composite_backward_api.h 63.0 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

G
GGBond8488 已提交
17 18 19 20 21 22
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

#include <math.h>

23
#include "paddle/fluid/prim/api/all.h"
24
#include "paddle/fluid/prim/api/generated_prim/prim_generated_api.h"
C
cxxly 已提交
25
#include "paddle/phi/common/amp_type_traits.h"
26 27
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/ddim.h"
C
cxxly 已提交
28

J
Jiabin Yang 已提交
29 30
namespace paddle {
namespace prim {
31 32
using Tensor = paddle::Tensor;
using IntArray = paddle::experimental::IntArrayBase<paddle::Tensor>;
33 34
//  This function should have as same signature as phi, which defined in
//  paddle/phi/api/backward/backward_api.h
J
Jiabin Yang 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
template <typename T>
void hardswish_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto offset = full<T>(phi::vectorize(x.dims()), 3.0, x.dtype());
    auto condition = less_equal<T>(x, offset);
    auto tmp1 = where<T>(condition, out_grad * ((x / 3.0) + 0.5), out_grad);
    auto res = where<T>(
        less_than<T>(x, full<T>(phi::vectorize(x.dims()), -3.0, x.dtype())),
        full<T>(phi::vectorize(x.dims()), 0.0, x.dtype()),
        tmp1);
    set_output<T>(res, x_grad);
  }
}

template <typename T>
void leaky_relu_grad(const Tensor& out,
                     const Tensor& out_grad,
                     float negative_slope,
                     Tensor* x_grad) {
  if (x_grad) {
    auto condition = greater_than<T>(
        out, full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    auto res = where<T>(condition, out_grad, out_grad * negative_slope);
    set_output<T>(res, x_grad);
  }
}

template <typename T>
void silu_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto sigmoid = 1.0 / (1.0 + exp<T>(-x));
    auto res = out_grad * sigmoid * (1.0 + x * (1.0 - sigmoid));
    set_output<T>(res, x_grad);
  }
}

J
Jiabin Yang 已提交
71 72 73 74 75 76 77 78 79 80 81 82
template <typename T>
void relu_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto condition = greater_than<T>(
        out, full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    auto res = where<T>(condition,
                        out_grad,
                        full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    set_output<T>(res, x_grad);
  }
}

J
Jiabin Yang 已提交
83
template <typename T>
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
void softmax_grad(const Tensor& out,
                  const Tensor& out_grad,
                  int axis,
                  Tensor* x_grad) {
  if (x_grad) {
    if (out_grad.dims().size() > 0) {
      if (axis >= 0) {
        auto new_out_grad = out_grad * out;
        auto tmp_x_grad = new_out_grad -
                          out * sum<T>(new_out_grad, {axis}, out.dtype(), true);
        set_output<T>(tmp_x_grad, x_grad);
      } else {
        auto new_out_grad = out_grad * out;
        auto tmp_x_grad =
            new_out_grad - out * sum<T>(new_out_grad,
                                        {out.dims().size() + axis},
                                        out.dtype(),
                                        true);
        set_output<T>(tmp_x_grad, x_grad);
      }
    } else {
      set_output<T>(
          full<T>(phi::vectorize(out_grad.dims()), 0.0, out_grad.dtype()),
          x_grad);
    }
  }
}

template <typename T>
113 114 115 116 117 118 119
void cast_grad(const Tensor& out_grad, DataType dtype, Tensor* x_grad) {
  if (x_grad) {
    auto res = cast<T>(out_grad, dtype);
    set_output<T>(res, x_grad);
  }
}
template <typename T>
J
Jiabin Yang 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
void gather_grad(const Tensor& x,
                 const Tensor& index,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 Tensor* grad_x) {
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int> tmp_perm;

  // change axis to rank 0
  int axis_value = axis.to<int>();
  tmp_perm.push_back(axis_value);
  // make other ranks
  for (int i = 0; i < x.dims().size(); ++i) {
    if (i != axis_value) {
      tmp_perm.push_back(i);
    }
  }
  std::vector<int> reverse_perm(tmp_perm);
  // make origin ranks
  for (int i = 0; i < static_cast<int>(tmp_perm.size()); ++i) {
140 141 142 143 144
    if (tmp_perm[i] >= 0) {
      reverse_perm[tmp_perm[i]] = i;
    } else {
      reverse_perm[tmp_perm[i] + tmp_perm.size()] = i;
    }
J
Jiabin Yang 已提交
145 146 147 148 149 150 151 152 153 154 155
  }

  // transpose out_grad and zero grad to target rank.
  auto tmp_zero_x_grad = transpose<T>(zero_tensor, tmp_perm);
  auto tmp_out_grad = transpose<T>(out_grad, tmp_perm);
  // scatter grad to grad_x
  auto tmp_grad_x = scatter<T>(tmp_zero_x_grad, index, tmp_out_grad, false);
  auto tmp_grad_x_tranposed = transpose<T>(tmp_grad_x, reverse_perm);
  set_output<T>(tmp_grad_x_tranposed, grad_x);
}

J
Jiabin Yang 已提交
156 157
template <typename T>
void tanh_grad(const Tensor& out, const Tensor& grad_out, Tensor* grad_x) {
158
  if (!grad_x) return;
159
  auto grad_x_tmp = grad_out * (1 - out * out);
160
  set_output<T>(grad_x_tmp, grad_x);
J
Jiabin Yang 已提交
161
}
162

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
template <typename T>
void tanh_double_grad(const Tensor& out,
                      const Tensor& grad_out,
                      const Tensor& grad_x_grad,
                      Tensor* out_grad,
                      Tensor* grad_out_grad) {
  // tanh grad grad : ddout = (1 - out^2) * ddx, dout = - (dout_old * 2 * out *
  // ddx)
  auto out_m_grad_x_grad = out * grad_x_grad;
  if (out_grad) {
    auto out_grad_tmp = -2 * grad_out * out_m_grad_x_grad;
    set_output<T>(out_grad_tmp, out_grad);
  }

  if (grad_out_grad) {
    auto grad_out_grad_tmp = grad_x_grad - out * out_m_grad_x_grad;
    set_output<T>(grad_out_grad_tmp, grad_out_grad);
  }
}

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
template <typename T>
void reshape_grad(const Tensor& x, const Tensor& grad_out, Tensor* grad_x) {
  if (grad_x) {
    auto grad_x_tmp = reshape<T>(grad_out, phi::vectorize(x.dims()));
    set_output<T>(grad_x_tmp, grad_x);
  }
}

template <typename T>
void transpose_grad(const Tensor& grad_out,
                    const std::vector<int>& perm,
                    Tensor* grad_x) {
  if (grad_x) {
    std::vector<int> reverse_perm(perm);
    // make origin ranks
    for (int i = 0; i < static_cast<int>(perm.size()); ++i) {
199 200 201 202 203
      if (perm[i] >= 0) {
        reverse_perm[perm[i]] = i;
      } else {
        reverse_perm[perm[i] + perm.size()] = i;
      }
204 205 206 207 208 209
    }
    auto grad_x_tmp = transpose<T>(grad_out, reverse_perm);
    set_output<T>(grad_x_tmp, grad_x);
  }
}

210 211 212 213 214 215 216 217 218
template <typename T>
void subtract_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* dx,
                   Tensor* dy) {
  if (dy) {
    auto scale_out_grad = scale<T>(out_grad, -1.0, 0.0, true);
219
    if (x.dims() != y.dims()) {
220
      // Maybe need reduce here
221 222 223 224
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(scale_out_grad, dy);
      } else {
225 226
        auto dy_reduce_res =
            scale_out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
227
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
228
        set_output<T>(dy_tmp, dy);
229
      }
230 231 232 233 234
    } else {
      by_pass<T>(scale_out_grad, dy);
    }
  }
  if (dx) {
235
    if (y.dims() != x.dims()) {
236
      // Maybe need reduce here
237 238 239 240 241
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
242
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
243
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
244
        set_output<T>(dx_tmp, dx);
245
      }
246 247 248 249 250 251
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
template <typename T>
void subtract_double_grad(const Tensor& y,
                          const Tensor& grad_out,
                          const paddle::optional<Tensor>& grad_x_grad,
                          const paddle::optional<Tensor>& grad_y_grad,
                          int axis,
                          Tensor* grad_out_grad) {
  if (grad_out_grad) {
    // ddout = ddx - ddy
    if (!grad_x_grad && !grad_y_grad) {
      grad_out_grad = nullptr;
    } else {
      Tensor ddout = full<T>(phi::vectorize(grad_out.dims()), 0.0, y.dtype());
      if (grad_x_grad) {
        ddout = ddout + grad_x_grad.get();
      }
      if (grad_y_grad) {
        ddout = ddout - grad_y_grad.get();
      }
      set_output<T>(ddout, grad_out_grad);
    }
  }
}

276 277 278 279 280 281 282 283
template <typename T>
void add_grad(const Tensor& x,
              const Tensor& y,
              const Tensor& out_grad,
              int axis,
              Tensor* dx,
              Tensor* dy) {
  if (dy) {
284
    if (x.dims() != y.dims()) {
285
      // Maybe need reduce here
286 287 288 289 290
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dy);
      } else {
        auto dy_reduce_res =
291
            out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
292
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
293
        set_output<T>(dy_tmp, dy);
294 295
      }

296 297 298 299 300
    } else {
      by_pass<T>(out_grad, dy);
    }
  }
  if (dx) {
301
    if (y.dims() != x.dims()) {
302
      // Maybe need reduce here
303 304 305 306 307
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
308
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
309
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
310
        set_output<T>(dx_tmp, dx);
311
      }
312 313 314 315 316 317
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
template <typename T>
void add_double_grad(const Tensor& y,
                     const Tensor& grad_out,
                     const paddle::optional<Tensor>& grad_x_grad,
                     const paddle::optional<Tensor>& grad_y_grad,
                     int axis,
                     Tensor* grad_out_grad) {
  if (grad_out_grad) {
    // ddout = ddx + ddy
    if (!grad_x_grad && !grad_y_grad) {
      grad_out_grad = nullptr;
    } else {
      Tensor ddout = full<T>(phi::vectorize(grad_out.dims()), 0.0, y.dtype());
      if (grad_x_grad) {
        ddout = ddout + grad_x_grad.get();
      }
      if (grad_y_grad) {
        ddout = ddout + grad_y_grad.get();
      }
      set_output<T>(ddout, grad_out_grad);
    }
  }
}

342 343 344 345 346 347 348 349 350 351
template <typename T>
void sum_grad(const Tensor& x,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
R
risemeup1 已提交
352
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
353 354 355 356 357 358 359 360 361
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
362
  if (x_dim_size == 1) {
363
    x_grad_tmp = out_grad.expand(IntArray(x_dim));
364 365 366 367 368 369 370 371 372
  } else {
    if (!keepdim) {
      auto axis_ = std::vector<int64_t>();
      if (reduce_all) {
        for (int64_t i = 1; i < x_dim_size; i++) {
          axis_.push_back(i);
        }
      } else {
        axis_ = axis.GetData();
373 374 375 376 377
        for (int64_t i = 0; i < axis_size; i++) {
          if (axis[i] < 0) {
            axis_[i] = axis[i] + x_dim_size;
          }
        }
378
      }
379 380
      auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
      auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
381
      x_grad_tmp = out_grad_.expand(IntArray(x_dim));
382
    } else {
383
      x_grad_tmp = out_grad.expand(IntArray(x_dim));
384 385 386
    }
  }

387
  set_output<T>(x_grad_tmp, x_grad);
388 389
}

390 391 392 393 394 395 396 397 398 399
template <typename T>
void divide_grad(const Tensor& x,
                 const Tensor& y,
                 const Tensor& out,
                 const Tensor& out_grad,
                 int axis,
                 Tensor* dx,
                 Tensor* dy) {
  if (dy) {
    // dy = -(x/y^2) * dout
400
    auto dy_res = -(x / y.pow(2.0)) * out_grad;
401
    if (x.dims() != y.dims()) {
402
      // Maybe need reduce here
403 404
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
405
        set_output<T>(dy_res, dy);
406 407
      } else {
        auto dy_reduce_res =
408
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
409
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
410
        set_output<T>(dy_tmp, dy);
411
      }
412
    } else {
413
      set_output<T>(dy_res, dy);
414 415 416 417
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = (1/y) * dout
418
    auto one_tensor = full<T>(phi::vectorize(y.dims()), 1.0, y.dtype());
419
    auto dx_res = one_tensor / y * out_grad;
420
    if (y.dims() != x.dims()) {
421
      // Maybe need reduce here
422 423
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
424
        set_output<T>(dx_res, dx);
425 426
      } else {
        auto dx_reduce_res =
427
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
428
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
        set_output<T>(dx_tmp, dx);
      }

    } else {
      set_output<T>(dx_res, dx);
    }
  }  // indicate we will compute dx
}

template <typename T>
void elementwise_pow_grad(const Tensor& x,
                          const Tensor& y,
                          const Tensor& out_grad,
                          Tensor* dx,
                          Tensor* dy) {
  if (dy) {
    // dy = lnx * x^y
    auto lnx = log<T>(x);
    auto x_pow_y = elementwise_pow<T>(x, y);
448
    auto dy_res = lnx * x_pow_y * out_grad;
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, dy);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, dy);
      }
    } else {
      set_output<T>(dy_res, dy);
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = y * x^(y-1)
    auto tmp_z = y - 1.0;
    auto x_pow_z = elementwise_pow<T>(x, tmp_z);
468
    auto dx_res = y * x_pow_z * out_grad;
469 470 471 472 473 474 475 476 477
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, dx);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
478
        set_output<T>(dx_tmp, dx);
479 480
      }

481
    } else {
482
      set_output<T>(dx_res, dx);
483 484 485
    }
  }  // indicate we will compute dx
}
486 487 488 489

template <typename T>
void sqrt_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
J
Jiabin Yang 已提交
490 491
    // This calculation is important for resnet.
    auto x_grad_tmp = (0.5 / out) * out_grad;
492
    set_output<T>(x_grad_tmp, x_grad);
493 494
  }
}
495

496 497 498 499 500 501 502 503 504
template <typename T>
void floor_grad(const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor =
        full<T>(phi::vectorize(out_grad.dims()), 0.0, out_grad.dtype());
    set_output<T>(zero_tensor, x_grad);
  }
}

W
wangzhen38 已提交
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
template <typename T>
void concat_grad(const std::vector<Tensor>& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 std::vector<Tensor*> x_grad) {
  int axis_value = axis.to<int>();
  int rank = x[0].dims().size();
  if (axis_value < 0) {
    axis_value = axis_value + rank;
  }
  axis_value = axis_value > 0 ? axis_value : 0;
  std::vector<int> sections;
  int x_num = x.size();
  for (int i = 0; i < x_num; ++i) {
    sections.push_back(x[i].dims()[axis_value]);
  }
  std::vector<Tensor> x_grad_tmp =
X
xiaoguoguo626807 已提交
522
      split<T>(out_grad, phi::IntArray(sections), axis_value);
W
wangzhen38 已提交
523 524 525 526 527
  for (int i = 0; i < x_num; ++i) {
    set_output<T>(x_grad_tmp.at(i), x_grad.at(i));
  }
}

528 529 530 531 532 533 534 535
template <typename T>
void multiply_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* x_grad,
                   Tensor* y_grad) {
  if (x_grad) {
536
    auto x_grad_unreduce = out_grad * y;
537 538
    if (x_grad_unreduce.dims() != x.dims()) {
      auto axes = get_reduce_dims_from_out(x_grad_unreduce.dims(), x.dims());
539
      if (!axes.size()) {
540
        set_output<T>(x_grad_unreduce, x_grad);
541
      } else {
542 543
        auto x_grad_reduced = x_grad_unreduce.sum(
            phi::vectorize(axes), x_grad_unreduce.dtype(), false);
544 545 546
        if (x_grad_reduced.dims().size() != x.dims().size()) {
          x_grad_reduced = reshape<T>(x_grad_reduced, x.shape());
        }
547
        set_output<T>(x_grad_reduced, x_grad);
548 549
      }
    } else {
550
      set_output<T>(x_grad_unreduce, x_grad);
551 552 553
    }
  }
  if (y_grad) {
554
    auto y_grad_unreduce = out_grad * x;
555 556
    if (y_grad_unreduce.dims() != y.dims()) {
      auto axes = get_reduce_dims_from_out(y_grad_unreduce.dims(), y.dims());
557
      if (!axes.size()) {
558
        set_output<T>(y_grad_unreduce, y_grad);
559
      } else {
560 561
        auto y_grad_reduced = y_grad_unreduce.sum(
            phi::vectorize(axes), y_grad_unreduce.dtype(), false);
562 563 564
        if (y_grad_reduced.dims().size() != y.dims().size()) {
          y_grad_reduced = reshape<T>(y_grad_reduced, y.shape());
        }
565
        set_output<T>(y_grad_reduced, y_grad);
566 567
      }
    } else {
568
      set_output<T>(y_grad_unreduce, y_grad);
569 570 571 572
    }
  }
}

573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
template <typename T>
void multiply_double_grad(const Tensor& x,
                          const Tensor& y,
                          const Tensor& grad_out,
                          const paddle::optional<Tensor>& grad_x_grad,
                          const paddle::optional<Tensor>& grad_y_grad,
                          int axis,
                          Tensor* x_grad,
                          Tensor* y_grad,
                          Tensor* grad_out_grad) {
  if (x_grad) {
    if (grad_y_grad) {
      auto dx = grad_y_grad.get() * grad_out;
      if (dx.dims() != x.dims()) {
        auto axes = get_reduce_dims_from_out(dx.dims(), x.dims());
        if (!axes.size()) {
          set_output<T>(dx, x_grad);
        } else {
          auto dx_reduce = dx.sum(phi::vectorize(axes), dx.dtype(), false);
          if (dx_reduce.dims().size() != x.dims().size()) {
            dx_reduce = reshape<T>(dx_reduce, x.shape());
          }
          set_output<T>(dx_reduce, x_grad);
        }
      } else {
        set_output<T>(dx, x_grad);
      }

    } else {
      x_grad = nullptr;
    }
  }
  if (y_grad) {
    if (grad_x_grad) {
      auto dy = grad_x_grad.get() * grad_out;
      if (dy.dims() != y.dims()) {
        auto axes = get_reduce_dims_from_out(dy.dims(), y.dims());
        if (!axes.size()) {
          set_output<T>(dy, y_grad);
        } else {
          auto dy_reduce = dy.sum(phi::vectorize(axes), dy.dtype(), false);
          if (dy_reduce.dims().size() != y.dims().size()) {
            dy_reduce = reshape<T>(dy_reduce, y.shape());
          }
          set_output<T>(dy_reduce, y_grad);
        }
      } else {
        set_output<T>(dy, y_grad);
      }
    } else {
      y_grad = nullptr;
    }
  }
  if (grad_out_grad) {
    if (grad_x_grad && grad_y_grad) {
      auto ddout = grad_x_grad.get() * y + grad_y_grad.get() * x;
      set_output<T>(ddout, grad_out_grad);
    } else if (grad_x_grad) {
      auto ddout = grad_x_grad.get() * y;
      set_output<T>(ddout, grad_out_grad);
    } else if (grad_y_grad) {
      auto ddout = grad_y_grad.get() * x;
      set_output<T>(ddout, grad_out_grad);
    } else {
      grad_out_grad = nullptr;
    }
  }
}

642 643 644 645 646 647 648 649 650 651 652 653
template <typename T>
void expand_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const IntArray& shape,
                 Tensor* x_grad) {
  if (x_grad) {
    auto out_dims = phi::make_ddim(shape.GetData());
    if (out_dims != x.dims()) {
      auto axes = get_reduce_dims(x.dims(), out_dims);
      if (!axes.size()) {
        by_pass<T>(out_grad, x_grad);
      } else {
654
        auto reduced = out_grad.sum(phi::vectorize(axes), x.dtype(), false);
655 656 657
        if (reduced.dims().size() != x.dims().size()) {
          reduced = reshape<T>(reduced, x.shape());
        }
658
        set_output<T>(reduced, x_grad);
659 660 661 662 663 664 665
      }
    } else {
      by_pass<T>(out_grad, x_grad);
    }
  }
}

666 667 668 669 670 671 672 673
template <typename T>
void log_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    // dx = dout / x
    set_output<T>(out_grad / x, x_grad);
  }
}

674 675 676
template <typename T>
void exp_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
677
    set_output<T>(out_grad * out, x_grad);
678 679 680
  }
}

681 682 683 684 685 686 687
template <typename T>
void sigmoid_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    set_output<T>(out_grad * (out * (1 - out)), x_grad);
  }
}

688 689 690 691 692 693 694 695 696
template <typename T>
void abs_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto abs_tmp = abs<T>(x);
    auto divide_tmp = divide<T>(x, abs_tmp);
    set_output<T>(out_grad * divide_tmp, x_grad);
  }
}

697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
template <typename T>
void matmul_double_grad(const Tensor& x,
                        const Tensor& y,
                        const Tensor& grad_out,
                        const paddle::optional<Tensor>& grad_x_grad,
                        const paddle::optional<Tensor>& grad_y_grad,
                        bool transpose_x,
                        bool transpose_y,
                        Tensor* x_grad,
                        Tensor* y_grad,
                        Tensor* grad_out_grad) {
  // Get dims from the input x, y, output_grad
  std::vector<std::int64_t> x_dims = vectorize(x.dims());
  std::vector<std::int64_t> y_dims = vectorize(y.dims());
  std::vector<std::int64_t> grad_out_dims = vectorize(grad_out.dims());

  int x_ndim = x_dims.size();
  int y_ndim = y_dims.size();
  int dout_ndim = grad_out_dims.size();

  // prepare dims for x_ndim <= 1 || y_ndim <= 1
  Tensor x_help, y_help, xg_help, yg_help, out_help;

  if (x_ndim == 1 && y_ndim == 1) {
    transpose_x = false;
    transpose_y = false;
    x_help = reshape<T>(x, IntArray(std::vector<int64_t>({1, x_dims[0]})));
    y_help = reshape<T>(y, IntArray(std::vector<int64_t>({y_dims[0], 1})));
    if (grad_x_grad) {
      xg_help = reshape<T>(grad_x_grad.get(),
                           IntArray(std::vector<int64_t>({1, x_dims[0]})));
    }
    if (grad_y_grad) {
      yg_help = reshape<T>(grad_y_grad.get(),
                           IntArray(std::vector<int64_t>({y_dims[0], 1})));
    }
    out_help = reshape<T>(grad_out, IntArray(std::vector<int64_t>({1, 1})));

  } else if (x_ndim == 1) {
    transpose_x = false;
    x_help = reshape<T>(x, IntArray(std::vector<int64_t>({1, x_dims[0]})));
    y_help = y;
    if (grad_x_grad) {
      xg_help = reshape<T>(grad_x_grad.get(),
                           IntArray(std::vector<int64_t>({1, x_dims[0]})));
    }
    if (grad_y_grad) {
      yg_help = grad_y_grad.get();
    }
    auto tmp_grad_out_dims = grad_out_dims;
    tmp_grad_out_dims.insert(tmp_grad_out_dims.begin(), 1);
    out_help = reshape<T>(grad_out, IntArray(tmp_grad_out_dims));

  } else if (y_ndim == 1) {
    transpose_y = false;
    x_help = x;
    y_help = reshape<T>(y, IntArray(std::vector<int64_t>({y_dims[0], 1})));
    if (grad_x_grad) {
      xg_help = grad_x_grad.get();
    }
    if (grad_y_grad) {
      yg_help = reshape<T>(grad_y_grad.get(),
                           IntArray(std::vector<int64_t>({y_dims[0], 1})));
    }
    auto tmp_grad_out_dims = grad_out_dims;
    tmp_grad_out_dims.push_back(1);
    out_help = reshape<T>(grad_out, IntArray(tmp_grad_out_dims));

  } else {
    x_help = x;
    y_help = y;
    if (grad_x_grad) {
      xg_help = grad_x_grad.get();
    }
    if (grad_y_grad) {
      yg_help = grad_y_grad.get();
    }
    out_help = grad_out;
  }

  bool is_broadcast = true;
  if (x_ndim <= 2 && y_ndim <= 2) {
    is_broadcast = false;
  } else if (x_ndim != y_ndim) {
    is_broadcast = true;
  } else {
    is_broadcast = !std::equal(
        x_dims.cbegin(), x_dims.cbegin() + x_ndim - 2, y_dims.cbegin());
  }
  Tensor dx, dy, ddout_1, ddout_2, ddout;
  if (!grad_x_grad && !grad_y_grad) {
    x_grad = nullptr;
    y_grad = nullptr;
    grad_out_grad = nullptr;
    return;

  } else if (!grad_x_grad) {
    y_grad = nullptr;
    if (!transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, false, false);
      }
    } else if (!transpose_x && transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, false, true);
      }
    } else if (transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, false, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, true, false);
      }
    } else {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, true, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(x_help, yg_help, true, true);
      }
    }

  } else if (!grad_y_grad) {
    x_grad = nullptr;
    if (!transpose_x && !transpose_y) {
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, true, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, false, false);
      }
    } else if (!transpose_x && transpose_y) {
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, false, true);
      }
    } else if (transpose_x && !transpose_y) {
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, false, false);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, true, false);
      }
    } else {
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, true);
      }
      if (grad_out_grad) {
        ddout = matmul<T>(xg_help, y_help, true, true);
      }
    }

  } else {
    if (!transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, true);
      }
      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, true, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, false, false);
        ddout_2 = matmul<T>(xg_help, y_help, false, false);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else if (!transpose_x && transpose_y) {
      if (x_grad) {
        dx = matmul<T>(out_help, yg_help, false, false);
      }

      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, false, true);
        ddout_2 = matmul<T>(xg_help, y_help, false, true);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else if (transpose_x && !transpose_y) {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, false, true);
      }

      if (y_grad) {
        dy = matmul<T>(xg_help, out_help, false, false);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, true, false);
        ddout_2 = matmul<T>(xg_help, y_help, true, false);
        ddout = add<T>(ddout_1, ddout_2);
      }
    } else {
      if (x_grad) {
        dx = matmul<T>(yg_help, out_help, true, true);
      }
      if (y_grad) {
        dy = matmul<T>(out_help, xg_help, true, true);
      }
      if (grad_out_grad) {
        ddout_1 = matmul<T>(x_help, yg_help, true, true);
        ddout_2 = matmul<T>(xg_help, y_help, true, true);
        ddout = add<T>(ddout_1, ddout_2);
      }
    }
  }

  if (is_broadcast) {
    // Case3: broadcast. It need cost much time to reduce sum for the
    // broadcast and wastes the memory.
    // So we should avoid the case in reality.
    VLOG(3) << "It need cost much time to reduce sum for the broadcast and "
               "wastes the memory. So we should avoid the case in reality";
    // Reduce sum to get grad by ReduceSum
    if (x_grad) {
      auto tx_dims = x_dims;
      auto tx_ndim = x_ndim;
      auto tdout_ndim = dout_ndim;
      if (x_ndim == 1) {
        tx_dims = std::vector<int64_t>({1, x_dims[0]});
        tx_ndim = x_ndim + 1;
        tdout_ndim = dout_ndim + 1;
      }

      auto x_grad_reduce_dims =
          get_reduce_dims(dx, tdout_ndim, tx_ndim, &tx_dims);

      if (!x_grad_reduce_dims.empty()) {
        dx = sum<T>(dx, IntArray(x_grad_reduce_dims), dy.dtype(), true);
      }
      reshape<T>(dx, IntArray(tx_dims));
    }

    if (y_grad) {
      auto ty_dims = y_dims;
      auto ty_ndim = y_ndim;
      auto tdout_ndim = dout_ndim;
      if (y_ndim == 1) {
        ty_dims = std::vector<int64_t>({y_dims[0], 1});
        ty_ndim = y_ndim + 1;
        tdout_ndim = dout_ndim + 1;
      }

      auto y_grad_reduce_dims =
          get_reduce_dims(dy, tdout_ndim, ty_ndim, &ty_dims);

      if (!y_grad_reduce_dims.empty()) {
        dy = sum<T>(dy, IntArray(y_grad_reduce_dims), dy.dtype(), true);
      }
      reshape<T>(dy, IntArray(ty_dims));
    }
  }

  // recover the original dim of output (delete 1)
  std::vector<int64_t> dx_dims =
      dx.initialized() ? vectorize(dx.dims()) : std::vector<int64_t>({});
  std::vector<int64_t> dy_dims =
      dy.initialized() ? vectorize(dy.dims()) : std::vector<int64_t>({});
  std::vector<int64_t> ddout_dims =
      ddout.initialized() ? vectorize(ddout.dims()) : std::vector<int64_t>({});
  if (x_ndim == 1 && y_ndim == 1) {
    if (dx.initialized() && dx_dims[0] == 1) {
      dx = reshape<T>(dx, IntArray(x_dims));
    }
    if (dy.initialized() && dy_dims.back() == 1) {
      dy = reshape<T>(dy, IntArray(y_dims));
    }
    if (ddout.initialized() && ddout_dims == std::vector<int64_t>({1, 1})) {
      ddout = reshape<T>(ddout, IntArray(std::vector<int64_t>({1})));
    }
  } else if (x_ndim == 1) {
    if (dx.initialized() && dx_dims[0] == 1) {
      dx = reshape<T>(dx, IntArray(x_dims));
    }
    if (ddout.initialized() && ddout_dims[0] == 1) {
      ddout = reshape<T>(ddout,
                         IntArray(std::vector<int64_t>(
                             {ddout_dims.cbegin() + 1, ddout_dims.cend()})));
    }
  } else if (y_ndim == 1) {
    if (dy.initialized() && dy_dims.back() == 1) {
      dy = reshape<T>(dy, IntArray(y_dims));
    }
    if (ddout.initialized() && ddout_dims.back() == 1) {
      ddout = reshape<T>(ddout,
                         IntArray(std::vector<int64_t>(
                             {ddout_dims.cbegin(),
                              ddout_dims.cbegin() + ddout_dims.size() - 1})));
    }
  }

  if (x_grad) {
    set_output<T>(dx, x_grad);
  }
  if (y_grad) {
    set_output<T>(dy, y_grad);
  }
  if (grad_out_grad) {
    set_output<T>(ddout, grad_out_grad);
  }
}

X
xiaoguoguo626807 已提交
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
template <typename T>
void slice_grad(const Tensor& input,
                const Tensor& out_grad,
                const std::vector<int64_t>& axes,
                const IntArray& starts,
                const IntArray& ends,
                const std::vector<int64_t>& infer_flags,
                const std::vector<int64_t>& decrease_axis,
                Tensor* input_grad) {
  if (input_grad) {
    size_t rank = input.dims().size();
    auto out_dims = out_grad.dims();
1018
    std::vector<int64_t> origin_out_shape;
X
xiaoguoguo626807 已提交
1019 1020 1021 1022 1023 1024 1025 1026
    auto in_dims = input.dims();

    auto decrease_size = decrease_axis.size();
    if (decrease_size > 0) {
      if (decrease_size == static_cast<size_t>(in_dims.size())) {
        // all dims decrease
        out_dims = phi::make_ddim(std::vector<int>(decrease_size, 1));
      } else {
1027
        origin_out_shape.resize(out_dims.size() + decrease_size, -1);
X
xiaoguoguo626807 已提交
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        for (size_t i = 0; i < decrease_size; ++i) {
          origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < origin_out_shape.size(); ++i) {
          if (origin_out_shape[i] == -1) {
            origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }
        out_dims = phi::make_ddim(origin_out_shape);
      }
    }

    std::vector<int> offsets(rank, 0);
    std::vector<int> extents(rank, 0);
    for (size_t i = 0; i < rank; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
    for (size_t i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      int64_t start = starts[i] < 0 ? (starts[i] + in_dims[axis]) : starts[i];
      start = std::max(start, static_cast<int64_t>(0));
      offsets[axis] = start;
    }

    std::vector<int> paddings;
    for (size_t i = 0; i < rank; ++i) {
      paddings.push_back(offsets[i]);
      paddings.push_back((in_dims[i] - out_dims[i]) - offsets[i]);
    }
1061 1062 1063 1064 1065 1066 1067 1068 1069
    if (decrease_size > 0 &&
        (decrease_size != static_cast<size_t>(in_dims.size()))) {
      auto out_tmp =
          pad<T>(reshape<T>(out_grad, origin_out_shape), paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    } else {
      auto out_tmp = pad<T>(out_grad, paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    }
X
xiaoguoguo626807 已提交
1070 1071 1072
  }
}

1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
template <typename T>
void group_norm_grad(const Tensor& x,
                     const paddle::optional<Tensor>& scale,
                     const paddle::optional<Tensor>& bias,
                     const Tensor& y,
                     const Tensor& mean,
                     const Tensor& variance,
                     const Tensor& out_grad,
                     float epsilon,
                     int groups,
                     const std::string& data_layout,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  // x.shape=[n,c,h,w]
  // y.shape=[n,c,h,w]
  // g_size = c/g
  // scale.shape=[c]
  // mean, var: shape=[n, g]
  // inv_std = rsqrt(var + epsilon)
  // ds = sum(dy * x, axes=(2,3))
  // db = sum(dy, axes=(2,3))
  //
  // cal d_x:
  // s = g / (h*w*c)
  // if scale:
  //  ds_val = sum((ds * scale).reshape(n, g, g_size), axes=2)
  //  db_val = sum((db * scale).reshape(n, g, g_size), axes=2)
  //  p1 = (inv_std.reshape(n, g, 1)) * (scale.reshape(1, g, g_size))
  // else:
  //  ds_val = sum(ds.reshape(n, g, g_size), axes=2)
  //  db_val = sum(db.reshape(n, g, g_size), axes=2)
  //  p1 = (inv_std.reshape(n, g, 1)) * (ones(1, g, g_size))
  // p2 = (db_val * mean - ds_val) * inv_std * inv_std * inv_std * s
  // p3 = -p2 * mean - db_val * inv_std * s
  // p1.reshape(n, g, g_size, 1)
  // p2.reshape(n, g, 1, 1)
  // p3.reshape(n, g, 1, 1)
  // d_x = dy.reshape(n, g, g_size, h*w) * p1 + x.reshape(n, g, g_size, h*w)* p2
  // + p3
  //
  // cal d_scale:
  // temp = ds.reshape(n, g, g_size) - db.reshape(n, g, g_size) *
  // mean.reshape(n, g, 1)
  // d_scale = sum(temp * inv_std.reshape(n, g, 1), axes=0).reshape(c)
  //
  // cal d_bias:
  // d_bias = sum(dy, axes=(0,2,3))
  DataLayout data_layout_ = phi::StringToDataLayout(data_layout);
  if (data_layout_ != DataLayout::kNCHW) {
    PADDLE_THROW(phi::errors::InvalidArgument("Unsupported storage order: %s",
                                              data_layout));
  }
  Tensor x_data = x;
  Tensor out_grad_data = out_grad;

  if (x.dtype() == phi::DataType::FLOAT16) {
    x_data = cast<T>(x, phi::DataType::FLOAT32);
  }

  if (out_grad.dtype() == phi::DataType::FLOAT16) {
    out_grad_data = cast<T>(out_grad, phi::DataType::FLOAT32);
  }

  std::vector<int64_t> x_dims = phi::vectorize<int64_t>(x.dims());
  auto add_axis = std::vector<int64_t>({-1});
  const int N = x_dims[0];
  const int C = x_dims[1];

  const int hw = x_dims[2] * x_dims[3];
  const int g_num = C / groups;

  auto reduce_axis = IntArray(std::vector<int64_t>({2, 3}));
  auto shape_group = IntArray(std::vector<int64_t>({N, groups, g_num}));
  auto whole_group_shape =
      IntArray(std::vector<int64_t>({N, groups, g_num, hw}));

  auto scale_ptr = scale.get_ptr();
  auto bias_ptr = bias.get_ptr();
  auto inv_std = sqrt<T>(1.0 / (variance + epsilon));
  auto inv_std_mul_s = inv_std / hw / g_num;
  auto dtype = x_data.dtype();
  auto sum_y_grad_mul_x =
      sum<T>(out_grad_data * x_data, reduce_axis, dtype, false);
  auto sum_y_grad = sum<T>(out_grad_data, reduce_axis, dtype, false);
  if (x_grad) {
    Tensor d1;
    Tensor d2;
    Tensor p1;
    if (scale_ptr) {
      auto scale_data = scale.get();
      if (scale_data.dtype() == phi::DataType::FLOAT16) {
        scale_data = cast<T>(scale_data, phi::DataType::FLOAT32);
      }
      d1 = (reshape<T>(sum_y_grad_mul_x * scale_data, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      d2 = (reshape<T>(sum_y_grad * scale_data, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      p1 = reshape<T>(inv_std, std::vector<int64_t>({N, groups, 1})) *
           reshape<T>(scale_data, std::vector<int64_t>({1, groups, g_num}));
    } else {
      d1 = (reshape<T>(sum_y_grad_mul_x, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      d2 = (reshape<T>(sum_y_grad, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      p1 = (reshape<T>(inv_std, std::vector<int64_t>({N, groups, 1})))
               .expand(IntArray(shape_group));
    }

    auto p2 = (d2 * mean - d1) * (inv_std_mul_s * inv_std * inv_std);
    auto p3 = -p2 * mean - d2 * inv_std_mul_s;
1184 1185 1186 1187 1188
    auto first_shape = get_unsqueeze_dims(p1, std::vector<int64_t>({3}));
    auto second_shape = get_unsqueeze_dims(p2, std::vector<int64_t>({2, 3}));
    p1 = reshape<T>(p1, first_shape);
    p2 = reshape<T>(p2, second_shape);
    p3 = reshape<T>(p3, second_shape);
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    auto tmp_1 = reshape<T>(out_grad_data, whole_group_shape) * p1;
    auto tmp_2 = reshape<T>(x_data, whole_group_shape) * p2 + p3;
    auto x_grad_data = tmp_1 + tmp_2;
    x_grad_data = reshape<T>(x_grad_data, x.shape());
    if (x.dtype() == phi::DataType::FLOAT16) {
      x_grad_data = cast<T>(x_grad_data, x.dtype());
    }

    set_output<T>(x_grad_data, x_grad);
  }
  if (scale_grad) {
    if (scale_ptr) {
1201
      auto third_shape = get_unsqueeze_dims(mean, std::vector<int64_t>({2}));
1202 1203
      auto tmp1 = (reshape<T>(sum_y_grad_mul_x, shape_group) -
                   reshape<T>(sum_y_grad, shape_group) *
1204 1205
                       reshape<T>(mean, third_shape)) *
                  reshape<T>(inv_std, third_shape);
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
      auto scale_grad_tmp =
          reshape<T>(tmp1.sum(std::vector<int64_t>({0}), dtype, false),
                     IntArray(std::vector<int64_t>({C})));
      set_output<T>(scale_grad_tmp, scale_grad);
    } else {
      scale_grad = nullptr;
    }
  }

  if (bias_grad) {
    if (bias_ptr) {
      auto bias_grad_tmp =
          sum_y_grad.sum(std::vector<int64_t>({0}), dtype, false);
      set_output<T>(bias_grad_tmp, bias_grad);
    } else {
      bias_grad = nullptr;
    }
  }
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
template <typename T>
void layer_norm_grad(const Tensor& x,
                     const paddle::optional<Tensor>& scale,
                     const paddle::optional<Tensor>& bias,
                     const Tensor& mean,
                     const Tensor& variance,
                     const Tensor& out_grad,
                     float epsilon,
                     int begin_norm_axis,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  auto x_dims = x.dims();
  auto shape_1 = 1;  // front part
  auto shape_2 = 1;  // back part
  for (int i = 0; i < begin_norm_axis; ++i) {
    shape_1 *= x_dims[i];
  }
  for (int i = begin_norm_axis; i < x.dims().size(); ++i) {
    shape_2 *= x_dims[i];
  }
  auto scale_ptr = scale.get_ptr();
  auto bias_ptr = bias.get_ptr();

1250 1251 1252 1253 1254 1255
  auto x_cast = reshape<T>(x, std::vector<int64_t>({shape_1, shape_2}));
  auto out_grad_cast =
      reshape<T>(out_grad, std::vector<int64_t>({shape_1, shape_2}));
  auto mean_ = reshape<T>(mean, std::vector<int64_t>({shape_1, 1}));
  auto variance_ = reshape<T>(variance, std::vector<int64_t>({shape_1, 1}));

1256 1257 1258 1259
  Tensor scale_cast;
  if (scale_ptr) {
    scale_cast = reshape<T>(*scale_ptr, std::vector<int64_t>({1, shape_2}));
  }
1260 1261

  // cast dtype to float32 if dtype =float16
1262
  if (x.dtype() == phi::DataType::FLOAT16) {
1263 1264
    x_cast = cast<T>(x_cast, phi::DataType::FLOAT32);
    out_grad_cast = cast<T>(out_grad_cast, phi::DataType::FLOAT32);
1265 1266 1267 1268 1269
    if (scale_ptr) {
      scale_cast = cast<T>(scale_cast, phi::DataType::FLOAT32);
    }
  }

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
  auto x_sub_mean = x_cast - mean_;          // M,N
  auto tmp = (1.0 / (variance_ + epsilon));  // M,1
  auto sqrt_var_1 = sqrt<T>(tmp);            // M,1
  auto x_sub_mean_mul_sqrt_var_1 = x_sub_mean * sqrt_var_1;

  if (x_grad) {
    auto out_grad_scale = out_grad_cast;  // M,N
    if (scale_ptr) {
      out_grad_scale = out_grad_cast * scale_cast;  // M,N * 1,N = M,N
    }

    auto dx_end = sqrt_var_1 * out_grad_scale;
    auto d_mean =
        dx_end.sum(std::vector<int64_t>({1}), x_cast.dtype(), true);  // M,1

    auto d_std_1 =
        (tmp * x_sub_mean * out_grad_scale)
            .sum(std::vector<int64_t>({1}), x_cast.dtype(), true);  // M,1
    auto d_std = d_std_1 * x_sub_mean_mul_sqrt_var_1;  // M,1 * M,N = M,N

    auto d_mean_d_std = (1.0 / shape_2) * (d_mean + d_std);
    auto x_grad_tmp = dx_end - d_mean_d_std;
    x_grad_tmp = reshape<T>(x_grad_tmp, phi::vectorize(x.dims()));

    if (x.dtype() == phi::DataType::FLOAT16) {
      x_grad_tmp = cast<T>(x_grad_tmp, x.dtype());
1296
    }
1297
    set_output<T>(x_grad_tmp, x_grad);
1298
  }
1299

1300 1301 1302
  if (scale_grad) {
    if (scale_ptr) {
      auto scale_grad_tmp =
1303
          (x_sub_mean_mul_sqrt_var_1 * out_grad_cast)
1304 1305 1306 1307 1308 1309 1310 1311
              .sum(std::vector<int64_t>({0}), x_cast.dtype(), true);
      scale_grad_tmp = reshape<T>(scale_grad_tmp, scale_ptr->shape());
      set_output<T>(scale_grad_tmp, scale_grad);
    } else {
      scale_grad = nullptr;
    }
  }

1312 1313 1314 1315 1316 1317 1318 1319
  if (bias_grad) {
    if (bias_ptr) {
      auto bias_grad_tmp =
          out_grad_cast.sum(std::vector<int64_t>({0}), x_cast.dtype(), true);
      bias_grad_tmp = reshape<T>(bias_grad_tmp, bias_ptr->shape());
      set_output<T>(bias_grad_tmp, bias_grad);
    } else {
      bias_grad = nullptr;
1320 1321 1322 1323
    }
  }
}

G
GGBond8488 已提交
1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
template <typename T>
void cumsum_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 bool flatten,
                 bool exclusive,
                 bool reverse,
                 Tensor* x_grad) {
  if (x_grad) {
    auto grad = cumsum<T>(out_grad, axis, flatten, exclusive, !reverse);
    grad = reshape<T>(grad, x.shape());
    set_output<T>(grad, x_grad);
  }
}

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
template <typename T>
void split_grad(const std::vector<Tensor>& out_grad,
                const Scalar& axis,
                Tensor* x_grad) {
  if (x_grad) {
    auto grad = concat<T>(out_grad, axis);
    set_output<T>(grad, x_grad);
  }
}

Z
zqw_1997 已提交
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
template <typename T>
void topk_grad(const Tensor& x,
               const Tensor& indices,
               const Tensor& out_grad,
               const Scalar& k,
               const int& axis,
               const bool& largest,
               const bool& sorted,
               Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = put_along_axis<T>(zero_tensor, indices, out_grad, axis);
1361 1362 1363
    set_output<T>(x_grad_tmp, x_grad);
  }
}
Z
zqw_1997 已提交
1364

1365 1366 1367 1368 1369 1370 1371 1372
template <typename T>
void gather_nd_grad(const Tensor& x,
                    const Tensor& index,
                    const Tensor& out_grad,
                    Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = scatter_nd_add<T>(zero_tensor, index, out_grad);
Z
zqw_1997 已提交
1373 1374 1375 1376
    set_output<T>(x_grad_tmp, x_grad);
  }
}

1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
template <typename T>
void prod_grad(const Tensor& x,
               const Tensor& out,
               const Tensor& out_grad,
               const IntArray& axis,
               bool keep_dim,
               bool reduce_all,
               Tensor* x_grad) {
  if (x_grad) {
    std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
    int64_t axis_size = axis.size();
    int64_t x_dim_size = x_dim.size();
    reduce_all = false;
    if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
      reduce_all = true;
    } else {
      reduce_all = false;
    }
    auto x_grad_tmp = Tensor();
    auto out_tmp = Tensor();
    if (x_dim_size == 1) {
      x_grad_tmp = out_grad.expand(IntArray(x_dim));
      out_tmp = out.expand(IntArray(x_dim));
    } else {
      if (!keep_dim) {
        auto axis_ = std::vector<int64_t>();
        if (reduce_all) {
1404
          for (int64_t i = 0; i < x_dim_size; i++) {
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
            axis_.push_back(i);
          }
        } else {
          axis_ = axis.GetData();
          for (int64_t i = 0; i < axis_size; i++) {
            if (axis[i] < 0) {
              axis_[i] = axis[i] + x_dim_size;
            }
          }
        }
1415 1416
        auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
        auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
1417
        x_grad_tmp = out_grad_.expand(IntArray(x_dim));
1418
        auto out_ = reshape<T>(out, out_grad_shape);
1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
        out_tmp = out_.expand(IntArray(x_dim));
      } else {
        x_grad_tmp = out_grad.expand(IntArray(x_dim));
        out_tmp = out.expand(IntArray(x_dim));
      }
    }
    auto x_grad_res = x_grad_tmp * out_tmp * (1 / x);
    set_output<T>(x_grad_res, x_grad);
  }
}

1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459
template <typename T>
void max_grad(const Tensor& x,
              const Tensor& out,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
  if (x_dim_size == 0 || x_dim_size == 1 || keepdim) {
    auto out_grad_tmp = out_grad.expand(IntArray(x_dim));
    auto out_tmp = out.expand(IntArray(x_dim));
    auto mask = equal<T>(x, out_tmp);
    x_grad_tmp = where<T>(mask, out_grad_tmp, zero_tensor);
  } else {
    auto axis_ = std::vector<int64_t>();
    if (reduce_all) {
1460
      for (int64_t i = 0; i < x_dim_size; i++) {
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470
        axis_.push_back(i);
      }
    } else {
      axis_ = axis.GetData();
      for (int64_t i = 0; i < axis_size; i++) {
        if (axis[i] < 0) {
          axis_[i] = axis[i] + x_dim_size;
        }
      }
    }
1471 1472 1473
    auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
    auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
    auto out_ = reshape<T>(out, out_grad_shape);
1474 1475 1476 1477 1478 1479 1480 1481
    auto out_grad_tmp = out_grad_.expand(IntArray(x_dim));
    auto out_tmp = out_.expand(IntArray(x_dim));
    auto mask = equal<T>(x, out_tmp);
    x_grad_tmp = where<T>(mask, out_grad_tmp, zero_tensor);
  }
  set_output<T>(x_grad_tmp, x_grad);
}

1482 1483 1484 1485 1486 1487 1488
template <typename T>
void assign_grad(const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    by_pass<T>(out_grad, x_grad);
  }
}

G
GGBond8488 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
template <typename T>
void erf_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto m_2_sqrt_pi = full<T>(phi::vectorize(x.dims()), M_2_SQRTPI, x.dtype());
    auto neg_one = full<T>(phi::vectorize(x.dims()), -1.0, x.dtype());
    auto neg_tmp = neg_one * x * x;
    auto mul_tmp = m_2_sqrt_pi * exp<T>(neg_tmp);
    set_output<T>(out_grad * mul_tmp, x_grad);
  }
}

H
heyanru 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
template <typename T>
void maximum_grad(const Tensor& x,
                  const Tensor& y,
                  const Tensor& out_grad,
                  Tensor* x_grad,
                  Tensor* y_grad) {
  if (x_grad) {
    auto x_tmp = cast<T>(greater_than<T>(x, y), out_grad.dtype());
    auto dx_res = out_grad * x_tmp;
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, x_grad);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
        set_output<T>(dx_tmp, x_grad);
      }
    } else {
      set_output<T>(dx_res, x_grad);
    }
  }

  if (y_grad) {
    auto y_tmp = cast<T>(less_equal<T>(x, y), out_grad.dtype());
    auto dy_res = out_grad * y_tmp;
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, y_grad);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, y_grad);
      }
    } else {
      set_output<T>(dy_res, y_grad);
    }
  }
}

1545
template <typename T>
1546 1547 1548 1549 1550 1551 1552 1553
void dropout_grad(const Tensor& mask,
                  const Tensor& out_grad,
                  const Scalar& p,
                  bool is_test,
                  const std::string& mode,
                  Tensor* x_grad) {
  if (!x_grad) return;
  if (is_test) {
1554
    if (mode == "upscale_in_train") {
1555 1556 1557 1558 1559
      by_pass<T>(out_grad, x_grad);
    } else {
      set_output<T>(out_grad * (1.0 - p.to<float>()), x_grad);
    }
  } else {
1560
    if (mode == "upscale_in_train") {
1561
      if (p.to<float>() == 1.0f) {
C
cxxly 已提交
1562
        set_output<T>(scale<T>(out_grad, 0.0), x_grad);
1563
      } else {
C
cxxly 已提交
1564 1565 1566
        set_output<T>(scale<T>(out_grad * cast<T>(mask, out_grad.dtype()),
                               1.0 / (1.0 - p.to<float>())),
                      x_grad);
1567 1568 1569 1570 1571 1572
      }
    } else {
      set_output<T>(out_grad * cast<T>(mask, out_grad.dtype()), x_grad);
    }
  }
}
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
template <typename T>
void sin_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  auto x_grad_tmp = cos<T>(x) * out_grad;
  set_output<T>(x_grad_tmp, x_grad);
}

template <typename T>
void cos_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  auto x_grad_tmp = -sin<T>(x) * out_grad;
  set_output<T>(x_grad_tmp, x_grad);
}

Z
zxcd 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
template <typename T>
void scatter_grad(const Tensor& index,
                  const Tensor& updates,
                  const Tensor& out_grad,
                  bool overwrite,
                  Tensor* x_grad,
                  Tensor* updates_grad) {
  if (x_grad) {
    auto zero_tensor =
        full<T>(phi::vectorize(updates.dims()), 0.0, updates.dtype());
    auto tmp_grad = scatter<T>(out_grad, index, zero_tensor, false);
    set_output<T>(tmp_grad, x_grad);
  }

  if (updates_grad) {
    Scalar tmp_zero = 0;
    auto tmp_updates_grad = gather<T>(out_grad, index, tmp_zero);
    set_output<T>(tmp_updates_grad, updates_grad);
  }
}

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661
template <typename T>
void batch_norm_grad(const Tensor& x,
                     const Tensor& scale,
                     const Tensor& bias,
                     const paddle::optional<Tensor>& mean_out,
                     const paddle::optional<Tensor>& variance_out,
                     const Tensor& saved_mean,
                     const Tensor& saved_variance,
                     const paddle::optional<Tensor>& reserve_space,
                     const Tensor& out_grad,
                     float momentum,
                     float epsilon,
                     const std::string& data_layout,
                     bool is_test,
                     bool use_global_stats,
                     bool trainable_statistics,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  use_global_stats = is_test || use_global_stats;

  DataLayout data_layout_ = phi::StringToDataLayout(data_layout);

  Tensor x_data = x;
  Tensor out_grad_data = out_grad;
  if (x.dtype() == phi::DataType::FLOAT16) {
    x_data = cast<T>(x, phi::DataType::FLOAT32);
  }
  if (out_grad.dtype() == phi::DataType::FLOAT16) {
    out_grad_data = cast<T>(out_grad, phi::DataType::FLOAT32);
  }
  auto x_dims = x_data.dims();
  const int C = (data_layout_ == DataLayout::kNCHW ? x_dims[1]
                                                   : x_dims[x_dims.size() - 1]);
  int nume = 1;
  for (auto i = 0; i < x_dims.size(); i++) {
    nume = nume * x_dims[i];
  }

  const int nhw = nume / C;

  if (x_dims.size() == 2 && data_layout_ == DataLayout::kNCHW) {
    data_layout_ = DataLayout::kNHWC;
  }

  auto run_var = variance_out.get();
  auto run_mean = mean_out.get();

  Tensor mean_data;
  Tensor rsqrt_var;

  if (use_global_stats) {
    auto eps =
        full<T>(phi::vectorize(run_var.dims()), epsilon, run_var.dtype());
    mean_data = run_mean;
1662
    rsqrt_var = (run_var + eps).pow(-0.5);
1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
  } else {
    mean_data = saved_mean;
    rsqrt_var = saved_variance;
  }

  // inv_var = 1 / sqrt(var + eps)
  // reduce_axis = [0, 2, 3] (NCHW) [0, 1, 2] (NHWC)
  //
  // d_bias = np.sum(d_y, reduce_axis)
  // d_scale = np.sum((X - mean) / inv_var * dy, reduce_axis)
  //
  // train mode
  // d_x = (1. / nhw) * scale * inv_var
  // *(nhw * d_y - np.sum(d_y, reduce_axis) - (X - mean) * inv_var * inv_var *
  // np.sum(d_y * (X - mean), reduce_axis))
  //
  // test mode
  // d_x = d_y * scale * inv_var

  std::vector<int> nchw_to_nhwc_dim = {0, 2, 3, 1};
  std::vector<int> nhwc_to_nchw_dim = {0, 3, 1, 2};
R
risemeup1 已提交
1684
  auto reduce_axis = IntArray(std::vector<int64_t>{0, 1, 2});
1685 1686 1687 1688 1689 1690
  auto dtype = x_data.dtype();

  switch (data_layout_) {
    case DataLayout::kNCHW: {
      auto nhwc_x = transpose<T>(x_data, nchw_to_nhwc_dim);
      auto nhwc_out_grad = transpose<T>(out_grad_data, nchw_to_nhwc_dim);
1691
      auto nhwc_out_grad_sum = sum<T>(nhwc_out_grad, reduce_axis, dtype, false);
1692 1693

      auto x_sub_mean = nhwc_x - mean_data;
1694 1695
      auto sum_dout_mul_diff =
          sum<T>(nhwc_out_grad * x_sub_mean, reduce_axis, dtype, false);
1696 1697 1698 1699 1700 1701 1702 1703

      if (x_grad) {
        if (use_global_stats) {
          auto nhwc_x_grad = scale * rsqrt_var * nhwc_out_grad;
          auto nchw_x_grad = transpose<T>(nhwc_x_grad, nhwc_to_nchw_dim);
          set_output<T>(nchw_x_grad, x_grad);
        } else {
          auto part1 = scale * rsqrt_var;
1704 1705
          auto mean_temp1 = nhwc_out_grad_sum / nhw;
          auto mean_temp2 = sum_dout_mul_diff / nhw * rsqrt_var * rsqrt_var;
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716
          auto part2 = nhwc_out_grad - mean_temp1 - x_sub_mean * mean_temp2;

          auto x_grad_data = part1 * part2;
          auto nchw_x_grad = transpose<T>(x_grad_data, nhwc_to_nchw_dim);
          if (x.dtype() == phi::DataType::FLOAT16) {
            nchw_x_grad = cast<T>(nchw_x_grad, x.dtype());
          }
          set_output<T>(nchw_x_grad, x_grad);
        }
      }
      if (scale_grad) {
1717
        auto scale_grad_data = sum_dout_mul_diff * rsqrt_var;
1718 1719 1720
        set_output<T>(scale_grad_data, scale_grad);
      }
      if (bias_grad) {
1721
        set_output<T>(nhwc_out_grad_sum, bias_grad);
1722 1723 1724 1725 1726 1727
      }
      break;
    }
    case DataLayout::kNHWC: {
      if (x_grad) {
        auto x_sub_mean = x_data - mean_data;
1728 1729 1730 1731
        auto out_grad_data_sum =
            sum<T>(out_grad_data, reduce_axis, dtype, false);
        auto nhwc_sum_dout_mul_diff =
            sum<T>(out_grad_data * x_sub_mean, reduce_axis, dtype, false);
1732 1733 1734 1735 1736 1737
        if (use_global_stats) {
          auto x_grad_data = scale * rsqrt_var * out_grad_data;
          set_output<T>(x_grad_data, x_grad);
        } else {
          auto part1 = scale * rsqrt_var;

1738 1739 1740
          auto mean_temp1 = out_grad_data_sum / nhw;
          auto mean_temp2 =
              nhwc_sum_dout_mul_diff / nhw * rsqrt_var * rsqrt_var;
1741
          auto part2 = out_grad_data - mean_temp1 - x_sub_mean * mean_temp2;
1742 1743 1744 1745 1746 1747 1748 1749

          auto x_grad_data = part1 * part2;
          if (x.dtype() == phi::DataType::FLOAT16) {
            x_grad_data = cast<T>(x_grad_data, x.dtype());
          }
          set_output<T>(x_grad_data, x_grad);
        }
        if (scale_grad) {
1750
          auto scale_grad_data = nhwc_sum_dout_mul_diff * rsqrt_var;
1751 1752 1753
          set_output<T>(scale_grad_data, scale_grad);
        }
        if (bias_grad) {
1754
          set_output<T>(out_grad_data_sum, bias_grad);
1755 1756
        }
      }
1757
      break;
1758
    }
1759

1760 1761 1762 1763 1764 1765
    default:
      PADDLE_THROW(phi::errors::InvalidArgument("Unknown storage order: %s",
                                                data_layout));
  }
}

1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817
template <typename T>
void instance_norm_grad(const Tensor& x,
                        const paddle::optional<Tensor>& scale,
                        const Tensor& saved_mean,
                        const Tensor& saved_variance,
                        const Tensor& y_grad,
                        float epsilon,
                        Tensor* x_grad,
                        Tensor* scale_grad,
                        Tensor* bias_grad) {
  const int n = x.dims()[0];
  const int c = x.dims()[1];
  const int h = x.dims()[2];
  const int w = x.dims()[3];

  Tensor x_hat;
  Tensor std_inv;
  if (scale_grad || x_grad) {
    auto mean = reshape<T>(saved_mean, IntArray({n, c, 1, 1}))
                    .tile(IntArray({1, 1, h, w}));
    std_inv = reshape<T>(saved_variance, IntArray({n, c, 1, 1}))
                  .tile(IntArray({1, 1, h, w}));
    x_hat = (x - mean) * std_inv;
  }

  // x_grad = scale * inv_var * (y_grad - y_grad.mean(2,3) - x_hat * (y_grad *
  // x_hat).mean((h,w)))
  if (x_grad) {
    auto scale_t =
        reshape<T>(scale.get_ptr() ? scale.get()
                                   : full<T>(IntArray({c}), 1., x.dtype()),
                   IntArray({1, c, 1, 1}))
            .tile(IntArray({n, 1, h, w}));
    set_output<T>(
        (scale_t * std_inv) *
            (y_grad -
             y_grad.sum(IntArray({2, 3}), y_grad.dtype(), true) / (h * w) -
             (x_hat *
              ((y_grad * x_hat).sum(IntArray({2, 3}), y_grad.dtype(), true) /
               (h * w)))),
        x_grad);
  }
  // scale_grad = x_hat * y_grad.sum(n, h, w)
  if (scale_grad) {
    set_output<T>((y_grad * x_hat).sum(IntArray({0, 2, 3})), scale_grad);
  }
  // d_bias = y_grad.sum(n, h, w)
  if (bias_grad) {
    set_output<T>(y_grad.sum(IntArray({0, 2, 3})), bias_grad);
  }
}

C
cxxly 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890
template <typename T>
void gelu_grad(const Tensor& x,
               const Tensor& out_grad,
               bool approximate,
               Tensor* x_grad) {
  if (!x_grad) return;
  // Promote to fp32 when the input type is fp16 for keeping consistent with
  // phi kernel

  if (x.dtype() == phi::DataType::FLOAT16 ||
      x.dtype() == phi::DataType::BFLOAT16) {
    auto promoted_x = cast<T>(x, phi::DataType::FLOAT32);
    auto promoted_out_grad = cast<T>(out_grad, phi::DataType::FLOAT32);
    if (approximate) {
      float kbeta = M_SQRT2 * M_2_SQRTPI * 0.5;
      float kkappa = 0.044715;
      auto x_sq = promoted_x * promoted_x;
      auto x_cube = x_sq * promoted_x;
      auto inner = kbeta * (promoted_x + kkappa * x_cube);
      auto tanh_inner = tanh<T>(inner);

      auto left = scale<T>(promoted_x, 0.5);
      auto right = scale<T>(tanh_inner, 1., 1.);

      auto left_derivative = scale<T>(right, 0.5);

      auto tanh_derivative = scale<T>(tanh_inner * tanh_inner, -1., 1.);
      auto inner_derivative = kbeta * (scale<T>(3 * kkappa * x_sq, 1., 1.));
      auto right_derivative = left * tanh_derivative * inner_derivative;

      set_output<T>(
          cast<T>(promoted_out_grad * (left_derivative + right_derivative),
                  x.type()),
          x_grad);
    } else {
      float kalpha = M_SQRT1_2;
      float kbeta = M_2_SQRTPI * M_SQRT1_2 * 0.5;
      auto cdf = scale<T>(scale<T>(erf<T>(kalpha * promoted_x), 1., 1.), 0.5);
      auto pdf = kbeta * exp<T>(scale<T>(promoted_x * promoted_x, -0.5));
      set_output<T>(
          cast<T>(promoted_out_grad * (cdf + promoted_x * pdf), x.type()),
          x_grad);
    }
  } else {
    // Scale only support fp32 attr in static graph mode, use elementwise_xx
    // when precision is over fp32.
    if (approximate) {
      auto kBeta = M_SQRT2 * M_2_SQRTPI * 0.5;
      auto kKappa = 0.044715;
      auto x_sq = x * x;
      auto x_cube = x_sq * x;
      auto inner = kBeta * (x + kKappa * x_cube);
      auto tanh_inner = tanh<T>(inner);

      auto left = scale<T>(x, 0.5);
      auto right = scale<T>(tanh_inner, 1., 1.);

      auto left_derivative = scale<T>(right, 0.5);

      auto tanh_derivative = scale<T>(tanh_inner * tanh_inner, -1., 1.);
      auto inner_derivative = kBeta * (scale<T>(3 * kKappa * x_sq, 1., 1.));
      auto right_derivative = left * tanh_derivative * inner_derivative;

      set_output<T>(out_grad * (left_derivative + right_derivative), x_grad);
    } else {
      auto kAlpha = M_SQRT1_2;
      auto kBeta = M_2_SQRTPI * M_SQRT1_2 * 0.5;
      auto cdf = scale<T>(scale<T>(erf<T>(kAlpha * x), 1., 1.), 0.5);
      auto pdf = kBeta * exp<T>(scale<T>(x * x, -0.5));
      set_output<T>(out_grad * (cdf + x * pdf), x_grad);
    }
  }
}
1891

C
ccrrong 已提交
1892 1893 1894 1895 1896 1897 1898 1899
template <typename T>
void tile_grad(const Tensor& x,
               const Tensor& out_grad,
               const IntArray& repeat_times,
               Tensor* x_grad) {
  if (x_grad) {
    auto repeat_times_data = repeat_times.GetData();
    auto out_grad_shape = phi::vectorize<int>(out_grad.dims());
1900
    auto result = out_grad;
C
ccrrong 已提交
1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
    for (int i = 0; i < static_cast<int>(repeat_times_data.size()); i++) {
      int size = out_grad_shape[i] / repeat_times_data[i];
      std::vector<int> sections(repeat_times_data[i], size);
      auto split_arr = split<T>(result, IntArray(sections), i);
      result = full<T>(phi::vectorize(split_arr[0].dims()), 0.0, x.dtype());
      for (int j = 0; j < static_cast<int>(split_arr.size()); j++) {
        result = split_arr[j] + result;
      }
    }
    result = reshape<T>(result, x.shape());
    set_output<T>(result, x_grad);
  }
}

1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
template <typename T>
void roll_grad(const Tensor& x,
               const Tensor& out_grad,
               const IntArray& shifts,
               const std::vector<int64_t>& axis,
               Tensor* x_grad) {
  if (x_grad) {
    auto shifts_ = shifts.GetData();
    int64_t nums = shifts_.size();
    for (int64_t i = 0; i < nums; i++) {
      shifts_[i] = 0 - shifts_[i];
    }
    auto x_grad_output = roll<T>(out_grad, shifts_, axis);
    set_output<T>(x_grad_output, x_grad);
  }
}
M
mhy-666 已提交
1931

M
mengziheng 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
template <typename T>
void pad_grad(const Tensor& input,
              const Tensor& out_grad,
              const std::vector<int>& paddings,
              const Scalar& pad_value,
              Tensor* input_grad) {
  if (input_grad) {
    size_t rank = input.dims().size();
    auto out_dims = out_grad.dims();

    std::vector<int> starts(rank, 0);
    std::vector<int64_t> ends(rank, 0);
    std::vector<int64_t> axes(rank, 0);
    std::vector<int64_t> infer_flags(rank, 1);
    std::vector<int64_t> decrease_axis({});
    for (size_t i = 0; i < rank; ++i) {
      starts.push_back(static_cast<int>(paddings[2 * i]));
      ends.push_back(static_cast<int64_t>(out_dims[i] - paddings[2 * i + 1]));
      axes.push_back(i);
    }
    auto out_tmp =
        slice<T>(out_grad, axes, starts, ends, infer_flags, decrease_axis);
    set_output<T>(out_tmp, input_grad);
  }
}

M
mhy-666 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
template <typename T>
void scatter_nd_add_grad(const Tensor& index,
                         const Tensor& updates,
                         const Tensor& out_grad,
                         Tensor* x_grad,
                         Tensor* updates_grad) {
  if (x_grad) {
    by_pass<T>(out_grad, x_grad);
  }
  if (updates_grad) {
    // Gradient by Gather: dUpdates = dO[Ids]
    auto tmp_updates_grad = gather_nd<T>(out_grad, index);
    set_output<T>(tmp_updates_grad, updates_grad);
  }
}
M
mengziheng 已提交
1973

J
Jiabin Yang 已提交
1974 1975
}  // namespace prim
}  // namespace paddle