composite_backward_api.h 54.5 KB
Newer Older
J
Jiabin Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once
16

G
GGBond8488 已提交
17 18 19 20 21 22
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES
#endif

#include <math.h>

23
#include "paddle/fluid/prim/api/all.h"
X
xiaoguoguo626807 已提交
24
#include "paddle/fluid/prim/api/composite_backward/composite_double_backward_api.h"
25
#include "paddle/fluid/prim/api/generated_prim/prim_generated_api.h"
C
cxxly 已提交
26
#include "paddle/phi/common/amp_type_traits.h"
27 28
#include "paddle/phi/common/int_array.h"
#include "paddle/phi/core/ddim.h"
C
cxxly 已提交
29

J
Jiabin Yang 已提交
30 31
namespace paddle {
namespace prim {
32 33
using Tensor = paddle::Tensor;
using IntArray = paddle::experimental::IntArrayBase<paddle::Tensor>;
34 35
//  This function should have as same signature as phi, which defined in
//  paddle/phi/api/backward/backward_api.h
J
Jiabin Yang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
template <typename T>
void hardswish_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto offset = full<T>(phi::vectorize(x.dims()), 3.0, x.dtype());
    auto condition = less_equal<T>(x, offset);
    auto tmp1 = where<T>(condition, out_grad * ((x / 3.0) + 0.5), out_grad);
    auto res = where<T>(
        less_than<T>(x, full<T>(phi::vectorize(x.dims()), -3.0, x.dtype())),
        full<T>(phi::vectorize(x.dims()), 0.0, x.dtype()),
        tmp1);
    set_output<T>(res, x_grad);
  }
}

template <typename T>
void leaky_relu_grad(const Tensor& out,
                     const Tensor& out_grad,
                     float negative_slope,
                     Tensor* x_grad) {
  if (x_grad) {
    auto condition = greater_than<T>(
        out, full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    auto res = where<T>(condition, out_grad, out_grad * negative_slope);
    set_output<T>(res, x_grad);
  }
}

template <typename T>
64 65 66 67
void silu_grad(const Tensor& x,
               const Tensor& out,
               const Tensor& out_grad,
               Tensor* x_grad) {
J
Jiabin Yang 已提交
68
  if (x_grad) {
69
    auto sigmoid = out / x;
J
Jiabin Yang 已提交
70 71 72 73 74
    auto res = out_grad * sigmoid * (1.0 + x * (1.0 - sigmoid));
    set_output<T>(res, x_grad);
  }
}

J
Jiabin Yang 已提交
75 76 77 78 79 80 81 82 83 84 85 86
template <typename T>
void relu_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto condition = greater_than<T>(
        out, full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    auto res = where<T>(condition,
                        out_grad,
                        full<T>(phi::vectorize(out.dims()), 0.0, out.dtype()));
    set_output<T>(res, x_grad);
  }
}

J
Jiabin Yang 已提交
87
template <typename T>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
void softmax_grad(const Tensor& out,
                  const Tensor& out_grad,
                  int axis,
                  Tensor* x_grad) {
  if (x_grad) {
    if (out_grad.dims().size() > 0) {
      if (axis >= 0) {
        auto new_out_grad = out_grad * out;
        auto tmp_x_grad = new_out_grad -
                          out * sum<T>(new_out_grad, {axis}, out.dtype(), true);
        set_output<T>(tmp_x_grad, x_grad);
      } else {
        auto new_out_grad = out_grad * out;
        auto tmp_x_grad =
            new_out_grad - out * sum<T>(new_out_grad,
                                        {out.dims().size() + axis},
                                        out.dtype(),
                                        true);
        set_output<T>(tmp_x_grad, x_grad);
      }
    } else {
      set_output<T>(
          full<T>(phi::vectorize(out_grad.dims()), 0.0, out_grad.dtype()),
          x_grad);
    }
  }
}

template <typename T>
117
void cast_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
118
  if (x_grad) {
119
    auto res = cast<T>(out_grad, x.dtype());
120 121 122
    set_output<T>(res, x_grad);
  }
}
123

124
template <typename T>
J
Jiabin Yang 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
void gather_grad(const Tensor& x,
                 const Tensor& index,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 Tensor* grad_x) {
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int> tmp_perm;

  // change axis to rank 0
  int axis_value = axis.to<int>();
  tmp_perm.push_back(axis_value);
  // make other ranks
  for (int i = 0; i < x.dims().size(); ++i) {
    if (i != axis_value) {
      tmp_perm.push_back(i);
    }
  }
  std::vector<int> reverse_perm(tmp_perm);
  // make origin ranks
  for (int i = 0; i < static_cast<int>(tmp_perm.size()); ++i) {
145 146 147 148 149
    if (tmp_perm[i] >= 0) {
      reverse_perm[tmp_perm[i]] = i;
    } else {
      reverse_perm[tmp_perm[i] + tmp_perm.size()] = i;
    }
J
Jiabin Yang 已提交
150 151 152 153 154 155 156 157 158 159 160
  }

  // transpose out_grad and zero grad to target rank.
  auto tmp_zero_x_grad = transpose<T>(zero_tensor, tmp_perm);
  auto tmp_out_grad = transpose<T>(out_grad, tmp_perm);
  // scatter grad to grad_x
  auto tmp_grad_x = scatter<T>(tmp_zero_x_grad, index, tmp_out_grad, false);
  auto tmp_grad_x_tranposed = transpose<T>(tmp_grad_x, reverse_perm);
  set_output<T>(tmp_grad_x_tranposed, grad_x);
}

J
Jiabin Yang 已提交
161 162
template <typename T>
void tanh_grad(const Tensor& out, const Tensor& grad_out, Tensor* grad_x) {
163
  if (!grad_x) return;
164
  auto grad_x_tmp = grad_out * (1 - out * out);
165
  set_output<T>(grad_x_tmp, grad_x);
J
Jiabin Yang 已提交
166
}
167

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
template <typename T>
void reshape_grad(const Tensor& x, const Tensor& grad_out, Tensor* grad_x) {
  if (grad_x) {
    auto grad_x_tmp = reshape<T>(grad_out, phi::vectorize(x.dims()));
    set_output<T>(grad_x_tmp, grad_x);
  }
}

template <typename T>
void transpose_grad(const Tensor& grad_out,
                    const std::vector<int>& perm,
                    Tensor* grad_x) {
  if (grad_x) {
    std::vector<int> reverse_perm(perm);
    // make origin ranks
    for (int i = 0; i < static_cast<int>(perm.size()); ++i) {
184 185 186 187 188
      if (perm[i] >= 0) {
        reverse_perm[perm[i]] = i;
      } else {
        reverse_perm[perm[i] + perm.size()] = i;
      }
189 190 191 192 193 194
    }
    auto grad_x_tmp = transpose<T>(grad_out, reverse_perm);
    set_output<T>(grad_x_tmp, grad_x);
  }
}

195 196 197 198 199 200 201 202 203
template <typename T>
void subtract_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* dx,
                   Tensor* dy) {
  if (dy) {
    auto scale_out_grad = scale<T>(out_grad, -1.0, 0.0, true);
204
    if (x.dims() != y.dims()) {
205
      // Maybe need reduce here
206 207 208 209
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(scale_out_grad, dy);
      } else {
210 211
        auto dy_reduce_res =
            scale_out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
212
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
213
        set_output<T>(dy_tmp, dy);
214
      }
215 216 217 218 219
    } else {
      by_pass<T>(scale_out_grad, dy);
    }
  }
  if (dx) {
220
    if (y.dims() != x.dims()) {
221
      // Maybe need reduce here
222 223 224 225 226
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
227
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
228
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
229
        set_output<T>(dx_tmp, dx);
230
      }
231 232 233 234 235 236
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
template <typename T>
void subtract_double_grad(const Tensor& y,
                          const Tensor& grad_out,
                          const paddle::optional<Tensor>& grad_x_grad,
                          const paddle::optional<Tensor>& grad_y_grad,
                          int axis,
                          Tensor* grad_out_grad) {
  if (grad_out_grad) {
    // ddout = ddx - ddy
    if (!grad_x_grad && !grad_y_grad) {
      grad_out_grad = nullptr;
    } else {
      Tensor ddout = full<T>(phi::vectorize(grad_out.dims()), 0.0, y.dtype());
      if (grad_x_grad) {
        ddout = ddout + grad_x_grad.get();
      }
      if (grad_y_grad) {
        ddout = ddout - grad_y_grad.get();
      }
      set_output<T>(ddout, grad_out_grad);
    }
  }
}

261 262 263 264 265 266 267 268
template <typename T>
void add_grad(const Tensor& x,
              const Tensor& y,
              const Tensor& out_grad,
              int axis,
              Tensor* dx,
              Tensor* dy) {
  if (dy) {
269
    if (x.dims() != y.dims()) {
270
      // Maybe need reduce here
271 272 273 274 275
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dy);
      } else {
        auto dy_reduce_res =
276
            out_grad.sum(phi::vectorize(reduce_dim), y.dtype(), false);
277
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
278
        set_output<T>(dy_tmp, dy);
279 280
      }

281 282 283 284 285
    } else {
      by_pass<T>(out_grad, dy);
    }
  }
  if (dx) {
286
    if (y.dims() != x.dims()) {
287
      // Maybe need reduce here
288 289 290 291 292
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        by_pass<T>(out_grad, dx);
      } else {
        auto dx_reduce_res =
293
            out_grad.sum(phi::vectorize(reduce_dim), x.dtype(), false);
294
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
295
        set_output<T>(dx_tmp, dx);
296
      }
297 298 299 300 301 302
    } else {
      by_pass<T>(out_grad, dx);
    }
  }
}

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
template <typename T>
void add_double_grad(const Tensor& y,
                     const Tensor& grad_out,
                     const paddle::optional<Tensor>& grad_x_grad,
                     const paddle::optional<Tensor>& grad_y_grad,
                     int axis,
                     Tensor* grad_out_grad) {
  if (grad_out_grad) {
    // ddout = ddx + ddy
    if (!grad_x_grad && !grad_y_grad) {
      grad_out_grad = nullptr;
    } else {
      Tensor ddout = full<T>(phi::vectorize(grad_out.dims()), 0.0, y.dtype());
      if (grad_x_grad) {
        ddout = ddout + grad_x_grad.get();
      }
      if (grad_y_grad) {
        ddout = ddout + grad_y_grad.get();
      }
      set_output<T>(ddout, grad_out_grad);
    }
  }
}

327 328 329 330 331 332 333 334 335 336
template <typename T>
void sum_grad(const Tensor& x,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
R
risemeup1 已提交
337
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
338 339 340 341 342 343 344 345 346
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
347
  if (x_dim_size == 1) {
348
    x_grad_tmp = out_grad.expand(IntArray(x_dim));
349 350 351 352
  } else {
    if (!keepdim) {
      auto axis_ = std::vector<int64_t>();
      if (reduce_all) {
353
        for (int64_t i = 0; i < x_dim_size; i++) {
354 355 356 357
          axis_.push_back(i);
        }
      } else {
        axis_ = axis.GetData();
358 359 360 361 362
        for (int64_t i = 0; i < axis_size; i++) {
          if (axis[i] < 0) {
            axis_[i] = axis[i] + x_dim_size;
          }
        }
363
      }
364 365
      auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
      auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
366
      x_grad_tmp = out_grad_.expand(IntArray(x_dim));
367
    } else {
368
      x_grad_tmp = out_grad.expand(IntArray(x_dim));
369 370 371
    }
  }

372
  set_output<T>(x_grad_tmp, x_grad);
373 374
}

375 376 377 378 379 380 381 382 383 384
template <typename T>
void divide_grad(const Tensor& x,
                 const Tensor& y,
                 const Tensor& out,
                 const Tensor& out_grad,
                 int axis,
                 Tensor* dx,
                 Tensor* dy) {
  if (dy) {
    // dy = -(x/y^2) * dout
385
    auto dy_res = -(x / y.pow(2.0)) * out_grad;
386
    if (x.dims() != y.dims()) {
387
      // Maybe need reduce here
388 389
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
390
        set_output<T>(dy_res, dy);
391 392
      } else {
        auto dy_reduce_res =
393
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
394
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
395
        set_output<T>(dy_tmp, dy);
396
      }
397
    } else {
398
      set_output<T>(dy_res, dy);
399 400 401 402
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = (1/y) * dout
403
    auto one_tensor = full<T>(phi::vectorize(y.dims()), 1.0, y.dtype());
404
    auto dx_res = one_tensor / y * out_grad;
405
    if (y.dims() != x.dims()) {
406
      // Maybe need reduce here
407 408
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
409
        set_output<T>(dx_res, dx);
410 411
      } else {
        auto dx_reduce_res =
412
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
413
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        set_output<T>(dx_tmp, dx);
      }

    } else {
      set_output<T>(dx_res, dx);
    }
  }  // indicate we will compute dx
}

template <typename T>
void elementwise_pow_grad(const Tensor& x,
                          const Tensor& y,
                          const Tensor& out_grad,
                          Tensor* dx,
                          Tensor* dy) {
  if (dy) {
    // dy = lnx * x^y
    auto lnx = log<T>(x);
    auto x_pow_y = elementwise_pow<T>(x, y);
433
    auto dy_res = lnx * x_pow_y * out_grad;
434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, dy);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, dy);
      }
    } else {
      set_output<T>(dy_res, dy);
    }
  }  // indicate we will compute dy
  if (dx) {
    // dx = y * x^(y-1)
    auto tmp_z = y - 1.0;
    auto x_pow_z = elementwise_pow<T>(x, tmp_z);
453
    auto dx_res = y * x_pow_z * out_grad;
454 455 456 457 458 459 460 461 462
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, dx);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
463
        set_output<T>(dx_tmp, dx);
464 465
      }

466
    } else {
467
      set_output<T>(dx_res, dx);
468 469 470
    }
  }  // indicate we will compute dx
}
471 472 473 474

template <typename T>
void sqrt_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
J
Jiabin Yang 已提交
475 476
    // This calculation is important for resnet.
    auto x_grad_tmp = (0.5 / out) * out_grad;
477
    set_output<T>(x_grad_tmp, x_grad);
478 479
  }
}
480

481 482 483 484 485 486 487 488 489
template <typename T>
void floor_grad(const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor =
        full<T>(phi::vectorize(out_grad.dims()), 0.0, out_grad.dtype());
    set_output<T>(zero_tensor, x_grad);
  }
}

W
wangzhen38 已提交
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
template <typename T>
void concat_grad(const std::vector<Tensor>& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 std::vector<Tensor*> x_grad) {
  int axis_value = axis.to<int>();
  int rank = x[0].dims().size();
  if (axis_value < 0) {
    axis_value = axis_value + rank;
  }
  axis_value = axis_value > 0 ? axis_value : 0;
  std::vector<int> sections;
  int x_num = x.size();
  for (int i = 0; i < x_num; ++i) {
    sections.push_back(x[i].dims()[axis_value]);
  }
  std::vector<Tensor> x_grad_tmp =
X
xiaoguoguo626807 已提交
507
      split<T>(out_grad, phi::IntArray(sections), axis_value);
W
wangzhen38 已提交
508 509 510 511 512
  for (int i = 0; i < x_num; ++i) {
    set_output<T>(x_grad_tmp.at(i), x_grad.at(i));
  }
}

513 514 515 516 517 518 519 520
template <typename T>
void multiply_grad(const Tensor& x,
                   const Tensor& y,
                   const Tensor& out_grad,
                   int axis,
                   Tensor* x_grad,
                   Tensor* y_grad) {
  if (x_grad) {
521
    auto x_grad_unreduce = out_grad * y;
522 523
    if (x_grad_unreduce.dims() != x.dims()) {
      auto axes = get_reduce_dims_from_out(x_grad_unreduce.dims(), x.dims());
524
      if (!axes.size()) {
525
        set_output<T>(x_grad_unreduce, x_grad);
526
      } else {
527 528
        auto x_grad_reduced = x_grad_unreduce.sum(
            phi::vectorize(axes), x_grad_unreduce.dtype(), false);
529 530 531
        if (x_grad_reduced.dims().size() != x.dims().size()) {
          x_grad_reduced = reshape<T>(x_grad_reduced, x.shape());
        }
532
        set_output<T>(x_grad_reduced, x_grad);
533 534
      }
    } else {
535
      set_output<T>(x_grad_unreduce, x_grad);
536 537 538
    }
  }
  if (y_grad) {
539
    auto y_grad_unreduce = out_grad * x;
540 541
    if (y_grad_unreduce.dims() != y.dims()) {
      auto axes = get_reduce_dims_from_out(y_grad_unreduce.dims(), y.dims());
542
      if (!axes.size()) {
543
        set_output<T>(y_grad_unreduce, y_grad);
544
      } else {
545 546
        auto y_grad_reduced = y_grad_unreduce.sum(
            phi::vectorize(axes), y_grad_unreduce.dtype(), false);
547 548 549
        if (y_grad_reduced.dims().size() != y.dims().size()) {
          y_grad_reduced = reshape<T>(y_grad_reduced, y.shape());
        }
550
        set_output<T>(y_grad_reduced, y_grad);
551 552
      }
    } else {
553
      set_output<T>(y_grad_unreduce, y_grad);
554 555 556 557
    }
  }
}

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
template <typename T>
void multiply_double_grad(const Tensor& x,
                          const Tensor& y,
                          const Tensor& grad_out,
                          const paddle::optional<Tensor>& grad_x_grad,
                          const paddle::optional<Tensor>& grad_y_grad,
                          int axis,
                          Tensor* x_grad,
                          Tensor* y_grad,
                          Tensor* grad_out_grad) {
  if (x_grad) {
    if (grad_y_grad) {
      auto dx = grad_y_grad.get() * grad_out;
      if (dx.dims() != x.dims()) {
        auto axes = get_reduce_dims_from_out(dx.dims(), x.dims());
        if (!axes.size()) {
          set_output<T>(dx, x_grad);
        } else {
          auto dx_reduce = dx.sum(phi::vectorize(axes), dx.dtype(), false);
          if (dx_reduce.dims().size() != x.dims().size()) {
            dx_reduce = reshape<T>(dx_reduce, x.shape());
          }
          set_output<T>(dx_reduce, x_grad);
        }
      } else {
        set_output<T>(dx, x_grad);
      }

    } else {
      x_grad = nullptr;
    }
  }
  if (y_grad) {
    if (grad_x_grad) {
      auto dy = grad_x_grad.get() * grad_out;
      if (dy.dims() != y.dims()) {
        auto axes = get_reduce_dims_from_out(dy.dims(), y.dims());
        if (!axes.size()) {
          set_output<T>(dy, y_grad);
        } else {
          auto dy_reduce = dy.sum(phi::vectorize(axes), dy.dtype(), false);
          if (dy_reduce.dims().size() != y.dims().size()) {
            dy_reduce = reshape<T>(dy_reduce, y.shape());
          }
          set_output<T>(dy_reduce, y_grad);
        }
      } else {
        set_output<T>(dy, y_grad);
      }
    } else {
      y_grad = nullptr;
    }
  }
  if (grad_out_grad) {
    if (grad_x_grad && grad_y_grad) {
      auto ddout = grad_x_grad.get() * y + grad_y_grad.get() * x;
      set_output<T>(ddout, grad_out_grad);
    } else if (grad_x_grad) {
      auto ddout = grad_x_grad.get() * y;
      set_output<T>(ddout, grad_out_grad);
    } else if (grad_y_grad) {
      auto ddout = grad_y_grad.get() * x;
      set_output<T>(ddout, grad_out_grad);
    } else {
      grad_out_grad = nullptr;
    }
  }
}

627 628 629 630 631 632 633 634 635 636 637 638
template <typename T>
void expand_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const IntArray& shape,
                 Tensor* x_grad) {
  if (x_grad) {
    auto out_dims = phi::make_ddim(shape.GetData());
    if (out_dims != x.dims()) {
      auto axes = get_reduce_dims(x.dims(), out_dims);
      if (!axes.size()) {
        by_pass<T>(out_grad, x_grad);
      } else {
639
        auto reduced = out_grad.sum(phi::vectorize(axes), x.dtype(), false);
640 641 642
        if (reduced.dims().size() != x.dims().size()) {
          reduced = reshape<T>(reduced, x.shape());
        }
643
        set_output<T>(reduced, x_grad);
644 645 646 647 648 649 650
      }
    } else {
      by_pass<T>(out_grad, x_grad);
    }
  }
}

651 652 653 654 655 656 657 658
template <typename T>
void log_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    // dx = dout / x
    set_output<T>(out_grad / x, x_grad);
  }
}

659 660 661
template <typename T>
void exp_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
662
    set_output<T>(out_grad * out, x_grad);
663 664 665
  }
}

666 667 668 669 670 671 672
template <typename T>
void sigmoid_grad(const Tensor& out, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    set_output<T>(out_grad * (out * (1 - out)), x_grad);
  }
}

673 674 675 676 677 678 679 680 681
template <typename T>
void abs_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto abs_tmp = abs<T>(x);
    auto divide_tmp = divide<T>(x, abs_tmp);
    set_output<T>(out_grad * divide_tmp, x_grad);
  }
}

X
xiaoguoguo626807 已提交
682 683 684 685 686 687 688 689 690 691 692 693
template <typename T>
void slice_grad(const Tensor& input,
                const Tensor& out_grad,
                const std::vector<int64_t>& axes,
                const IntArray& starts,
                const IntArray& ends,
                const std::vector<int64_t>& infer_flags,
                const std::vector<int64_t>& decrease_axis,
                Tensor* input_grad) {
  if (input_grad) {
    size_t rank = input.dims().size();
    auto out_dims = out_grad.dims();
694
    std::vector<int64_t> origin_out_shape;
X
xiaoguoguo626807 已提交
695 696 697 698 699 700 701 702
    auto in_dims = input.dims();

    auto decrease_size = decrease_axis.size();
    if (decrease_size > 0) {
      if (decrease_size == static_cast<size_t>(in_dims.size())) {
        // all dims decrease
        out_dims = phi::make_ddim(std::vector<int>(decrease_size, 1));
      } else {
703
        origin_out_shape.resize(out_dims.size() + decrease_size, -1);
X
xiaoguoguo626807 已提交
704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
        for (size_t i = 0; i < decrease_size; ++i) {
          origin_out_shape[decrease_axis[i]] = 1;
        }

        int index = 0;
        for (size_t i = 0; i < origin_out_shape.size(); ++i) {
          if (origin_out_shape[i] == -1) {
            origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }
        out_dims = phi::make_ddim(origin_out_shape);
      }
    }

    std::vector<int> offsets(rank, 0);
    std::vector<int> extents(rank, 0);
    for (size_t i = 0; i < rank; ++i) {
      offsets[i] = 0;
      extents[i] = out_dims[i];
    }
    for (size_t i = 0; i < axes.size(); ++i) {
      int axis = axes[i];
      int64_t start = starts[i] < 0 ? (starts[i] + in_dims[axis]) : starts[i];
      start = std::max(start, static_cast<int64_t>(0));
      offsets[axis] = start;
    }

    std::vector<int> paddings;
    for (size_t i = 0; i < rank; ++i) {
      paddings.push_back(offsets[i]);
      paddings.push_back((in_dims[i] - out_dims[i]) - offsets[i]);
    }
737 738 739 740 741 742 743 744 745
    if (decrease_size > 0 &&
        (decrease_size != static_cast<size_t>(in_dims.size()))) {
      auto out_tmp =
          pad<T>(reshape<T>(out_grad, origin_out_shape), paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    } else {
      auto out_tmp = pad<T>(out_grad, paddings, 0.0);
      set_output<T>(out_tmp, input_grad);
    }
X
xiaoguoguo626807 已提交
746 747 748
  }
}

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
template <typename T>
void group_norm_grad(const Tensor& x,
                     const paddle::optional<Tensor>& scale,
                     const paddle::optional<Tensor>& bias,
                     const Tensor& y,
                     const Tensor& mean,
                     const Tensor& variance,
                     const Tensor& out_grad,
                     float epsilon,
                     int groups,
                     const std::string& data_layout,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  // x.shape=[n,c,h,w]
  // y.shape=[n,c,h,w]
  // g_size = c/g
  // scale.shape=[c]
  // mean, var: shape=[n, g]
  // inv_std = rsqrt(var + epsilon)
  // ds = sum(dy * x, axes=(2,3))
  // db = sum(dy, axes=(2,3))
  //
  // cal d_x:
  // s = g / (h*w*c)
  // if scale:
  //  ds_val = sum((ds * scale).reshape(n, g, g_size), axes=2)
  //  db_val = sum((db * scale).reshape(n, g, g_size), axes=2)
  //  p1 = (inv_std.reshape(n, g, 1)) * (scale.reshape(1, g, g_size))
  // else:
  //  ds_val = sum(ds.reshape(n, g, g_size), axes=2)
  //  db_val = sum(db.reshape(n, g, g_size), axes=2)
  //  p1 = (inv_std.reshape(n, g, 1)) * (ones(1, g, g_size))
  // p2 = (db_val * mean - ds_val) * inv_std * inv_std * inv_std * s
  // p3 = -p2 * mean - db_val * inv_std * s
  // p1.reshape(n, g, g_size, 1)
  // p2.reshape(n, g, 1, 1)
  // p3.reshape(n, g, 1, 1)
  // d_x = dy.reshape(n, g, g_size, h*w) * p1 + x.reshape(n, g, g_size, h*w)* p2
  // + p3
  //
  // cal d_scale:
  // temp = ds.reshape(n, g, g_size) - db.reshape(n, g, g_size) *
  // mean.reshape(n, g, 1)
  // d_scale = sum(temp * inv_std.reshape(n, g, 1), axes=0).reshape(c)
  //
  // cal d_bias:
  // d_bias = sum(dy, axes=(0,2,3))
  DataLayout data_layout_ = phi::StringToDataLayout(data_layout);
  if (data_layout_ != DataLayout::kNCHW) {
    PADDLE_THROW(phi::errors::InvalidArgument("Unsupported storage order: %s",
                                              data_layout));
  }
  Tensor x_data = x;
  Tensor out_grad_data = out_grad;

  if (x.dtype() == phi::DataType::FLOAT16) {
    x_data = cast<T>(x, phi::DataType::FLOAT32);
  }

  if (out_grad.dtype() == phi::DataType::FLOAT16) {
    out_grad_data = cast<T>(out_grad, phi::DataType::FLOAT32);
  }

  std::vector<int64_t> x_dims = phi::vectorize<int64_t>(x.dims());
  auto add_axis = std::vector<int64_t>({-1});
  const int N = x_dims[0];
  const int C = x_dims[1];

  const int hw = x_dims[2] * x_dims[3];
  const int g_num = C / groups;

  auto reduce_axis = IntArray(std::vector<int64_t>({2, 3}));
  auto shape_group = IntArray(std::vector<int64_t>({N, groups, g_num}));
  auto whole_group_shape =
      IntArray(std::vector<int64_t>({N, groups, g_num, hw}));

  auto scale_ptr = scale.get_ptr();
  auto bias_ptr = bias.get_ptr();
  auto inv_std = sqrt<T>(1.0 / (variance + epsilon));
  auto inv_std_mul_s = inv_std / hw / g_num;
  auto dtype = x_data.dtype();
  auto sum_y_grad_mul_x =
      sum<T>(out_grad_data * x_data, reduce_axis, dtype, false);
  auto sum_y_grad = sum<T>(out_grad_data, reduce_axis, dtype, false);
  if (x_grad) {
    Tensor d1;
    Tensor d2;
    Tensor p1;
    if (scale_ptr) {
      auto scale_data = scale.get();
      if (scale_data.dtype() == phi::DataType::FLOAT16) {
        scale_data = cast<T>(scale_data, phi::DataType::FLOAT32);
      }
      d1 = (reshape<T>(sum_y_grad_mul_x * scale_data, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      d2 = (reshape<T>(sum_y_grad * scale_data, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      p1 = reshape<T>(inv_std, std::vector<int64_t>({N, groups, 1})) *
           reshape<T>(scale_data, std::vector<int64_t>({1, groups, g_num}));
    } else {
      d1 = (reshape<T>(sum_y_grad_mul_x, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      d2 = (reshape<T>(sum_y_grad, shape_group))
               .sum(std::vector<int64_t>({2}), dtype, false);
      p1 = (reshape<T>(inv_std, std::vector<int64_t>({N, groups, 1})))
               .expand(IntArray(shape_group));
    }

    auto p2 = (d2 * mean - d1) * (inv_std_mul_s * inv_std * inv_std);
    auto p3 = -p2 * mean - d2 * inv_std_mul_s;
860 861 862 863 864
    auto first_shape = get_unsqueeze_dims(p1, std::vector<int64_t>({3}));
    auto second_shape = get_unsqueeze_dims(p2, std::vector<int64_t>({2, 3}));
    p1 = reshape<T>(p1, first_shape);
    p2 = reshape<T>(p2, second_shape);
    p3 = reshape<T>(p3, second_shape);
865 866 867 868 869 870 871 872 873 874 875 876
    auto tmp_1 = reshape<T>(out_grad_data, whole_group_shape) * p1;
    auto tmp_2 = reshape<T>(x_data, whole_group_shape) * p2 + p3;
    auto x_grad_data = tmp_1 + tmp_2;
    x_grad_data = reshape<T>(x_grad_data, x.shape());
    if (x.dtype() == phi::DataType::FLOAT16) {
      x_grad_data = cast<T>(x_grad_data, x.dtype());
    }

    set_output<T>(x_grad_data, x_grad);
  }
  if (scale_grad) {
    if (scale_ptr) {
877
      auto third_shape = get_unsqueeze_dims(mean, std::vector<int64_t>({2}));
878 879
      auto tmp1 = (reshape<T>(sum_y_grad_mul_x, shape_group) -
                   reshape<T>(sum_y_grad, shape_group) *
880 881
                       reshape<T>(mean, third_shape)) *
                  reshape<T>(inv_std, third_shape);
882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901
      auto scale_grad_tmp =
          reshape<T>(tmp1.sum(std::vector<int64_t>({0}), dtype, false),
                     IntArray(std::vector<int64_t>({C})));
      set_output<T>(scale_grad_tmp, scale_grad);
    } else {
      scale_grad = nullptr;
    }
  }

  if (bias_grad) {
    if (bias_ptr) {
      auto bias_grad_tmp =
          sum_y_grad.sum(std::vector<int64_t>({0}), dtype, false);
      set_output<T>(bias_grad_tmp, bias_grad);
    } else {
      bias_grad = nullptr;
    }
  }
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
template <typename T>
void layer_norm_grad(const Tensor& x,
                     const paddle::optional<Tensor>& scale,
                     const paddle::optional<Tensor>& bias,
                     const Tensor& mean,
                     const Tensor& variance,
                     const Tensor& out_grad,
                     float epsilon,
                     int begin_norm_axis,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  auto x_dims = x.dims();
  auto shape_1 = 1;  // front part
  auto shape_2 = 1;  // back part
  for (int i = 0; i < begin_norm_axis; ++i) {
    shape_1 *= x_dims[i];
  }
  for (int i = begin_norm_axis; i < x.dims().size(); ++i) {
    shape_2 *= x_dims[i];
  }
  auto scale_ptr = scale.get_ptr();
  auto bias_ptr = bias.get_ptr();

926 927 928 929 930 931
  auto x_cast = reshape<T>(x, std::vector<int64_t>({shape_1, shape_2}));
  auto out_grad_cast =
      reshape<T>(out_grad, std::vector<int64_t>({shape_1, shape_2}));
  auto mean_ = reshape<T>(mean, std::vector<int64_t>({shape_1, 1}));
  auto variance_ = reshape<T>(variance, std::vector<int64_t>({shape_1, 1}));

932 933 934 935
  Tensor scale_cast;
  if (scale_ptr) {
    scale_cast = reshape<T>(*scale_ptr, std::vector<int64_t>({1, shape_2}));
  }
936 937

  // cast dtype to float32 if dtype =float16
938
  if (x.dtype() == phi::DataType::FLOAT16) {
939 940
    x_cast = cast<T>(x_cast, phi::DataType::FLOAT32);
    out_grad_cast = cast<T>(out_grad_cast, phi::DataType::FLOAT32);
941 942 943 944 945
    if (scale_ptr) {
      scale_cast = cast<T>(scale_cast, phi::DataType::FLOAT32);
    }
  }

946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
  auto x_sub_mean = x_cast - mean_;          // M,N
  auto tmp = (1.0 / (variance_ + epsilon));  // M,1
  auto sqrt_var_1 = sqrt<T>(tmp);            // M,1
  auto x_sub_mean_mul_sqrt_var_1 = x_sub_mean * sqrt_var_1;

  if (x_grad) {
    auto out_grad_scale = out_grad_cast;  // M,N
    if (scale_ptr) {
      out_grad_scale = out_grad_cast * scale_cast;  // M,N * 1,N = M,N
    }

    auto dx_end = sqrt_var_1 * out_grad_scale;
    auto d_mean =
        dx_end.sum(std::vector<int64_t>({1}), x_cast.dtype(), true);  // M,1

    auto d_std_1 =
        (tmp * x_sub_mean * out_grad_scale)
            .sum(std::vector<int64_t>({1}), x_cast.dtype(), true);  // M,1
    auto d_std = d_std_1 * x_sub_mean_mul_sqrt_var_1;  // M,1 * M,N = M,N

    auto d_mean_d_std = (1.0 / shape_2) * (d_mean + d_std);
    auto x_grad_tmp = dx_end - d_mean_d_std;
    x_grad_tmp = reshape<T>(x_grad_tmp, phi::vectorize(x.dims()));

    if (x.dtype() == phi::DataType::FLOAT16) {
      x_grad_tmp = cast<T>(x_grad_tmp, x.dtype());
972
    }
973
    set_output<T>(x_grad_tmp, x_grad);
974
  }
975

976 977 978
  if (scale_grad) {
    if (scale_ptr) {
      auto scale_grad_tmp =
979
          (x_sub_mean_mul_sqrt_var_1 * out_grad_cast)
980 981 982 983 984 985 986 987
              .sum(std::vector<int64_t>({0}), x_cast.dtype(), true);
      scale_grad_tmp = reshape<T>(scale_grad_tmp, scale_ptr->shape());
      set_output<T>(scale_grad_tmp, scale_grad);
    } else {
      scale_grad = nullptr;
    }
  }

988 989 990 991 992 993 994 995
  if (bias_grad) {
    if (bias_ptr) {
      auto bias_grad_tmp =
          out_grad_cast.sum(std::vector<int64_t>({0}), x_cast.dtype(), true);
      bias_grad_tmp = reshape<T>(bias_grad_tmp, bias_ptr->shape());
      set_output<T>(bias_grad_tmp, bias_grad);
    } else {
      bias_grad = nullptr;
996 997 998 999
    }
  }
}

G
GGBond8488 已提交
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
template <typename T>
void cumsum_grad(const Tensor& x,
                 const Tensor& out_grad,
                 const Scalar& axis,
                 bool flatten,
                 bool exclusive,
                 bool reverse,
                 Tensor* x_grad) {
  if (x_grad) {
    auto grad = cumsum<T>(out_grad, axis, flatten, exclusive, !reverse);
    grad = reshape<T>(grad, x.shape());
    set_output<T>(grad, x_grad);
  }
}

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
template <typename T>
void split_grad(const std::vector<Tensor>& out_grad,
                const Scalar& axis,
                Tensor* x_grad) {
  if (x_grad) {
    auto grad = concat<T>(out_grad, axis);
    set_output<T>(grad, x_grad);
  }
}

Z
zqw_1997 已提交
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
template <typename T>
void topk_grad(const Tensor& x,
               const Tensor& indices,
               const Tensor& out_grad,
               const Scalar& k,
               const int& axis,
               const bool& largest,
               const bool& sorted,
               Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = put_along_axis<T>(zero_tensor, indices, out_grad, axis);
1037 1038 1039
    set_output<T>(x_grad_tmp, x_grad);
  }
}
Z
zqw_1997 已提交
1040

1041 1042 1043 1044 1045 1046 1047 1048
template <typename T>
void gather_nd_grad(const Tensor& x,
                    const Tensor& index,
                    const Tensor& out_grad,
                    Tensor* x_grad) {
  if (x_grad) {
    auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
    auto x_grad_tmp = scatter_nd_add<T>(zero_tensor, index, out_grad);
Z
zqw_1997 已提交
1049 1050 1051 1052
    set_output<T>(x_grad_tmp, x_grad);
  }
}

1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
template <typename T>
void prod_grad(const Tensor& x,
               const Tensor& out,
               const Tensor& out_grad,
               const IntArray& axis,
               bool keep_dim,
               bool reduce_all,
               Tensor* x_grad) {
  if (x_grad) {
    std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
    int64_t axis_size = axis.size();
    int64_t x_dim_size = x_dim.size();
    reduce_all = false;
    if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
      reduce_all = true;
    } else {
      reduce_all = false;
    }
    auto x_grad_tmp = Tensor();
    auto out_tmp = Tensor();
    if (x_dim_size == 1) {
      x_grad_tmp = out_grad.expand(IntArray(x_dim));
      out_tmp = out.expand(IntArray(x_dim));
    } else {
      if (!keep_dim) {
        auto axis_ = std::vector<int64_t>();
        if (reduce_all) {
1080
          for (int64_t i = 0; i < x_dim_size; i++) {
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
            axis_.push_back(i);
          }
        } else {
          axis_ = axis.GetData();
          for (int64_t i = 0; i < axis_size; i++) {
            if (axis[i] < 0) {
              axis_[i] = axis[i] + x_dim_size;
            }
          }
        }
1091 1092
        auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
        auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
1093
        x_grad_tmp = out_grad_.expand(IntArray(x_dim));
1094
        auto out_ = reshape<T>(out, out_grad_shape);
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
        out_tmp = out_.expand(IntArray(x_dim));
      } else {
        x_grad_tmp = out_grad.expand(IntArray(x_dim));
        out_tmp = out.expand(IntArray(x_dim));
      }
    }
    auto x_grad_res = x_grad_tmp * out_tmp * (1 / x);
    set_output<T>(x_grad_res, x_grad);
  }
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
template <typename T>
void max_grad(const Tensor& x,
              const Tensor& out,
              const Tensor& out_grad,
              const IntArray& axis,
              bool keepdim,
              bool reduce_all,
              Tensor* x_grad) {
  if (!x_grad) {
    return;
  }
  auto zero_tensor = full<T>(phi::vectorize(x.dims()), 0.0, x.dtype());
  std::vector<int64_t> x_dim = phi::vectorize<int64_t>(x.dims());
  int64_t axis_size = axis.size();
  int64_t x_dim_size = x_dim.size();
  reduce_all = false;
  if (reduce_all || axis_size == 0 || axis_size == x_dim_size) {
    reduce_all = true;
  } else {
    reduce_all = false;
  }
  auto x_grad_tmp = Tensor();
  if (x_dim_size == 0 || x_dim_size == 1 || keepdim) {
    auto out_grad_tmp = out_grad.expand(IntArray(x_dim));
    auto out_tmp = out.expand(IntArray(x_dim));
    auto mask = equal<T>(x, out_tmp);
    x_grad_tmp = where<T>(mask, out_grad_tmp, zero_tensor);
  } else {
    auto axis_ = std::vector<int64_t>();
    if (reduce_all) {
1136
      for (int64_t i = 0; i < x_dim_size; i++) {
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
        axis_.push_back(i);
      }
    } else {
      axis_ = axis.GetData();
      for (int64_t i = 0; i < axis_size; i++) {
        if (axis[i] < 0) {
          axis_[i] = axis[i] + x_dim_size;
        }
      }
    }
1147 1148 1149
    auto out_grad_shape = get_unsqueeze_dims(out_grad, axis_);
    auto out_grad_ = reshape<T>(out_grad, out_grad_shape);
    auto out_ = reshape<T>(out, out_grad_shape);
1150 1151 1152 1153 1154 1155 1156 1157
    auto out_grad_tmp = out_grad_.expand(IntArray(x_dim));
    auto out_tmp = out_.expand(IntArray(x_dim));
    auto mask = equal<T>(x, out_tmp);
    x_grad_tmp = where<T>(mask, out_grad_tmp, zero_tensor);
  }
  set_output<T>(x_grad_tmp, x_grad);
}

1158 1159 1160 1161 1162 1163 1164
template <typename T>
void assign_grad(const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    by_pass<T>(out_grad, x_grad);
  }
}

G
GGBond8488 已提交
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
template <typename T>
void erf_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  if (x_grad) {
    auto m_2_sqrt_pi = full<T>(phi::vectorize(x.dims()), M_2_SQRTPI, x.dtype());
    auto neg_one = full<T>(phi::vectorize(x.dims()), -1.0, x.dtype());
    auto neg_tmp = neg_one * x * x;
    auto mul_tmp = m_2_sqrt_pi * exp<T>(neg_tmp);
    set_output<T>(out_grad * mul_tmp, x_grad);
  }
}

H
heyanru 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
template <typename T>
void maximum_grad(const Tensor& x,
                  const Tensor& y,
                  const Tensor& out_grad,
                  Tensor* x_grad,
                  Tensor* y_grad) {
  if (x_grad) {
    auto x_tmp = cast<T>(greater_than<T>(x, y), out_grad.dtype());
    auto dx_res = out_grad * x_tmp;
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, x_grad);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
        set_output<T>(dx_tmp, x_grad);
      }
    } else {
      set_output<T>(dx_res, x_grad);
    }
  }

  if (y_grad) {
    auto y_tmp = cast<T>(less_equal<T>(x, y), out_grad.dtype());
    auto dy_res = out_grad * y_tmp;
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, y_grad);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, y_grad);
      }
    } else {
      set_output<T>(dy_res, y_grad);
    }
  }
}

1221
template <typename T>
1222 1223 1224 1225 1226 1227 1228 1229
void dropout_grad(const Tensor& mask,
                  const Tensor& out_grad,
                  const Scalar& p,
                  bool is_test,
                  const std::string& mode,
                  Tensor* x_grad) {
  if (!x_grad) return;
  if (is_test) {
1230
    if (mode == "upscale_in_train") {
1231 1232 1233 1234 1235
      by_pass<T>(out_grad, x_grad);
    } else {
      set_output<T>(out_grad * (1.0 - p.to<float>()), x_grad);
    }
  } else {
1236
    if (mode == "upscale_in_train") {
1237
      if (p.to<float>() == 1.0f) {
C
cxxly 已提交
1238
        set_output<T>(scale<T>(out_grad, 0.0), x_grad);
1239
      } else {
C
cxxly 已提交
1240 1241 1242
        set_output<T>(scale<T>(out_grad * cast<T>(mask, out_grad.dtype()),
                               1.0 / (1.0 - p.to<float>())),
                      x_grad);
1243 1244 1245 1246 1247 1248
      }
    } else {
      set_output<T>(out_grad * cast<T>(mask, out_grad.dtype()), x_grad);
    }
  }
}
1249

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
template <typename T>
void sin_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  auto x_grad_tmp = cos<T>(x) * out_grad;
  set_output<T>(x_grad_tmp, x_grad);
}

template <typename T>
void cos_grad(const Tensor& x, const Tensor& out_grad, Tensor* x_grad) {
  auto x_grad_tmp = -sin<T>(x) * out_grad;
  set_output<T>(x_grad_tmp, x_grad);
}

Z
zxcd 已提交
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
template <typename T>
void scatter_grad(const Tensor& index,
                  const Tensor& updates,
                  const Tensor& out_grad,
                  bool overwrite,
                  Tensor* x_grad,
                  Tensor* updates_grad) {
  if (x_grad) {
    auto zero_tensor =
        full<T>(phi::vectorize(updates.dims()), 0.0, updates.dtype());
    auto tmp_grad = scatter<T>(out_grad, index, zero_tensor, false);
    set_output<T>(tmp_grad, x_grad);
  }

  if (updates_grad) {
    Scalar tmp_zero = 0;
    auto tmp_updates_grad = gather<T>(out_grad, index, tmp_zero);
    set_output<T>(tmp_updates_grad, updates_grad);
  }
}

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
template <typename T>
void batch_norm_grad(const Tensor& x,
                     const Tensor& scale,
                     const Tensor& bias,
                     const paddle::optional<Tensor>& mean_out,
                     const paddle::optional<Tensor>& variance_out,
                     const Tensor& saved_mean,
                     const Tensor& saved_variance,
                     const paddle::optional<Tensor>& reserve_space,
                     const Tensor& out_grad,
                     float momentum,
                     float epsilon,
                     const std::string& data_layout,
                     bool is_test,
                     bool use_global_stats,
                     bool trainable_statistics,
                     Tensor* x_grad,
                     Tensor* scale_grad,
                     Tensor* bias_grad) {
  use_global_stats = is_test || use_global_stats;

  DataLayout data_layout_ = phi::StringToDataLayout(data_layout);

  Tensor x_data = x;
  Tensor out_grad_data = out_grad;
  if (x.dtype() == phi::DataType::FLOAT16) {
    x_data = cast<T>(x, phi::DataType::FLOAT32);
  }
  if (out_grad.dtype() == phi::DataType::FLOAT16) {
    out_grad_data = cast<T>(out_grad, phi::DataType::FLOAT32);
  }
  auto x_dims = x_data.dims();
  const int C = (data_layout_ == DataLayout::kNCHW ? x_dims[1]
                                                   : x_dims[x_dims.size() - 1]);
  int nume = 1;
  for (auto i = 0; i < x_dims.size(); i++) {
    nume = nume * x_dims[i];
  }

  const int nhw = nume / C;

  if (x_dims.size() == 2 && data_layout_ == DataLayout::kNCHW) {
    data_layout_ = DataLayout::kNHWC;
  }

  auto run_var = variance_out.get();
  auto run_mean = mean_out.get();

  Tensor mean_data;
  Tensor rsqrt_var;

  if (use_global_stats) {
    auto eps =
        full<T>(phi::vectorize(run_var.dims()), epsilon, run_var.dtype());
    mean_data = run_mean;
1338
    rsqrt_var = (run_var + eps).pow(-0.5);
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
  } else {
    mean_data = saved_mean;
    rsqrt_var = saved_variance;
  }

  // inv_var = 1 / sqrt(var + eps)
  // reduce_axis = [0, 2, 3] (NCHW) [0, 1, 2] (NHWC)
  //
  // d_bias = np.sum(d_y, reduce_axis)
  // d_scale = np.sum((X - mean) / inv_var * dy, reduce_axis)
  //
  // train mode
  // d_x = (1. / nhw) * scale * inv_var
  // *(nhw * d_y - np.sum(d_y, reduce_axis) - (X - mean) * inv_var * inv_var *
  // np.sum(d_y * (X - mean), reduce_axis))
  //
  // test mode
  // d_x = d_y * scale * inv_var

  std::vector<int> nchw_to_nhwc_dim = {0, 2, 3, 1};
  std::vector<int> nhwc_to_nchw_dim = {0, 3, 1, 2};
R
risemeup1 已提交
1360
  auto reduce_axis = IntArray(std::vector<int64_t>{0, 1, 2});
1361 1362 1363 1364 1365 1366
  auto dtype = x_data.dtype();

  switch (data_layout_) {
    case DataLayout::kNCHW: {
      auto nhwc_x = transpose<T>(x_data, nchw_to_nhwc_dim);
      auto nhwc_out_grad = transpose<T>(out_grad_data, nchw_to_nhwc_dim);
1367
      auto nhwc_out_grad_sum = sum<T>(nhwc_out_grad, reduce_axis, dtype, false);
1368

C
cyber-pioneer 已提交
1369 1370
      auto sum_dout_mul_diff = sum<T>(
          nhwc_out_grad * (nhwc_x - mean_data), reduce_axis, dtype, false);
1371 1372 1373 1374 1375

      if (x_grad) {
        if (use_global_stats) {
          auto nhwc_x_grad = scale * rsqrt_var * nhwc_out_grad;
          auto nchw_x_grad = transpose<T>(nhwc_x_grad, nhwc_to_nchw_dim);
1376 1377 1378
          if (x.dtype() == phi::DataType::FLOAT16) {
            nchw_x_grad = cast<T>(nchw_x_grad, x.dtype());
          }
1379 1380 1381
          set_output<T>(nchw_x_grad, x_grad);
        } else {
          auto part1 = scale * rsqrt_var;
1382 1383
          auto mean_temp1 = nhwc_out_grad_sum / nhw;
          auto mean_temp2 = sum_dout_mul_diff / nhw * rsqrt_var * rsqrt_var;
C
cyber-pioneer 已提交
1384 1385
          auto part2 =
              nhwc_out_grad - mean_temp1 - (nhwc_x - mean_data) * mean_temp2;
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

          auto x_grad_data = part1 * part2;
          auto nchw_x_grad = transpose<T>(x_grad_data, nhwc_to_nchw_dim);
          if (x.dtype() == phi::DataType::FLOAT16) {
            nchw_x_grad = cast<T>(nchw_x_grad, x.dtype());
          }
          set_output<T>(nchw_x_grad, x_grad);
        }
      }
      if (scale_grad) {
1396
        auto scale_grad_data = sum_dout_mul_diff * rsqrt_var;
1397 1398 1399
        set_output<T>(scale_grad_data, scale_grad);
      }
      if (bias_grad) {
1400
        set_output<T>(nhwc_out_grad_sum, bias_grad);
1401 1402 1403 1404 1405
      }
      break;
    }
    case DataLayout::kNHWC: {
      if (x_grad) {
1406 1407
        auto out_grad_data_sum =
            sum<T>(out_grad_data, reduce_axis, dtype, false);
C
cyber-pioneer 已提交
1408 1409
        auto nhwc_sum_dout_mul_diff = sum<T>(
            out_grad_data * (x_data - mean_data), reduce_axis, dtype, false);
1410 1411
        if (use_global_stats) {
          auto x_grad_data = scale * rsqrt_var * out_grad_data;
1412 1413 1414
          if (x.dtype() == phi::DataType::FLOAT16) {
            x_grad_data = cast<T>(x_grad_data, x.dtype());
          }
1415 1416 1417 1418
          set_output<T>(x_grad_data, x_grad);
        } else {
          auto part1 = scale * rsqrt_var;

1419 1420 1421
          auto mean_temp1 = out_grad_data_sum / nhw;
          auto mean_temp2 =
              nhwc_sum_dout_mul_diff / nhw * rsqrt_var * rsqrt_var;
C
cyber-pioneer 已提交
1422 1423
          auto part2 =
              out_grad_data - mean_temp1 - (x_data - mean_data) * mean_temp2;
1424 1425 1426 1427 1428 1429 1430 1431

          auto x_grad_data = part1 * part2;
          if (x.dtype() == phi::DataType::FLOAT16) {
            x_grad_data = cast<T>(x_grad_data, x.dtype());
          }
          set_output<T>(x_grad_data, x_grad);
        }
        if (scale_grad) {
1432
          auto scale_grad_data = nhwc_sum_dout_mul_diff * rsqrt_var;
1433 1434 1435
          set_output<T>(scale_grad_data, scale_grad);
        }
        if (bias_grad) {
1436
          set_output<T>(out_grad_data_sum, bias_grad);
1437 1438
        }
      }
1439
      break;
1440
    }
1441

1442 1443 1444 1445 1446 1447
    default:
      PADDLE_THROW(phi::errors::InvalidArgument("Unknown storage order: %s",
                                                data_layout));
  }
}

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
template <typename T>
void instance_norm_grad(const Tensor& x,
                        const paddle::optional<Tensor>& scale,
                        const Tensor& saved_mean,
                        const Tensor& saved_variance,
                        const Tensor& y_grad,
                        float epsilon,
                        Tensor* x_grad,
                        Tensor* scale_grad,
                        Tensor* bias_grad) {
  const int n = x.dims()[0];
  const int c = x.dims()[1];
  const int h = x.dims()[2];
  const int w = x.dims()[3];

  Tensor x_hat;
  Tensor std_inv;
  if (scale_grad || x_grad) {
    auto mean = reshape<T>(saved_mean, IntArray({n, c, 1, 1}))
                    .tile(IntArray({1, 1, h, w}));
    std_inv = reshape<T>(saved_variance, IntArray({n, c, 1, 1}))
                  .tile(IntArray({1, 1, h, w}));
    x_hat = (x - mean) * std_inv;
  }

  // x_grad = scale * inv_var * (y_grad - y_grad.mean(2,3) - x_hat * (y_grad *
  // x_hat).mean((h,w)))
  if (x_grad) {
    auto scale_t =
        reshape<T>(scale.get_ptr() ? scale.get()
                                   : full<T>(IntArray({c}), 1., x.dtype()),
                   IntArray({1, c, 1, 1}))
            .tile(IntArray({n, 1, h, w}));
    set_output<T>(
        (scale_t * std_inv) *
            (y_grad -
             y_grad.sum(IntArray({2, 3}), y_grad.dtype(), true) / (h * w) -
             (x_hat *
              ((y_grad * x_hat).sum(IntArray({2, 3}), y_grad.dtype(), true) /
               (h * w)))),
        x_grad);
  }
  // scale_grad = x_hat * y_grad.sum(n, h, w)
  if (scale_grad) {
    set_output<T>((y_grad * x_hat).sum(IntArray({0, 2, 3})), scale_grad);
  }
  // d_bias = y_grad.sum(n, h, w)
  if (bias_grad) {
    set_output<T>(y_grad.sum(IntArray({0, 2, 3})), bias_grad);
  }
}

C
cxxly 已提交
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
template <typename T>
void gelu_grad(const Tensor& x,
               const Tensor& out_grad,
               bool approximate,
               Tensor* x_grad) {
  if (!x_grad) return;
  // Promote to fp32 when the input type is fp16 for keeping consistent with
  // phi kernel

  if (x.dtype() == phi::DataType::FLOAT16 ||
      x.dtype() == phi::DataType::BFLOAT16) {
    auto promoted_x = cast<T>(x, phi::DataType::FLOAT32);
    auto promoted_out_grad = cast<T>(out_grad, phi::DataType::FLOAT32);
    if (approximate) {
      float kbeta = M_SQRT2 * M_2_SQRTPI * 0.5;
      float kkappa = 0.044715;
      auto x_sq = promoted_x * promoted_x;
      auto x_cube = x_sq * promoted_x;
      auto inner = kbeta * (promoted_x + kkappa * x_cube);
      auto tanh_inner = tanh<T>(inner);

      auto left = scale<T>(promoted_x, 0.5);
      auto right = scale<T>(tanh_inner, 1., 1.);

      auto left_derivative = scale<T>(right, 0.5);

      auto tanh_derivative = scale<T>(tanh_inner * tanh_inner, -1., 1.);
      auto inner_derivative = kbeta * (scale<T>(3 * kkappa * x_sq, 1., 1.));
      auto right_derivative = left * tanh_derivative * inner_derivative;

      set_output<T>(
          cast<T>(promoted_out_grad * (left_derivative + right_derivative),
                  x.type()),
          x_grad);
    } else {
      float kalpha = M_SQRT1_2;
      float kbeta = M_2_SQRTPI * M_SQRT1_2 * 0.5;
      auto cdf = scale<T>(scale<T>(erf<T>(kalpha * promoted_x), 1., 1.), 0.5);
      auto pdf = kbeta * exp<T>(scale<T>(promoted_x * promoted_x, -0.5));
      set_output<T>(
          cast<T>(promoted_out_grad * (cdf + promoted_x * pdf), x.type()),
          x_grad);
    }
  } else {
    // Scale only support fp32 attr in static graph mode, use elementwise_xx
    // when precision is over fp32.
    if (approximate) {
      auto kBeta = M_SQRT2 * M_2_SQRTPI * 0.5;
      auto kKappa = 0.044715;
      auto x_sq = x * x;
      auto x_cube = x_sq * x;
      auto inner = kBeta * (x + kKappa * x_cube);
      auto tanh_inner = tanh<T>(inner);

      auto left = scale<T>(x, 0.5);
      auto right = scale<T>(tanh_inner, 1., 1.);

      auto left_derivative = scale<T>(right, 0.5);

      auto tanh_derivative = scale<T>(tanh_inner * tanh_inner, -1., 1.);
      auto inner_derivative = kBeta * (scale<T>(3 * kKappa * x_sq, 1., 1.));
      auto right_derivative = left * tanh_derivative * inner_derivative;

      set_output<T>(out_grad * (left_derivative + right_derivative), x_grad);
    } else {
      auto kAlpha = M_SQRT1_2;
      auto kBeta = M_2_SQRTPI * M_SQRT1_2 * 0.5;
      auto cdf = scale<T>(scale<T>(erf<T>(kAlpha * x), 1., 1.), 0.5);
      auto pdf = kBeta * exp<T>(scale<T>(x * x, -0.5));
      set_output<T>(out_grad * (cdf + x * pdf), x_grad);
    }
  }
}
1573

1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
template <typename T>
void minimum_grad(const Tensor& x,
                  const Tensor& y,
                  const Tensor& out_grad,
                  Tensor* x_grad,
                  Tensor* y_grad) {
  if (x_grad) {
    auto x_tmp = cast<T>(less_than<T>(x, y), out_grad.dtype());
    auto dx_res = out_grad * x_tmp;
    if (y.dims() != x.dims()) {
      // Maybe need reduce here
      auto reduce_dim = get_reduce_dims(x.dims(), y.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dx_res, x_grad);
      } else {
        auto dx_reduce_res =
            dx_res.sum(phi::vectorize(reduce_dim), x.dtype(), false);
        auto dx_tmp = reshape<T>(dx_reduce_res, phi::vectorize(x.dims()));
        set_output<T>(dx_tmp, x_grad);
      }
    } else {
      set_output<T>(dx_res, x_grad);
    }
  }

  if (y_grad) {
    auto y_tmp = cast<T>(greater_equal<T>(x, y), out_grad.dtype());
    auto dy_res = out_grad * y_tmp;
    if (x.dims() != y.dims()) {
      // Maybe need reduce here
      phi::DDim reduce_dim = get_reduce_dims(y.dims(), x.dims());
      if (!reduce_dim.size()) {
        set_output<T>(dy_res, y_grad);
      } else {
        auto dy_reduce_res =
            dy_res.sum(phi::vectorize(reduce_dim), y.dtype(), false);
        auto dy_tmp = reshape<T>(dy_reduce_res, phi::vectorize(y.dims()));
        set_output<T>(dy_tmp, y_grad);
      }
    } else {
      set_output<T>(dy_res, y_grad);
    }
  }
}

C
ccrrong 已提交
1619 1620 1621 1622 1623 1624 1625 1626
template <typename T>
void tile_grad(const Tensor& x,
               const Tensor& out_grad,
               const IntArray& repeat_times,
               Tensor* x_grad) {
  if (x_grad) {
    auto repeat_times_data = repeat_times.GetData();
    auto out_grad_shape = phi::vectorize<int>(out_grad.dims());
1627
    auto result = out_grad;
C
ccrrong 已提交
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
    for (int i = 0; i < static_cast<int>(repeat_times_data.size()); i++) {
      int size = out_grad_shape[i] / repeat_times_data[i];
      std::vector<int> sections(repeat_times_data[i], size);
      auto split_arr = split<T>(result, IntArray(sections), i);
      result = full<T>(phi::vectorize(split_arr[0].dims()), 0.0, x.dtype());
      for (int j = 0; j < static_cast<int>(split_arr.size()); j++) {
        result = split_arr[j] + result;
      }
    }
    result = reshape<T>(result, x.shape());
    set_output<T>(result, x_grad);
  }
}

1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
template <typename T>
void roll_grad(const Tensor& x,
               const Tensor& out_grad,
               const IntArray& shifts,
               const std::vector<int64_t>& axis,
               Tensor* x_grad) {
  if (x_grad) {
    auto shifts_ = shifts.GetData();
    int64_t nums = shifts_.size();
    for (int64_t i = 0; i < nums; i++) {
      shifts_[i] = 0 - shifts_[i];
    }
    auto x_grad_output = roll<T>(out_grad, shifts_, axis);
    set_output<T>(x_grad_output, x_grad);
  }
}
M
mhy-666 已提交
1658

M
mengziheng 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
template <typename T>
void pad_grad(const Tensor& input,
              const Tensor& out_grad,
              const std::vector<int>& paddings,
              const Scalar& pad_value,
              Tensor* input_grad) {
  if (input_grad) {
    size_t rank = input.dims().size();
    auto out_dims = out_grad.dims();

1669
    std::vector<int64_t> starts(rank, 0);
M
mengziheng 已提交
1670 1671 1672 1673 1674
    std::vector<int64_t> ends(rank, 0);
    std::vector<int64_t> axes(rank, 0);
    std::vector<int64_t> infer_flags(rank, 1);
    std::vector<int64_t> decrease_axis({});
    for (size_t i = 0; i < rank; ++i) {
1675 1676 1677
      starts[i] = static_cast<int64_t>(paddings[2 * i]);
      ends[i] = static_cast<int64_t>(out_dims[i] - paddings[2 * i + 1]);
      axes[i] = i;
M
mengziheng 已提交
1678 1679 1680 1681 1682 1683 1684
    }
    auto out_tmp =
        slice<T>(out_grad, axes, starts, ends, infer_flags, decrease_axis);
    set_output<T>(out_tmp, input_grad);
  }
}

M
mhy-666 已提交
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
template <typename T>
void scatter_nd_add_grad(const Tensor& index,
                         const Tensor& updates,
                         const Tensor& out_grad,
                         Tensor* x_grad,
                         Tensor* updates_grad) {
  if (x_grad) {
    by_pass<T>(out_grad, x_grad);
  }
  if (updates_grad) {
    // Gradient by Gather: dUpdates = dO[Ids]
    auto tmp_updates_grad = gather_nd<T>(out_grad, index);
    set_output<T>(tmp_updates_grad, updates_grad);
  }
}
M
mengziheng 已提交
1700

J
Jiabin Yang 已提交
1701 1702
}  // namespace prim
}  // namespace paddle