = transpose<T>(out_grad, tmp_perm);
  // scatter grad to grad_x
  auto tmp_grad_x = scatter<T>(tmp_zero_x_grad, index, tmp_out_grad, false);
  auto tmp_grad_x_tranposed = transpose<T>(tmp_grad_x, reverse_perm);
  set_output<T>(tmp_grad_x_tranposed, grad_x);
}

J
Jiabin Yang 已提交
161 162
template <typename T>
void tanh_grad(const Tensor& out, const Tensor& grad_out, Tensor* grad_x) {
163
  if (!grad_x) return;
164
  auto grad_x_tmp = grad_out * (1 - out * out);
165
  set_output<T>(grad_x_tmp, grad_x);
J
Jiabin Yang 已提交
166
}
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
template <typename T>
void reshape_grad(const Tensor& x, const Tensor& grad_out, Tensor* grad_x) {
  if (grad_x) {
    auto grad_x_tmp = reshape<T>(grad_out, phi::vectorize(x.dims()));
    set_output<T>(grad_x_tmp, grad_x);
  }
}

template <typename T>
void transpose_grad(const Tensor& grad_out,
                    const std::vector<int>& perm,
                    Tensor* grad_x) {
  if (grad_x) {
    std::vector<int> reverse_perm(perm);
    // make origin ranks
    for (int i = 0; i < static_cast<int>(perm.size()); ++i) {
184 185 186 187 188
      if (perm[i] >= 0) {
        reverse_perm[perm[i]] = i;
      } else {
        reverse_perm[perm[i] + perm.size()] = i;
      }
189 190 191 192 193 194
    }
    auto grad_x_tmp = transpose<T>(grad_out, reverse_perm);
    set_output<T>(grad_x_tmp, grad_x);
  }
}

195 196 197 198 199 200 201 202 203
template <typename T>
void subtract_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* dx,
                   Tensor* dy) {
  if (dy) {
    auto scale_out_grad = scale<T>(out_grad, -1.0, 0.0, true);
204
    if (x.dims() != y.dims()) {
205
      // Maybe need reduce here
206 207 208 209
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(scale_out_grad, dy);
      } else {
210 211
        auto dy_reduce_res =
            scale_out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
212
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
213
        set_output<T>(dy_tmp, dy);
214
      }
215 216 217 218 219
    } else {
      by_pass<T>(scale_out_grad, dy);
    }
  }
  if (dx) {
220
    if (y.dims() != x.dims()) {
221
      // Maybe need reduce here
222 223 224 225 226
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
227
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
228
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
229
        set_output<T>(dx_tmp, dx);
230
      }
231 232 233 234 235 236 237 238 239 240 241 242 243 244
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

template <typename T>
void add_grad(const Tensor& x,
              const Tensor& y,
              const Tensor& out_grad,
              int axis,
              Tensor* dx,
              Tensor* dy) {
  if (dy) {
245
    if (x.dims() != y.dims()) {
246
      // Maybe need reduce here
247 248 249 250 251
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dy);
      } else {
        auto dy_reduce_res =
252
            out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
253
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
254
        set_output<T>(dy_tmp, dy);
255 256
      }

257 258 259 260 261
    } else {
      by_pass<T>(out_grad, dy);
    }
  }
  if (dx) {
262
    if (y.dims() != x.dims()) {
263
      // Maybe need reduce here
264 265 266 267 268
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
269
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
270
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
271
        set_output<T>(dx_tmp, dx);
272
      }
273 274 275 276 277 278
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

279 280 281 282 283 284 285 286 287 288
template <typename T>
void sum_grad(const Tensor& x,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
R
risemeup1 已提交
289
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
290 291 292 293 294 295 296 297 298
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
299
  if (x_dim_size == 1) {
300
    x_grad_tmp = out_grad.expand(IntArray(x_dim));
301 302 303 304
  } else {
    if (!keepdim) {
      auto axis_ = std::vector<int64_t>();
      if (reduce_all) {
305
        for (int64_t i = 0; i < x_dim_size; i++) {
306 307 308 309
          axis_.push_back(i);
        }
      } else {
        axis_ = axis.GetData();
310 311 312 313 314
        for (int64_t i = 0; i < axis_size; i++) {
          if (axis[i] < 0) {
            axis_[i] = axis[i] + x_dim_size;
          }
        }
315
      }
316 317
      auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
      auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
318
      x_grad_tmp = out_grad_.expand(IntArray(x_dim));
319
    } else {
320
      x_grad_tmp = out_grad.expand(IntArray(x_dim));
321 322 323
    }
  }

324
  set_output<T>(x_grad_tmp, x_grad);
325 326
}

327 328 329 330 331 332 333 334 335 336
template <typename T>
void divide_grad(const Tensor& x,
                 const Tensor& y,
                 const Tensor& out,
                 const Tensor& out_grad,
                 int axis,
                 Tensor* dx,
                 Tensor* dy) {
  if (dy) {
    // dy = -(x/y^2) * dout
337
    auto dy_res = -(x / y.pow(2.0)) * out_grad;
338
    if (x.dims() != y.dims()) {
339
      // Maybe need reduce here
340 341
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
342
        set_output<T>(dy_res, dy);
343 344
      } else {
        auto dy_reduce_res =
345
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
346
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
347
        set_output<T>(dy_tmp, dy);
348
      }
349
    } else {
350
      set_output<T>(dy_res, dy);
351 352 353 354
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = (1/y) * dout
355
    auto one_tensor = full<T>(phi::vectorize(y.dims()), 1.0, y.dtype());
356
    auto dx_res = one_tensor / y * out_grad;
357
    if (y.dims() != x.dims()) {
358
      // Maybe need reduce here
359 360
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
361
        set_output<T>(dx_res, dx);
362 363
      } else {
        auto dx_reduce_res =
364
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
365
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
        set_output<T>(dx_tmp, dx);
      }

    } else {
      set_output<T>(dx_res, dx);
    }
  }  // indicate we will compute dx
}

template <typename T>
void elementwise_pow_grad(const Tensor& x,
                          const Tensor& y,
                          const Tensor& out_grad,
                          Tensor* dx,
                          Tensor* dy) {
  if (dy) {
    // dy = lnx * x^y
    auto lnx = log<T>(x);
    auto x_pow_y = elementwise_pow<T>(x, y);
385
    auto dy_res = lnx * x_pow_y * out_grad;
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, dy);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, dy);
      }
    } else {
      set_output<T>(dy_res, dy);
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = y * x^(y-1)
    auto tmp_z = y - 1.0;
    auto x_pow_z = elementwise_pow<T>(x, tmp_z);
405
    auto dx_res = y * x_pow_z * out_grad;
406 407 408 409 410 411 412 413 414
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, dx);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
415
        set_output<T>(dx_tmp, dx);
416 417
      }

418
    } else {
419
      set_output<T>(dx_res, dx);
420 421 422
    }
  }  // indicate we will compute dx
}
423 424 425 426

template <typename T>
void sqrt_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
J
Jiabin Yang 已提交
427 428
    // This calculation is important for resnet.
    auto x_grad_tmp = (0.5 / out) * out_grad;
429
    set_output<T>(x_grad_tmp, x_grad);
430 431
  }
}
432

433 434 435 436 437 438 439 440 441
template <typename T>
void floor_grad(const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor =
        full<T>(phi::vectorize(out_grad.dims()), 0.0, out_grad.dtype());
    set_output<T>(zero_tensor, x_grad);
  }
}

W
wangzhen38 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
template <typename T>
void concat_grad(const std::vector<Tensor>& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 std::vector<Tensor*> x_grad) {
  int axis_value = axis.to<int>();
  int rank = x[0].dims().size();
  if (axis_value < 0) {
    axis_value = axis_value + rank;
  }
  axis_value = axis_value > 0 ? axis_value : 0;
  std::vector<int> sections;
  int x_num = x.size();
  for (int i = 0; i < x_num; ++i) {
    sections.push_back(x[i].dims()[axis_value]);
  }
  std::vector<Tensor> x_grad_tmp =
X
xiaoguoguo626807 已提交
459
      split<T>(out_grad, phi::IntArray(sections), axis_value);
W
wangzhen38 已提交
460 461 462 463 464
  for (int i = 0; i < x_num; ++i) {
    set_output<T>(x_grad_tmp.at(i), x_grad.at(i));
  }
}

465 466 467 468 469 470 471 472
template <typename T>
void multiply_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* x_grad,
                   Tensor* y_grad) {
  if (x_grad) {
473
    auto x_grad_unreduce = out_grad * y;
474 475
    if (x_grad_unreduce.dims() != x.dims()) {
      auto axes = get_reduce_dims_from_out(x_grad_unreduce.dims(), x.dims());
476
      if (!axes.size()) {
477
        set_output<T>(x_grad_unreduce, x_grad);
478
      } else {
479 480
        auto x_grad_reduced = x_grad_unreduce.sum(
            phi::vectorize(axes), x_grad_unreduce.dtype(), false);
481 482 483
        if (x_grad_reduced.dims().size() != x.dims().size()) {
          x_grad_reduced = reshape<T>(x_grad_reduced, x.shape());
        }
484
        set_output<T>(x_grad_reduced, x_grad);
485 486
      }
    } else {
487
      set_output<T>(x_grad_unreduce, x_grad);
488 489 490
    }
  }
  if (y_grad) {
491
    auto y_grad_unreduce = out_grad * x;
492 493
    if (y_grad_unreduce.dims() != y.dims()) {
      auto axes = get_reduce_dims_from_out(y_grad_unreduce.dims(), y.dims());
494
      if (!axes.size()) {
495
        set_output<T>(y_grad_unreduce, y_grad);
496
      } else {
497 498
        auto y_grad_reduced = y_grad_unreduce.sum(
            phi::vectorize(axes), y_grad_unreduce.dtype(), false);
499 500 501
        if (y_grad_reduced.dims().size() != y.dims().size()) {
          y_grad_reduced = reshape<T>(y_grad_reduced, y.shape());
        }
502
        set_output<T>(y_grad_reduced, y_grad);
503 504
      }
    } else {
505
      set_output<T>(y_grad_unreduce, y_grad);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    }
  }
}

template <typename T>
void expand_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const IntArray& shape,
                 Tensor* x_grad) {
  if (x_grad) {
    auto out_dims = phi::make_ddim(shape.GetData());
    if (out_dims != x.dims()) {
      auto axes = get_reduce_dims(x.dims(), out_dims);
      if (!axes.size()) {
        by_pass<T>(out_grad, x_grad);
      } else {
522
        auto reduced = out_grad.sum(phi::vectorize(axes), x.dtype(), false);
523 524 525
        if (reduced.dims().size() != x.dims().size()) {
          reduced = reshape<T>(reduced, x.shape());
        }
526
        set_output<T>(reduced, x_grad);
527 528 529 530 531 532 533
      }
    } else {
      by_pass<T>(out_grad, x_grad);
    }
  }
}

534 535 536 537 538 539 540 541
template <typename T>
void log_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    // dx = dout / x
    set_output<T>(out_grad / x, x_grad);
  }
}

542 543 544
template <typename T>
void exp_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
545 546 547 548 549 550 551 552 553
    if (out.dtype() == phi::DataType::FLOAT16 ||
        out.dtype() == phi::DataType::BFLOAT16) {
      Tensor out_promote = cast<T>(out, phi::DataType::FLOAT32);
      Tensor out_grad_promote = cast<T>(out_grad, phi::DataType::FLOAT32);
      set_output<T>(cast<T>(out_promote * out_grad_promote, out.dtype()),
                    x_grad);
    } else {
      set_output<T>(out_grad * out, x_grad);
    }
554 555 556
  }
}

557 558 559 560 561 562 563
template <typename T>
void sigmoid_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    set_output<T>(out_grad * (out * (1 - out)), x_grad);
  }
}

564 565 566 567 568 569 570 571 572
template <typename T>
void abs_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto abs_tmp = abs<T>(x);
    auto divide_tmp = divide<T>(x, abs_tmp);
    set_output<T>(out_grad * divide_tmp, x_grad);
  }
}

X
xiaoguoguo626807 已提交
573 574 575 576 577 578 579 580 581 582 583 584
template <typename T>
void slice_grad(const Tensor& input,
                const Tensor& out_grad,
                const std::vector<int64_t>& axes,
                const IntArray& starts,
                const IntArray& ends,
                const std::vector<int64_t>& infer_flags,
                const std::vector<int64_t>& decrease_axis,
                Tensor* input_grad) {
  if (input_grad) {
    size_t rank = input.dims().size();
    auto out_dims = out_grad.dims();
585
    std::vector<int64_t> origin_out_shape;
X
xiaoguoguo626807 已提交
586 587 588 589 590 591 592 593
    auto in_dims = input.dims();

    auto decrease_size = decrease_axis.size();
    if (decrease_size > 0) {
      if (decrease_size == static_cast<size_t>(in_dims.size())) {
        // all dims decrease
        out_dims = phi::make_ddim(std::vector<int>(decrease_size, 1));
      } else {
594
        origin_out_shape.resize(out_dims.size() + decrease_size, -1);
X
xiaoguoguo626807 已提交
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627
        for (size_t i = 0; i < decrease_size; ++i) {
          origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < origin_out_shape.size(); ++i) {
          if (origin_out_shape[i] == -1) {
            origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }
        out_dims = phi::make_ddim(origin_out_shape);
      }
    }

    std::vector<int> offsets(rank, 0);
    std::vector<int> extents(rank, 0);
    for (size_t i = 0; i < rank; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
    for (size_t i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      int64_t start = starts[i] < 0 ? (starts[i] + in_dims[axis]) : starts[i];
      start = std::max(start, static_cast<int64_t>(0));
      offsets[axis] = start;
    }

    std::vector<int> paddings;
    for (size_t i = 0; i < rank; ++i) {
      paddings.push_back(offsets[i]);
      paddings.push_back((in_dims[i] - out_dims[i]) - offsets[i]);
    }
628 629 630 631 632 633 634 635 636
    if (decrease_size > 0 &&
        (decrease_size != static_cast<size_t>(in_dims.size()))) {
      auto out_tmp =
          pad<T>(reshape<T>(out_grad, origin_out_shape), paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    } else {
      auto out_tmp = pad<T>(out_grad, paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    }
X
xiaoguoguo626807 已提交
637 638 639
  }
}

640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
template <typename T>
void group_norm_grad(const Tensor& x,
                     const paddle::optional<Tensor>& scale,
                     const paddle::optional<Tensor>& bias,
                     const Tensor& y,
                     const Tensor& mean,
                     const Tensor& variance,
                     const Tensor& out_grad,
                     float epsilon,
                     int groups,
                     const std::string& data_layout,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  // x.shape=[n,c,h,w]
  // y.shape=[n,c,h,w]
  // g_size = c/g
  // scale.shape=[c]
  // mean, var: shape=[n, g]
  // inv_std = rsqrt(var + epsilon)
  // ds = sum(dy * x, axes=(2,3))
  // db = sum(dy, axes=(2,3))
  //
  // cal d_x:
  // s = g / (h*w*c)
  // if scale:
  //  ds_val = sum((ds * scale).reshape(n, g, g_size), axes=2)
  //  db_val = sum((db * scale).reshape(n, g, g_size), axes=2)
  //  p1 = (inv_std.reshape(n, g, 1)) * (scale.reshape(1, g, g_size))
  // else:
  //  ds_val = sum(ds.reshape(n, g, g_size), axes=2)
  //  db_val = sum(db.reshape(n, g, g_size), axes=2)
  //  p1 = (inv_std.reshape(n, g, 1)) * (ones(1, g, g_size))
  // p2 = (db_val * mean - ds_val) * inv_std * inv_std * inv_std * s
  // p3 = -p2 * mean - db_val * inv_std * s
  // p1.reshape(n, g, g_size, 1)
  // p2.reshape(n, g, 1, 1)
  // p3.reshape(n, g, 1, 1)
  // d_x = dy.reshape(n, g, g_size, h*w) * p1 + x.reshape(n, g, g_size, h*w)* p2
  // + p3
  //
  // cal d_scale:
  // temp = ds.reshape(n, g, g_size) - db.reshape(n, g, g_size) *
  // mean.reshape(n, g, 1)
  // d_scale = sum(temp * inv_std.reshape(n, g, 1), axes=0).reshape(c)
  //
  // cal d_bias:
  // d_bias = sum(dy, axes=(0,2,3))
  DataLayout data_layout_ = phi::StringToDataLayout(data_layout);
  if (data_layout_ != DataLayout::kNCHW) {
    PADDLE_THROW(phi::errors::InvalidArgument("Unsupported storage order: %s",
                                              data_layout));
  }
  Tensor x_data = x;
  Tensor out_grad_data = out_grad;

696 697
  if (x.dtype() == phi::DataType::FLOAT16 ||
      x.dtype() == phi::DataType::BFLOAT16) {
698 699 700
    x_data = cast<T>(x, phi::DataType::FLOAT32);
  }

701 702
  if (out_grad.dtype() == phi::DataType::FLOAT16 ||
      out_grad.dtype() == phi::DataType::BFLOAT16) {
703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
    out_grad_data = cast<T>(out_grad, phi::DataType::FLOAT32);
  }

  std::vector<int64_t> x_dims = phi::vectorize<int64_t>(x.dims());
  auto add_axis = std::vector<int64_t>({-1});
  const int N = x_dims[0];
  const int C = x_dims[1];

  const int hw = x_dims[2] * x_dims[3];
  const int g_num = C / groups;

  auto reduce_axis = IntArray(std::vector<int64_t>({2, 3}));
  auto shape_group = IntArray(std::vector<int64_t>({N, groups, g_num}));
  auto whole_group_shape =
      IntArray(std::vector<int64_t>({N, groups, g_num, hw}));

  auto scale_ptr = scale.get_ptr();
  auto bias_ptr = bias.get_ptr();
  auto inv_std = sqrt<T>(1.0 / (variance + epsilon));
  auto inv_std_mul_s = inv_std / hw / g_num;
  auto dtype = x_data.dtype();
  auto sum_y_grad_mul_x =
      sum<T>(out_grad_data * x_data, reduce_axis, dtype, false);
  auto sum_y_grad = sum<T>(out_grad_data, reduce_axis, dtype, false);
  if (x_grad) {
    Tensor d1;
    Tensor d2;
    Tensor p1;
    if (scale_ptr) {
      auto scale_data = scale.get();
733 734
      if (scale_data.dtype() == phi::DataType::FLOAT16 ||
          scale_data.dtype() == phi::DataType::BFLOAT16) {
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
        scale_data = cast<T>(scale_data, phi::DataType::FLOAT32);
      }
      d1 = (reshape<T>(sum_y_grad_mul_x * scale_data, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      d2 = (reshape<T>(sum_y_grad * scale_data, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      p1 = reshape<T>(inv_std, std::vector<int64_t>({N, groups, 1})) *
           reshape<T>(scale_data, std::vector<int64_t>({1, groups, g_num}));
    } else {
      d1 = (reshape<T>(sum_y_grad_mul_x, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      d2 = (reshape<T>(sum_y_grad, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      p1 = (reshape<T>(inv_std, std::vector<int64_t>({N, groups, 1})))
               .expand(IntArray(shape_group));
    }

    auto p2 = (d2 * mean - d1) * (inv_std_mul_s * inv_std * inv_std);
    auto p3 = -p2 * mean - d2 * inv_std_mul_s;
754 755 756 757 758
    auto first_shape = get_unsqueeze_dims(p1, std::vector<int64_t>({3}));
    auto second_shape = get_unsqueeze_dims(p2, std::vector<int64_t>({2, 3}));
    p1 = reshape<T>(p1, first_shape);
    p2 = reshape<T>(p2, second_shape);
    p3 = reshape<T>(p3, second_shape);
759 760 761 762
    auto tmp_1 = reshape<T>(out_grad_data, whole_group_shape) * p1;
    auto tmp_2 = reshape<T>(x_data, whole_group_shape) * p2 + p3;
    auto x_grad_data = tmp_1 + tmp_2;
    x_grad_data = reshape<T>(x_grad_data, x.shape());
763 764
    if (x.dtype() == phi::DataType::FLOAT16 ||
        x.dtype() == phi::DataType::BFLOAT16) {
765 766 767 768 769 770 771
      x_grad_data = cast<T>(x_grad_data, x.dtype());
    }

    set_output<T>(x_grad_data, x_grad);
  }
  if (scale_grad) {
    if (scale_ptr) {
772
      auto third_shape = get_unsqueeze_dims(mean, std::vector<int64_t>({2}));
773 774
      auto tmp1 = (reshape<T>(sum_y_grad_mul_x, shape_group) -
                   reshape<T>(sum_y_grad, shape_group) *
775 776
                       reshape<T>(mean, third_shape)) *
                  reshape<T>(inv_std, third_shape);
777 778 779
      auto scale_grad_tmp = reshape<T>(
          tmp1.sum(std::vector<int64_t>({0}), scale_ptr->dtype(), false),
          IntArray(std::vector<int64_t>({C})));
780 781 782 783 784 785 786 787 788
      set_output<T>(scale_grad_tmp, scale_grad);
    } else {
      scale_grad = nullptr;
    }
  }

  if (bias_grad) {
    if (bias_ptr) {
      auto bias_grad_tmp =
789
          sum_y_grad.sum(std::vector<int64_t>({0}), bias_ptr->dtype(), false);
790 791 792 793 794 795 796
      set_output<T>(bias_grad_tmp, bias_grad);
    } else {
      bias_grad = nullptr;
    }
  }
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
template <typename T>
void layer_norm_grad(const Tensor& x,
                     const paddle::optional<Tensor>& scale,
                     const paddle::optional<Tensor>& bias,
                     const Tensor& mean,
                     const Tensor& variance,
                     const Tensor& out_grad,
                     float epsilon,
                     int begin_norm_axis,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  auto x_dims = x.dims();
  auto shape_1 = 1;  // front part
  auto shape_2 = 1;  // back part
  for (int i = 0; i < begin_norm_axis; ++i) {
    shape_1 *= x_dims[i];
  }
  for (int i = begin_norm_axis; i < x.dims().size(); ++i) {
    shape_2 *= x_dims[i];
  }
  auto scale_ptr = scale.get_ptr();
  auto bias_ptr = bias.get_ptr();

821 822 823 824 825 826
  auto x_cast = reshape<T>(x, std::vector<int64_t>({shape_1, shape_2}));
  auto out_grad_cast =
      reshape<T>(out_grad, std::vector<int64_t>({shape_1, shape_2}));
  auto mean_ = reshape<T>(mean, std::vector<int64_t>({shape_1, 1}));
  auto variance_ = reshape<T>(variance, std::vector<int64_t>({shape_1, 1}));

827 828 829 830
  Tensor scale_cast;
  if (scale_ptr) {
    scale_cast = reshape<T>(*scale_ptr, std::vector<int64_t>({1, shape_2}));
  }
831

832 833 834
  // cast dtype to float32 if dtype =float16 or bfloat16
  if (x.dtype() == phi::DataType::FLOAT16 ||
      x.dtype() == phi::DataType::BFLOAT16) {
835 836
    x_cast = cast<T>(x_cast, phi::DataType::FLOAT32);
    out_grad_cast = cast<T>(out_grad_cast, phi::DataType::FLOAT32);
837 838 839 840 841
    if (scale_ptr) {
      scale_cast = cast<T>(scale_cast, phi::DataType::FLOAT32);
    }
  }

842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
  auto x_sub_mean = x_cast - mean_;          // M,N
  auto tmp = (1.0 / (variance_ + epsilon));  // M,1
  auto sqrt_var_1 = sqrt<T>(tmp);            // M,1
  auto x_sub_mean_mul_sqrt_var_1 = x_sub_mean * sqrt_var_1;

  if (x_grad) {
    auto out_grad_scale = out_grad_cast;  // M,N
    if (scale_ptr) {
      out_grad_scale = out_grad_cast * scale_cast;  // M,N * 1,N = M,N
    }

    auto dx_end = sqrt_var_1 * out_grad_scale;
    auto d_mean =
        dx_end.sum(std::vector<int64_t>({1}), x_cast.dtype(), true);  // M,1

    auto d_std_1 =
        (tmp * x_sub_mean * out_grad_scale)
            .sum(std::vector<int64_t>({1}), x_cast.dtype(), true);  // M,1
    auto d_std = d_std_1 * x_sub_mean_mul_sqrt_var_1;  // M,1 * M,N = M,N

    auto d_mean_d_std = (1.0 / shape_2) * (d_mean + d_std);
    auto x_grad_tmp = dx_end - d_mean_d_std;
    x_grad_tmp = reshape<T>(x_grad_tmp, phi::vectorize(x.dims()));

866 867
    if (x.dtype() == phi::DataType::FLOAT16 ||
        x.dtype() == phi::DataType::BFLOAT16) {
868
      x_grad_tmp = cast<T>(x_grad_tmp, x.dtype());
869
    }
870
    set_output<T>(x_grad_tmp, x_grad);
871
  }
872

873 874 875
  if (scale_grad) {
    if (scale_ptr) {
      auto scale_grad_tmp =
876
          (x_sub_mean_mul_sqrt_var_1 * out_grad_cast)
877 878
              .sum(std::vector<int64_t>({0}), x_cast.dtype(), true);
      scale_grad_tmp = reshape<T>(scale_grad_tmp, scale_ptr->shape());
879 880 881 882
      if (scale_ptr->dtype() == phi::DataType::FLOAT16 ||
          scale_ptr->dtype() == phi::DataType::BFLOAT16) {
        scale_grad_tmp = cast<T>(scale_grad_tmp, scale_ptr->dtype());
      }
883 884 885 886 887 888
      set_output<T>(scale_grad_tmp, scale_grad);
    } else {
      scale_grad = nullptr;
    }
  }

889 890 891 892 893
  if (bias_grad) {
    if (bias_ptr) {
      auto bias_grad_tmp =
          out_grad_cast.sum(std::vector<int64_t>({0}), x_cast.dtype(), true);
      bias_grad_tmp = reshape<T>(bias_grad_tmp, bias_ptr->shape());
894 895 896 897
      if (bias_ptr->dtype() == phi::DataType::FLOAT16 ||
          bias_ptr->dtype() == phi::DataType::BFLOAT16) {
        bias_grad_tmp = cast<T>(bias_grad_tmp, bias_ptr->dtype());
      }
898 899 900
      set_output<T>(bias_grad_tmp, bias_grad);
    } else {
      bias_grad = nullptr;
901 902 903 904
    }
  }
}

G
GGBond8488 已提交
905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
template <typename T>
void cumsum_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 bool flatten,
                 bool exclusive,
                 bool reverse,
                 Tensor* x_grad) {
  if (x_grad) {
    auto grad = cumsum<T>(out_grad, axis, flatten, exclusive, !reverse);
    grad = reshape<T>(grad, x.shape());
    set_output<T>(grad, x_grad);
  }
}

920 921 922 923 924 925 926 927 928 929
template <typename T>
void split_grad(const std::vector<Tensor>& out_grad,
                const Scalar& axis,
                Tensor* x_grad) {
  if (x_grad) {
    auto grad = concat<T>(out_grad, axis);
    set_output<T>(grad, x_grad);
  }
}

Z
zqw_1997 已提交
930 931 932 933 934 935 936 937 938 939 940 941
template <typename T>
void topk_grad(const Tensor& x,
               const Tensor& indices,
               const Tensor& out_grad,
               const Scalar& k,
               const int& axis,
               const bool& largest,
               const bool& sorted,
               Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = put_along_axis<T>(zero_tensor, indices, out_grad, axis);
942 943 944
    set_output<T>(x_grad_tmp, x_grad);
  }
}
Z
zqw_1997 已提交
945

946 947 948 949 950 951 952 953
template <typename T>
void gather_nd_grad(const Tensor& x,
                    const Tensor& index,
                    const Tensor& out_grad,
                    Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = scatter_nd_add<T>(zero_tensor, index, out_grad);
Z
zqw_1997 已提交
954 955 956 957
    set_output<T>(x_grad_tmp, x_grad);
  }
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984
template <typename T>
void prod_grad(const Tensor& x,
               const Tensor& out,
               const Tensor& out_grad,
               const IntArray& axis,
               bool keep_dim,
               bool reduce_all,
               Tensor* x_grad) {
  if (x_grad) {
    std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
    int64_t axis_size = axis.size();
    int64_t x_dim_size = x_dim.size();
    reduce_all = false;
    if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
      reduce_all = true;
    } else {
      reduce_all = false;
    }
    auto x_grad_tmp = Tensor();
    auto out_tmp = Tensor();
    if (x_dim_size == 1) {
      x_grad_tmp = out_grad.expand(IntArray(x_dim));
      out_tmp = out.expand(IntArray(x_dim));
    } else {
      if (!keep_dim) {
        auto axis_ = std::vector<int64_t>();
        if (reduce_all) {
985
          for (int64_t i = 0; i < x_dim_size; i++) {
986 987 988 989 990 991 992 993 994 995
            axis_.push_back(i);
          }
        } else {
          axis_ = axis.GetData();
          for (int64_t i = 0; i < axis_size; i++) {
            if (axis[i] < 0) {
              axis_[i] = axis[i] + x_dim_size;
            }
          }
        }
996 997
        auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
        auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
998
        x_grad_tmp = out_grad_.expand(IntArray(x_dim));
999
        auto out_ = reshape<T>(out, out_grad_shape);
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
        out_tmp = out_.expand(IntArray(x_dim));
      } else {
        x_grad_tmp = out_grad.expand(IntArray(x_dim));
        out_tmp = out.expand(IntArray(x_dim));
      }
    }
    auto x_grad_res = x_grad_tmp * out_tmp * (1 / x);
    set_output<T>(x_grad_res, x_grad);
  }
}

1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
template <typename T>
void max_grad(const Tensor& x,
              const Tensor& out,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
  if (x_dim_size == 0 || x_dim_size == 1 || keepdim) {
    auto out_grad_tmp = out_grad.expand(IntArray(x_dim));
    auto out_tmp = out.expand(IntArray(x_dim));
    auto mask = equal<T>(x, out_tmp);
    x_grad_tmp = where<T>(mask, out_grad_tmp, zero_tensor);
  } else {
    auto axis_ = std::vector<int64_t>();
    if (reduce_all) {
1041
      for (int64_t i = 0; i < x_dim_size; i++) {
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
        axis_.push_back(i);
      }
    } else {
      axis_ = axis.GetData();
      for (int64_t i = 0; i < axis_size; i++) {
        if (axis[i] < 0) {
          axis_[i] = axis[i] + x_dim_size;
        }
      }
    }
1052 1053 1054
    auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
    auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
    auto out_ = reshape<T>(out, out_grad_shape);
1055 1056 1057 1058 1059 1060 1061 1062
    auto out_grad_tmp = out_grad_.expand(IntArray(x_dim));
    auto out_tmp = out_.expand(IntArray(x_dim));
    auto mask = equal<T>(x, out_tmp);
    x_grad_tmp = where<T>(mask, out_grad_tmp, zero_tensor);
  }
  set_output<T>(x_grad_tmp, x_grad);
}

1063 1064 1065 1066 1067 1068 1069
template <typename T>
void assign_grad(const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    by_pass<T>(out_grad, x_grad);
  }
}

G
GGBond8488 已提交
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
template <typename T>
void erf_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto m_2_sqrt_pi = full<T>(phi::vectorize(x.dims()), M_2_SQRTPI, x.dtype());
    auto neg_one = full<T>(phi::vectorize(x.dims()), -1.0, x.dtype());
    auto neg_tmp = neg_one * x * x;
    auto mul_tmp = m_2_sqrt_pi * exp<T>(neg_tmp);
    set_output<T>(out_grad * mul_tmp, x_grad);
  }
}

H
heyanru 已提交
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
template <typename T>
void maximum_grad(const Tensor& x,
                  const Tensor& y,
                  const Tensor& out_grad,
                  Tensor* x_grad,
                  Tensor* y_grad) {
  if (x_grad) {
    auto x_tmp = cast<T>(greater_than<T>(x, y), out_grad.dtype());
    auto dx_res = out_grad * x_tmp;
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, x_grad);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
        set_output<T>(dx_tmp, x_grad);
      }
    } else {
      set_output<T>(dx_res, x_grad);
    }
  }

  if (y_grad) {
    auto y_tmp = cast<T>(less_equal<T>(x, y), out_grad.dtype());
    auto dy_res = out_grad * y_tmp;
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, y_grad);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, y_grad);
      }
    } else {
      set_output<T>(dy_res, y_grad);
    }
  }
}

1126
template <typename T>
1127 1128 1129 1130 1131 1132 1133 1134
void dropout_grad(const Tensor& mask,
                  const Tensor& out_grad,
                  const Scalar& p,
                  bool is_test,
                  const std::string& mode,
                  Tensor* x_grad) {
  if (!x_grad) return;
  if (is_test) {
1135
    if (mode == "upscale_in_train") {
1136 1137 1138 1139 1140
      by_pass<T>(out_grad, x_grad);
    } else {
      set_output<T>(out_grad * (1.0 - p.to<float>()), x_grad);
    }
  } else {
1141
    if (mode == "upscale_in_train") {
1142
      if (p.to<float>() == 1.0f) {
C
cxxly 已提交
1143
        set_output<T>(scale<T>(out_grad, 0.0), x_grad);
1144
      } else {
C
cxxly 已提交
1145 1146 1147
        set_output<T>(scale<T>(out_grad * cast<T>(mask, out_grad.dtype()),
                               1.0 / (1.0 - p.to<float>())),
                      x_grad);
1148 1149 1150 1151 1152 1153
      }
    } else {
      set_output<T>(out_grad * cast<T>(mask, out_grad.dtype()), x_grad);
    }
  }
}
1154

1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
template <typename T>
void sin_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  auto x_grad_tmp = cos<T>(x) * out_grad;
  set_output<T>(x_grad_tmp, x_grad);
}

template <typename T>
void cos_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  auto x_grad_tmp = -sin<T>(x) * out_grad;
  set_output<T>(x_grad_tmp, x_grad);
}

Z
zxcd 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
template <typename T>
void scatter_grad(const Tensor& index,
                  const Tensor& updates,
                  const Tensor& out_grad,
                  bool overwrite,
                  Tensor* x_grad,
                  Tensor* updates_grad) {
  if (x_grad) {
    auto zero_tensor =
        full<T>(phi::vectorize(updates.dims()), 0.0, updates.dtype());
    auto tmp_grad = scatter<T>(out_grad, index, zero_tensor, false);
    set_output<T>(tmp_grad, x_grad);
  }

  if (updates_grad) {
    Scalar tmp_zero = 0;
    auto tmp_updates_grad = gather<T>(out_grad, index, tmp_zero);
    set_output<T>(tmp_updates_grad, updates_grad);
  }
}

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
template <typename T>
void batch_norm_grad(const Tensor& x,
                     const Tensor& scale,
                     const Tensor& bias,
                     const paddle::optional<Tensor>& mean_out,
                     const paddle::optional<Tensor>& variance_out,
                     const Tensor& saved_mean,
                     const Tensor& saved_variance,
                     const paddle::optional<Tensor>& reserve_space,
                     const Tensor& out_grad,
                     float momentum,
                     float epsilon,
                     const std::string& data_layout,
                     bool is_test,
                     bool use_global_stats,
                     bool trainable_statistics,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  use_global_stats = is_test || use_global_stats;

  DataLayout data_layout_ = phi::StringToDataLayout(data_layout);

  Tensor x_data = x;
  Tensor out_grad_data = out_grad;
1213 1214 1215 1216

  bool need_cast = x.dtype() == phi::DataType::FLOAT16 ||
                   x.dtype() == phi::DataType::BFLOAT16;
  if (need_cast) {
1217 1218
    x_data = cast<T>(x, phi::DataType::FLOAT32);
  }
1219 1220
  if (out_grad.dtype() == phi::DataType::FLOAT16 ||
      out_grad.dtype() == phi::DataType::BFLOAT16) {
1221 1222
    out_grad_data = cast<T>(out_grad, phi::DataType::FLOAT32);
  }
1223

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
  auto x_dims = x_data.dims();
  const int C = (data_layout_ == DataLayout::kNCHW ? x_dims[1]
                                                   : x_dims[x_dims.size() - 1]);
  int nume = 1;
  for (auto i = 0; i < x_dims.size(); i++) {
    nume = nume * x_dims[i];
  }

  const int nhw = nume / C;

  if (x_dims.size() == 2 && data_layout_ == DataLayout::kNCHW) {
    data_layout_ = DataLayout::kNHWC;
  }

  auto run_var = variance_out.get();
  auto run_mean = mean_out.get();

  Tensor mean_data;
  Tensor rsqrt_var;

  if (use_global_stats) {
    auto eps =
        full<T>(phi::vectorize(run_var.dims()), epsilon, run_var.dtype());
    mean_data = run_mean;
1248
    rsqrt_var = (run_var + eps).pow(-0.5);
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
  } else {
    mean_data = saved_mean;
    rsqrt_var = saved_variance;
  }

  // inv_var = 1 / sqrt(var + eps)
  // reduce_axis = [0, 2, 3] (NCHW) [0, 1, 2] (NHWC)
  //
  // d_bias = np.sum(d_y, reduce_axis)
  // d_scale = np.sum((X - mean) / inv_var * dy, reduce_axis)
  //
  // train mode
  // d_x = (1. / nhw) * scale * inv_var
  // *(nhw * d_y - np.sum(d_y, reduce_axis) - (X - mean) * inv_var * inv_var *
  // np.sum(d_y * (X - mean), reduce_axis))
  //
  // test mode
  // d_x = d_y * scale * inv_var

  std::vector<int> nchw_to_nhwc_dim = {0, 2, 3, 1};
  std::vector<int> nhwc_to_nchw_dim = {0, 3, 1, 2};
R
risemeup1 已提交
1270
  auto reduce_axis = IntArray(std::vector<int64_t>{0, 1, 2});
1271 1272 1273 1274 1275 1276
  auto dtype = x_data.dtype();

  switch (data_layout_) {
    case DataLayout::kNCHW: {
      auto nhwc_x = transpose<T>(x_data, nchw_to_nhwc_dim);
      auto nhwc_out_grad = transpose<T>(out_grad_data, nchw_to_nhwc_dim);
1277
      auto nhwc_out_grad_sum = sum<T>(nhwc_out_grad, reduce_axis, dtype, false);
1278

C
cyber-pioneer 已提交
1279 1280
      auto sum_dout_mul_diff = sum<T>(
          nhwc_out_grad * (nhwc_x - mean_data), reduce_axis, dtype, false);
1281 1282 1283 1284 1285

      if (x_grad) {
        if (use_global_stats) {
          auto nhwc_x_grad = scale * rsqrt_var * nhwc_out_grad;
          auto nchw_x_grad = transpose<T>(nhwc_x_grad, nhwc_to_nchw_dim);
1286
          if (need_cast) {
1287 1288
            nchw_x_grad = cast<T>(nchw_x_grad, x.dtype());
          }
1289 1290 1291
          set_output<T>(nchw_x_grad, x_grad);
        } else {
          auto part1 = scale * rsqrt_var;
1292 1293
          auto mean_temp1 = nhwc_out_grad_sum / nhw;
          auto mean_temp2 = sum_dout_mul_diff / nhw * rsqrt_var * rsqrt_var;
C
cyber-pioneer 已提交
1294 1295
          auto part2 =
              nhwc_out_grad - mean_temp1 - (nhwc_x - mean_data) * mean_temp2;
1296 1297 1298

          auto x_grad_data = part1 * part2;
          auto nchw_x_grad = transpose<T>(x_grad_data, nhwc_to_nchw_dim);
1299
          if (need_cast) {
1300 1301 1302 1303 1304 1305
            nchw_x_grad = cast<T>(nchw_x_grad, x.dtype());
          }
          set_output<T>(nchw_x_grad, x_grad);
        }
      }
      if (scale_grad) {
1306
        auto scale_grad_data = sum_dout_mul_diff * rsqrt_var;
1307 1308 1309
        set_output<T>(scale_grad_data, scale_grad);
      }
      if (bias_grad) {
1310
        set_output<T>(nhwc_out_grad_sum, bias_grad);
1311 1312 1313 1314 1315
      }
      break;
    }
    case DataLayout::kNHWC: {
      if (x_grad) {
1316 1317
        auto out_grad_data_sum =
            sum<T>(out_grad_data, reduce_axis, dtype, false);
C
cyber-pioneer 已提交
1318 1319
        auto nhwc_sum_dout_mul_diff = sum<T>(
            out_grad_data * (x_data - mean_data), reduce_axis, dtype, false);
1320 1321
        if (use_global_stats) {
          auto x_grad_data = scale * rsqrt_var * out_grad_data;
1322
          if (need_cast) {
1323 1324
            x_grad_data = cast<T>(x_grad_data, x.dtype());
          }
1325 1326 1327 1328
          set_output<T>(x_grad_data, x_grad);
        } else {
          auto part1 = scale * rsqrt_var;

1329 1330 1331
          auto mean_temp1 = out_grad_data_sum / nhw;
          auto mean_temp2 =
              nhwc_sum_dout_mul_diff / nhw * rsqrt_var * rsqrt_var;
C
cyber-pioneer 已提交
1332 1333
          auto part2 =
              out_grad_data - mean_temp1 - (x_data - mean_data) * mean_temp2;
1334 1335

          auto x_grad_data = part1 * part2;
1336
          if (need_cast) {
1337 1338 1339 1340 1341
            x_grad_data = cast<T>(x_grad_data, x.dtype());
          }
          set_output<T>(x_grad_data, x_grad);
        }
        if (scale_grad) {
1342
          auto scale_grad_data = nhwc_sum_dout_mul_diff * rsqrt_var;
1343 1344 1345
          set_output<T>(scale_grad_data, scale_grad);
        }
        if (bias_grad) {
1346
          set_output<T>(out_grad_data_sum, bias_grad);
1347 1348
        }
      }
1349
      break;
1350
    }
1351

1352 1353 1354 1355 1356 1357
    default:
      PADDLE_THROW(phi::errors::InvalidArgument("Unknown storage order: %s",
                                                data_layout));
  }
}

1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409
template <typename T>
void instance_norm_grad(const Tensor& x,
                        const paddle::optional<Tensor>& scale,
                        const Tensor& saved_mean,
                        const Tensor& saved_variance,
                        const Tensor& y_grad,
                        float epsilon,
                        Tensor* x_grad,
                        Tensor* scale_grad,
                        Tensor* bias_grad) {
  const int n = x.dims()[0];
  const int c = x.dims()[1];
  const int h = x.dims()[2];
  const int w = x.dims()[3];

  Tensor x_hat;
  Tensor std_inv;
  if (scale_grad || x_grad) {
    auto mean = reshape<T>(saved_mean, IntArray({n, c, 1, 1}))
                    .tile(IntArray({1, 1, h, w}));
    std_inv = reshape<T>(saved_variance, IntArray({n, c, 1, 1}))
                  .tile(IntArray({1, 1, h, w}));
    x_hat = (x - mean) * std_inv;
  }

  // x_grad = scale * inv_var * (y_grad - y_grad.mean(2,3) - x_hat * (y_grad *
  // x_hat).mean((h,w)))
  if (x_grad) {
    auto scale_t =
        reshape<T>(scale.get_ptr() ? scale.get()
                                   : full<T>(IntArray({c}), 1., x.dtype()),
                   IntArray({1, c, 1, 1}))
            .tile(IntArray({n, 1, h, w}));
    set_output<T>(
        (scale_t * std_inv) *
            (y_grad -
             y_grad.sum(IntArray({2, 3}), y_grad.dtype(), true) / (h * w) -
             (x_hat *
              ((y_grad * x_hat).sum(IntArray({2, 3}), y_grad.dtype(), true) /
               (h * w)))),
        x_grad);
  }
  // scale_grad = x_hat * y_grad.sum(n, h, w)
  if (scale_grad) {
    set_output<T>((y_grad * x_hat).sum(IntArray({0, 2, 3})), scale_grad);
  }
  // d_bias = y_grad.sum(n, h, w)
  if (bias_grad) {
    set_output<T>(y_grad.sum(IntArray({0, 2, 3})), bias_grad);
  }
}

C
cxxly 已提交
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
template <typename T>
void gelu_grad(const Tensor& x,
               const Tensor& out_grad,
               bool approximate,
               Tensor* x_grad) {
  if (!x_grad) return;
  // Promote to fp32 when the input type is fp16 for keeping consistent with
  // phi kernel

  if (x.dtype() == phi::DataType::FLOAT16 ||
      x.dtype() == phi::DataType::BFLOAT16) {
    auto promoted_x = cast<T>(x, phi::DataType::FLOAT32);
    auto promoted_out_grad = cast<T>(out_grad, phi::DataType::FLOAT32);
    if (approximate) {
      float kbeta = M_SQRT2 * M_2_SQRTPI * 0.5;
      float kkappa = 0.044715;
      auto x_sq = promoted_x * promoted_x;
      auto x_cube = x_sq * promoted_x;
      auto inner = kbeta * (promoted_x + kkappa * x_cube);
      auto tanh_inner = tanh<T>(inner);

      auto left = scale<T>(promoted_x, 0.5);
      auto right = scale<T>(tanh_inner, 1., 1.);

      auto left_derivative = scale<T>(right, 0.5);

      auto tanh_derivative = scale<T>(tanh_inner * tanh_inner, -1., 1.);
      auto inner_derivative = kbeta * (scale<T>(3 * kkappa * x_sq, 1., 1.));
      auto right_derivative = left * tanh_derivative * inner_derivative;

      set_output<T>(
          cast<T>(promoted_out_grad * (left_derivative + right_derivative),
                  x.type()),
          x_grad);
    } else {
      float kalpha = M_SQRT1_2;
      float kbeta = M_2_SQRTPI * M_SQRT1_2 * 0.5;
      auto cdf = scale<T>(scale<T>(erf<T>(kalpha * promoted_x), 1., 1.), 0.5);
      auto pdf = kbeta * exp<T>(scale<T>(promoted_x * promoted_x, -0.5));
      set_output<T>(
          cast<T>(promoted_out_grad * (cdf + promoted_x * pdf), x.type()),
          x_grad);
    }
  } else {
    // Scale only support fp32 attr in static graph mode, use elementwise_xx
    // when precision is over fp32.
    if (approximate) {
      auto kBeta = M_SQRT2 * M_2_SQRTPI * 0.5;
      auto kKappa = 0.044715;
      auto x_sq = x * x;
      auto x_cube = x_sq * x;
      auto inner = kBeta * (x + kKappa * x_cube);
      auto tanh_inner = tanh<T>(inner);

      auto left = scale<T>(x, 0.5);
      auto right = scale<T>(tanh_inner, 1., 1.);

      auto left_derivative = scale<T>(right, 0.5);

      auto tanh_derivative = scale<T>(tanh_inner * tanh_inner, -1., 1.);
      auto inner_derivative = kBeta * (scale<T>(3 * kKappa * x_sq, 1., 1.));
      auto right_derivative = left * tanh_derivative * inner_derivative;

      set_output<T>(out_grad * (left_derivative + right_derivative), x_grad);
    } else {
      auto kAlpha = M_SQRT1_2;
      auto kBeta = M_2_SQRTPI * M_SQRT1_2 * 0.5;
      auto cdf = scale<T>(scale<T>(erf<T>(kAlpha * x), 1., 1.), 0.5);
      auto pdf = kBeta * exp<T>(scale<T>(x * x, -0.5));
      set_output<T>(out_grad * (cdf + x * pdf), x_grad);
    }
  }
}
1483

1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
template <typename T>
void minimum_grad(const Tensor& x,
                  const Tensor& y,
                  const Tensor& out_grad,
                  Tensor* x_grad,
                  Tensor* y_grad) {
  if (x_grad) {
    auto x_tmp = cast<T>(less_than<T>(x, y), out_grad.dtype());
    auto dx_res = out_grad * x_tmp;
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, x_grad);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
        set_output<T>(dx_tmp, x_grad);
      }
    } else {
      set_output<T>(dx_res, x_grad);
    }
  }

  if (y_grad) {
    auto y_tmp = cast<T>(greater_equal<T>(x, y), out_grad.dtype());
    auto dy_res = out_grad * y_tmp;
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, y_grad);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, y_grad);
      }
    } else {
      set_output<T>(dy_res, y_grad);
    }
  }
}

C
ccrrong 已提交
1529 1530 1531 1532 1533 1534 1535 1536
template <typename T>
void tile_grad(const Tensor& x,
               const Tensor& out_grad,
               const IntArray& repeat_times,
               Tensor* x_grad) {
  if (x_grad) {
    auto repeat_times_data = repeat_times.GetData();
    auto out_grad_shape = phi::vectorize<int>(out_grad.dims());
1537
    auto result = out_grad;
C
ccrrong 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
    for (int i = 0; i < static_cast<int>(repeat_times_data.size()); i++) {
      int size = out_grad_shape[i] / repeat_times_data[i];
      std::vector<int> sections(repeat_times_data[i], size);
      auto split_arr = split<T>(result, IntArray(sections), i);
      result = full<T>(phi::vectorize(split_arr[0].dims()), 0.0, x.dtype());
      for (int j = 0; j < static_cast<int>(split_arr.size()); j++) {
        result = split_arr[j] + result;
      }
    }
    result = reshape<T>(result, x.shape());
    set_output<T>(result, x_grad);
  }
}

1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
template <typename T>
void roll_grad(const Tensor& x,
               const Tensor& out_grad,
               const IntArray& shifts,
               const std::vector<int64_t>& axis,
               Tensor* x_grad) {
  if (x_grad) {
    auto shifts_ = shifts.GetData();
    int64_t nums = shifts_.size();
    for (int64_t i = 0; i < nums; i++) {
      shifts_[i] = 0 - shifts_[i];
    }
    auto x_grad_output = roll<T>(out_grad, shifts_, axis);
    set_output<T>(x_grad_output, x_grad);
  }
}
M
mhy-666 已提交
1568

M
mengziheng 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
template <typename T>
void pad_grad(const Tensor& input,
              const Tensor& out_grad,
              const std::vector<int>& paddings,
              const Scalar& pad_value,
              Tensor* input_grad) {
  if (input_grad) {
    size_t rank = input.dims().size();
    auto out_dims = out_grad.dims();

1579
    std::vector<int64_t> starts(rank, 0);
M
mengziheng 已提交
1580 1581 1582 1583 1584
    std::vector<int64_t> ends(rank, 0);
    std::vector<int64_t> axes(rank, 0);
    std::vector<int64_t> infer_flags(rank, 1);
    std::vector<int64_t> decrease_axis({});
    for (size_t i = 0; i < rank; ++i) {
1585 1586 1587
      starts[i] = static_cast<int64_t>(paddings[2 * i]);
      ends[i] = static_cast<int64_t>(out_dims[i] - paddings[2 * i + 1]);
      axes[i] = i;
M
mengziheng 已提交
1588 1589 1590 1591 1592 1593 1594
    }
    auto out_tmp =
        slice<T>(out_grad, axes, starts, ends, infer_flags, decrease_axis);
    set_output<T>(out_tmp, input_grad);
  }
}

M
mhy-666 已提交
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
template <typename T>
void scatter_nd_add_grad(const Tensor& index,
                         const Tensor& updates,
                         const Tensor& out_grad,
                         Tensor* x_grad,
                         Tensor* updates_grad) {
  if (x_grad) {
    by_pass<T>(out_grad, x_grad);
  }
  if (updates_grad) {
    // Gradient by Gather: dUpdates = dO[Ids]
    auto tmp_updates_grad = gather_nd<T>(out_grad, index);
    set_output<T>(tmp_updates_grad, updates_grad);
  }
}
M
mengziheng 已提交
1610

J
Jiabin Yang 已提交
1611 1612
}  // namespace prim
}  // namespace paddle