test_slice_op.py 31.9 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16 17

import gradient_checker
W
whs 已提交
18
import numpy as np
19
from decorator_helper import prog_scope
W
wanghuancoder 已提交
20
from eager_op_test import OpTest, convert_float_to_uint16, paddle_static_guard
21

22
import paddle
23 24
from paddle import fluid
from paddle.fluid import core
25
from paddle.tensor.manipulation import tensor_array_to_tensor
W
whs 已提交
26

27 28
paddle.enable_static()

W
whs 已提交
29

W
wanghuancoder 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42
def slice_wrapper(
    Input,
    axes=[],
    StartsTensor=None,
    EndsTensor=None,
    infer_flags=[],
    decrease_axis=[],
):
    return paddle._C_ops.slice(
        Input, axes, StartsTensor, EndsTensor, infer_flags, decrease_axis
    )


43 44
# Situation 1: starts(list, no tensor), ends(list, no tensor)
# 1.1 without attr(decrease)
W
whs 已提交
45 46 47
class TestSliceOp(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
48 49
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
50
        self.public_python_api = paddle.slice
W
whs 已提交
51 52 53 54 55 56
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
57
            'ends': self.ends,
58
            'infer_flags': self.infer_flags,
W
whs 已提交
59 60 61
        }

    def config(self):
62
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
W
whs 已提交
63 64 65
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
66
        self.infer_flags = [1, 1, 1]
W
whs 已提交
67 68 69
        self.out = self.input[1:3, 0:3, 2:4, :]

    def test_check_output(self):
70
        self.check_output()
W
whs 已提交
71

72
    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
73 74 75
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
76

W
whs 已提交
77

78 79
class TestCase1(TestSliceOp):
    def config(self):
80
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
81 82 83 84 85 86 87 88 89
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 2]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, 2:-1, :]


class TestCase2(TestSliceOp):
    def config(self):
90
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
91 92 93 94 95 96 97
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.infer_flags = [1, 1, 1]
        self.out = self.input[-3:3, 0:100, :, 2:-1]


98 99 100
class TestSliceZerosShapeTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
101 102
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
103
        self.public_python_api = paddle.slice
104 105 106 107 108 109 110 111
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
            'infer_flags': self.infer_flags,
112
            'use_mkldnn': True,
113 114 115 116 117 118 119 120 121 122 123 124 125 126
        }

    def config(self):
        self.input = np.random.random([0, 0, 0]).astype("float32")
        self.starts = [1]
        self.ends = [2]
        self.axes = [0]
        self.infer_flags = []
        self.out = self.input[1:2]

    def test_check_output(self):
        self.check_output_with_place(paddle.CPUPlace())


127
# 1.2 with attr(decrease)
H
Hongyu Liu 已提交
128 129
class TestSliceOp_decs_dim(OpTest):
    def setUp(self):
130
        self.enable_cinn = True
H
Hongyu Liu 已提交
131
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
132 133
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
134
        self.public_python_api = paddle.slice
H
Hongyu Liu 已提交
135 136 137 138 139 140 141
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
142
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
143 144 145 146
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
147
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
148 149 150
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
151
        self.decrease_axis = []
152
        self.infer_flags = [1, 1, 1]
153
        self.out = self.input[1:2, 0:3, 2:4, :]
H
Hongyu Liu 已提交
154 155

    def test_check_output(self):
156
        self.check_output()
H
Hongyu Liu 已提交
157 158

    def test_check_grad_normal(self):
X
xiaoguoguo626807 已提交
159 160 161
        self.check_grad(
            ['Input'], 'Out', max_relative_error=0.006, check_prim=True
        )
H
Hongyu Liu 已提交
162 163


164 165 166
# Situation 2: starts(list, have tensor), ends(list, no tensor)
# without attr(decrease)
class TestSliceOp_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
167 168
    def setUp(self):
        self.op_type = "slice"
W
wanghuancoder 已提交
169
        self.python_api = slice_wrapper
H
Hongyu Liu 已提交
170
        self.config()
171 172 173

        starts_tensor = []
        for index, ele in enumerate(self.starts):
174
            starts_tensor.append(
175
                ("x" + str(index), np.ones(1).astype('int64') * ele)
176
            )
177 178

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
H
Hongyu Liu 已提交
179 180 181
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
182
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
183
            'ends': self.ends,
184
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
185 186 187
        }

    def config(self):
188
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
H
Hongyu Liu 已提交
189
        self.starts = [1, 0, 2]
190
        self.ends = [3, 3, 4]
H
Hongyu Liu 已提交
191
        self.axes = [0, 1, 2]
192 193 194 195
        self.infer_flags = [-1, 1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.starts_infer = [-1, 0, -1]
H
Hongyu Liu 已提交
196 197

    def test_check_output(self):
198
        self.check_output()
H
Hongyu Liu 已提交
199 200

    def test_check_grad_normal(self):
201
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
H
Hongyu Liu 已提交
202 203


204 205 206
# Situation 2: starts(list, have tensor), ends(list, no tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
H
Hongyu Liu 已提交
207 208
    def setUp(self):
        self.op_type = "slice"
W
wanghuancoder 已提交
209
        self.python_api = slice_wrapper
H
Hongyu Liu 已提交
210
        self.config()
211 212 213

        starts_tensor = []
        for index, ele in enumerate(self.starts):
214
            starts_tensor.append(
215
                ("x" + str(index), np.ones(1).astype('int32') * ele)
216
            )
217 218 219

        self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}

H
Hongyu Liu 已提交
220 221 222
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
223
            'starts': self.starts_infer,
H
Hongyu Liu 已提交
224
            'ends': self.ends,
225
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
226 227 228 229
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
230
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
231 232
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
H
Hongyu Liu 已提交
233
        self.axes = [0, 1, 2]
234 235 236 237 238
        self.decrease_axis = [0]
        self.infer_flags = [1, -1, 1]
        self.out = self.input[1, 0:3, 2:4, :]

        self.starts_infer = [1, -1, 2]
H
Hongyu Liu 已提交
239 240

    def test_check_output(self):
241
        self.check_output()
H
Hongyu Liu 已提交
242 243

    def test_check_grad_normal(self):
244
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
H
Hongyu Liu 已提交
245 246


247
class TestSliceOp_decs_dim_5_starts_ListTensor(
248 249
    TestSliceOp_decs_dim_starts_ListTensor
):
250
    def config(self):
251
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
252 253 254 255 256 257 258 259 260 261 262 263 264
        self.starts = [-1]
        self.ends = [1000000]
        self.axes = [3]
        self.decrease_axis = [3]
        self.infer_flags = [-1]
        self.out = self.input[:, :, :, -1]

        self.starts_infer = [-1]


# Situation 3: starts(tensor), ends(list, no tensor)
# with attr(decrease)
class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
H
Hongyu Liu 已提交
265 266
    def setUp(self):
        self.op_type = "slice"
W
wanghuancoder 已提交
267
        self.python_api = slice_wrapper
H
Hongyu Liu 已提交
268
        self.config()
269 270
        self.inputs = {
            'Input': self.input,
271
            "StartsTensor": np.array(self.starts, dtype="int32"),
272
        }
H
Hongyu Liu 已提交
273 274 275
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
276
            # 'starts': self.starts,
H
Hongyu Liu 已提交
277
            'ends': self.ends,
278
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
279 280 281 282
            'decrease_axis': self.decrease_axis,
        }

    def config(self):
283
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
284 285 286 287 288 289
        self.starts = [1, 0, 2]
        self.ends = [2, 3, 4]
        self.axes = [0, 1, 2]
        self.decrease_axis = [0]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0:3, 2:4, :]
H
Hongyu Liu 已提交
290 291

    def test_check_output(self):
292
        self.check_output()
H
Hongyu Liu 已提交
293 294

    def test_check_grad_normal(self):
295
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
H
Hongyu Liu 已提交
296 297


298 299 300
# Situation 4: starts(tensor), ends(tensor)
#  without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
H
Hongyu Liu 已提交
301 302
    def setUp(self):
        self.op_type = "slice"
W
wanghuancoder 已提交
303
        self.python_api = slice_wrapper
H
Hongyu Liu 已提交
304
        self.config()
305 306 307

        self.inputs = {
            'Input': self.input,
308
            "StartsTensor": np.array(self.starts, dtype="int64"),
309
            "EndsTensor": np.array(self.ends, dtype="int32"),
310
        }
H
Hongyu Liu 已提交
311 312 313
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
314 315
            # 'starts': self.starts,
            # 'ends': self.ends_infer,
316
            'infer_flags': self.infer_flags,
H
Hongyu Liu 已提交
317 318 319
        }

    def config(self):
320
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
321 322 323 324 325
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]
H
Hongyu Liu 已提交
326 327

    def test_check_output(self):
328
        self.check_output()
H
Hongyu Liu 已提交
329 330

    def test_check_grad_normal(self):
331
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
H
Hongyu Liu 已提交
332 333


334 335 336 337 338
# Situation 5: starts(tensor), ends(tensor)
#  with attr(decrease)
class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
W
wanghuancoder 已提交
339
        self.python_api = slice_wrapper
340 341 342
        self.config()
        self.inputs = {
            'Input': self.input,
343
            "StartsTensor": np.array(self.starts, dtype="int32"),
344
            "EndsTensor": np.array(self.ends, dtype="int32"),
345 346 347 348
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
349 350
            # 'starts': self.starts,
            # 'ends': self.ends,
351 352 353 354
            'infer_flags': self.infer_flags,
            'decrease_axis': self.decrease_axis,
        }

W
whs 已提交
355
    def config(self):
356
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
357 358
        self.starts = [1, 0, 2]
        self.ends = [2, 1, 4]
W
whs 已提交
359
        self.axes = [0, 1, 2]
360 361 362 363 364
        self.decrease_axis = [0, 1]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1, 0, 2:4, :]

    def test_check_output(self):
365
        self.check_output()
366 367

    def test_check_grad_normal(self):
368
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
369 370


371 372 373 374 375
# Situation 6: starts(tensor), ends(list, have tensor)
# without attr(decrease)
class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
    def setUp(self):
        self.op_type = "slice"
W
wanghuancoder 已提交
376
        self.python_api = slice_wrapper
377 378 379 380
        self.config()

        ends_tensor = []
        for index, ele in enumerate(self.ends):
381
            ends_tensor.append(
382
                ("y" + str(index), np.ones(1).astype('int32') * ele)
383
            )
384 385 386

        self.inputs = {
            'Input': self.input,
387
            "StartsTensor": np.array(self.starts, dtype="int32"),
388
            'EndsTensorList': ends_tensor,
389 390 391 392
        }
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
393
            # 'starts': self.starts,
394
            'ends': self.ends_infer,
395
            'infer_flags': self.infer_flags,
396 397
        }

W
whs 已提交
398
    def config(self):
399
        self.input = np.random.random([3, 4, 5, 6]).astype("float64")
400 401 402 403 404 405 406 407 408
        self.starts = [1, 0, 2]
        self.ends = [3, 3, 4]
        self.axes = [0, 1, 2]
        self.infer_flags = [-1, -1, -1]
        self.out = self.input[1:3, 0:3, 2:4, :]

        self.ends_infer = [-1, 3, 4]

    def test_check_output(self):
409
        self.check_output()
410 411

    def test_check_grad_normal(self):
412
        self.check_grad(['Input'], 'Out', max_relative_error=0.006)
W
whs 已提交
413 414


415
# Test CUDA float16
416 417 418
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
419 420 421
class TestFP16(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
422 423
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
424
        self.public_python_api = paddle.slice
425 426 427 428 429 430 431
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
432
            'infer_flags': self.infer_flags,
433 434
        }

435 436 437 438 439 440 441
    def config(self):
        self.dtype = "float16"
        self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
442
        self.infer_flags = [1, 1, 1]
443 444 445 446

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
447
            self.check_output_with_place(place, check_prim=True)
448 449 450

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
X
xiaoguoguo626807 已提交
451
        print("core:", core.is_float16_supported(place))
452
        if core.is_float16_supported(place):
453
            self.check_grad_with_place(
X
xiaoguoguo626807 已提交
454 455 456 457
                place,
                ['Input'],
                'Out',
                check_prim=True,
458
            )
459 460


461 462 463
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
464 465 466
class TestFP16_2(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
467 468
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
469
        self.public_python_api = paddle.slice
470 471 472 473 474 475 476
        self.config()
        self.inputs = {'Input': self.input}
        self.outputs = {'Out': self.out}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
477
            'infer_flags': self.infer_flags,
478 479
        }

480 481
    def config(self):
        self.dtype = "float16"
Z
zhupengyang 已提交
482
        self.input = np.random.random([3, 4, 10]).astype(self.dtype)
483 484 485 486
        self.starts = [0]
        self.ends = [1]
        self.axes = [1]
        self.out = self.input[:, 0:1, :]
487
        self.infer_flags = [1]
488 489 490 491

    def test_check_output(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
492
            self.check_output_with_place(place, check_prim=True)
493 494 495 496

    def test_check_grad_normal(self):
        place = core.CUDAPlace(0)
        if core.is_float16_supported(place):
497 498 499 500 501
            self.check_grad_with_place(
                place,
                ['Input'],
                'Out',
                numeric_grad_delta=0.5,
X
xiaoguoguo626807 已提交
502
                check_prim=True,
503
            )
504 505


506 507 508
class TestBF16(OpTest):
    def setUp(self):
        self.op_type = "slice"
X
xiaoguoguo626807 已提交
509 510
        self.prim_op_type = "prim"
        self.python_api = paddle.slice
511
        self.public_python_api = paddle.slice
512 513 514 515 516 517 518
        self.config()
        self.inputs = {'Input': convert_float_to_uint16(self.input)}
        self.outputs = {'Out': convert_float_to_uint16(self.out)}
        self.attrs = {
            'axes': self.axes,
            'starts': self.starts,
            'ends': self.ends,
519
            'infer_flags': self.infer_flags,
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        }

    def config(self):
        self.dtype = np.uint16
        self.input = np.random.random([3, 4, 5, 6]).astype(np.float32)
        self.starts = [-3, 0, 2]
        self.ends = [3, 100, -1]
        self.axes = [0, 1, 3]
        self.out = self.input[-3:3, 0:100, :, 2:-1]
        self.infer_flags = [1, 1, 1]

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
535
        self.check_grad(['Input'], 'Out', check_prim=True)
536 537


538
# Test python API
539
class TestSliceAPI(unittest.TestCase):
540
    def test_1(self):
W
wanghuancoder 已提交
541 542
        with paddle_static_guard():
            input = np.random.random([3, 4, 5, 6]).astype("float64")
543 544
            minus_1 = paddle.tensor.fill_constant([], "int32", -1)
            minus_3 = paddle.tensor.fill_constant([], "int64", -3)
W
wanghuancoder 已提交
545 546 547 548 549 550 551 552 553 554 555
            starts = paddle.static.data(
                name='starts', shape=[1, 3], dtype="float32"
            )
            starts.desc.set_need_check_feed(False)
            ends = paddle.static.data(name='ends', shape=[3], dtype="float32")
            ends.desc.set_need_check_feed(False)
            x = paddle.static.data(
                name="x",
                shape=[3, 4, 5, 6],
                dtype="float64",
            )
556

W
wanghuancoder 已提交
557 558
            # value_int64 is greater than 2147483647 which is the max of int32
            value_int64 = paddle.tensor.fill_constant([1], "int64", 2147483648)
559

W
wanghuancoder 已提交
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
            out_1 = paddle.slice(
                x,
                axes=[0, 1, 2],
                starts=[-3, 0, 2],
                ends=[value_int64, 100, -1],
            )
            out_2 = paddle.slice(
                x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1]
            )
            out_3 = paddle.slice(
                x,
                axes=[0, 1, 3],
                starts=[minus_3, 0, 2],
                ends=[3, 100, minus_1],
            )
            out_4 = paddle.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)

            out_5 = x[-3:3, 0:100, 2:-1]
            out_6 = x[minus_3:3, 0:100, :, 2:-1]
            out_7 = x[minus_1, 0:100, :, 2:minus_1]

            exe = fluid.Executor(place=fluid.CPUPlace())
            res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
                fluid.default_main_program(),
                feed={
                    "x": input,
                    'starts': np.array([-3, 0, 2]).astype("int32"),
                    'ends': np.array([3, 100, -1]).astype("int32"),
                },
                fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7],
            )
591

W
wanghuancoder 已提交
592 593 594 595 596 597 598
            assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
            assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
            assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
            assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
            assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
            assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
            assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])
599 600


601 602 603 604 605 606 607
class TestSliceApiWithTensor(unittest.TestCase):
    def test_starts_ends_is_tensor(self):
        with paddle.fluid.dygraph.guard():
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
608 609 610 611 612 613
            a_1 = paddle.slice(
                a,
                axes=axes,
                starts=paddle.to_tensor(starts, dtype='int32'),
                ends=paddle.to_tensor(ends, dtype='int32'),
            )
614 615
            a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

616
            np.testing.assert_array_equal(a_1.numpy(), a_2.numpy())
617

W
WeiXin 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631
    def test_bool_tensor(self):
        with paddle.fluid.dygraph.guard():
            array = (np.arange(60).reshape([3, 4, 5]) % 3).astype('bool')
            tt = paddle.to_tensor(array)
            tt.stop_gradient = False

            starts = [0, 1, 2]
            ends = [3, 5, 4]
            axes = [0, 1, 2]

            y_paddle = paddle.slice(tt, axes, starts, ends)
            y_np = tt[0:3, 1:5, 2:4]

            self.assertTrue(paddle.bool == y_paddle.dtype)
632
            np.testing.assert_array_equal(y_paddle.numpy(), y_np)
W
WeiXin 已提交
633

634

H
hong 已提交
635 636 637
class TestSliceApiEager(unittest.TestCase):
    def test_slice_api(self):
        with paddle.fluid.dygraph.guard():
W
Weilong Wu 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
            a = paddle.rand(shape=[4, 5, 6], dtype='float32')
            a.stop_gradient = False
            axes = [0, 1, 2]
            starts = [-3, 0, 2]
            ends = [3, 2, 4]
            a_1 = paddle.slice(a, axes=axes, starts=starts, ends=ends)

            a_2 = paddle.slice(
                a,
                axes=axes,
                starts=paddle.to_tensor(starts),
                ends=paddle.to_tensor(ends),
            )
            np.testing.assert_array_equal(a_1.numpy(), a_2.numpy())
            a_1.backward()
            grad_truth = paddle.zeros_like(a)
            grad_truth[-3:3, 0:2, 2:4] = 1
            np.testing.assert_array_equal(grad_truth, a.gradient())

            np.testing.assert_allclose(
                a_1.numpy(), a[-3:3, 0:2, 2:4], rtol=1e-05
            )
H
hong 已提交
660 661


662 663 664 665 666 667 668 669 670
class TestSliceApiWithLoDTensorArray(unittest.TestCase):
    def setUp(self):
        self.shape = (3, 4)
        self.data = np.random.random(size=self.shape).astype('float32')
        self.idx = 0
        self.start = 0
        self.end = 2
        self.axis = 1

671 672 673 674 675
        self.place = (
            fluid.CUDAPlace(0)
            if fluid.is_compiled_with_cuda()
            else fluid.CPUPlace()
        )
676 677 678
        self.exe = fluid.Executor(self.place)

    def set_program_and_run(self, main_program, case_num):
W
wanghuancoder 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
        with paddle_static_guard():
            with fluid.program_guard(main_program):
                x = [
                    paddle.static.data(
                        name='x0', shape=self.shape, dtype="float32"
                    ),
                    paddle.static.data(
                        name='x1', shape=self.shape, dtype="float32"
                    ),
                    paddle.static.data(
                        name='x2', shape=self.shape, dtype="float32"
                    ),
                ]

                for each_x in x:
                    each_x.stop_gradient = False

                arr = paddle.tensor.create_array(dtype="float32")
                for i in range(3):
                    idx = paddle.tensor.array_length(arr)
                    arr = paddle.tensor.array_write(x=x[i], i=idx, array=arr)

                if case_num == 1:
                    self.sliced_arr = output = arr[0]

                elif case_num == 2:
                    end = (
                        paddle.tensor.array_length(arr) - 1
                    )  # dtype of end is int64
                    self.sliced_arr = slice_arr = arr[self.start : end]
                    output, _ = tensor_array_to_tensor(
                        slice_arr, axis=self.axis, use_stack=True
                    )
                elif case_num == 3:
                    value_int64 = paddle.tensor.fill_constant(
                        [1], "int64", 2147483648
                    )
                    self.sliced_arr = slice_arr = arr[self.start : value_int64]
                    output, _ = tensor_array_to_tensor(
                        slice_arr, axis=self.axis, use_stack=True
                    )

                loss = paddle.sum(output)
                fluid.backward.append_backward(loss)
                g_vars = list(
                    map(
                        main_program.global_block().var,
                        [each_x.name + "@GRAD" for each_x in x],
                    )
728
                )
W
wanghuancoder 已提交
729 730 731 732
                self.out, self.g_x0, self.g_x1, self.g_x2 = self.exe.run(
                    main_program,
                    feed={'x0': self.data, 'x1': self.data, 'x2': self.data},
                    fetch_list=[output] + g_vars,
733
                )
734 735 736 737 738 739 740

    def test_case_1(self):
        main_program = fluid.Program()
        self.set_program_and_run(main_program, 1)

        self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
        self.assertEqual(self.sliced_arr.shape, self.shape)
741 742 743 744
        np.testing.assert_array_equal(self.out, self.data)
        np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
        np.testing.assert_array_equal(self.g_x1, np.zeros_like(self.data))
        np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data))
745 746

    def test_case_2(self):
W
wanghuancoder 已提交
747 748 749
        with paddle_static_guard():
            main_program = fluid.Program()
            self.set_program_and_run(main_program, 2)
750

W
wanghuancoder 已提交
751 752 753 754 755 756 757 758 759 760
            self.assertTrue(
                self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            )
            self.assertEqual(self.sliced_arr.shape, self.shape)
            np.testing.assert_array_equal(
                self.out, np.stack([self.data, self.data], axis=self.axis)
            )
            np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
            np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data))
            np.testing.assert_array_equal(self.g_x2, np.zeros_like(self.data))
761

762
    def test_case_3(self):
W
wanghuancoder 已提交
763 764 765
        with paddle_static_guard():
            main_program = fluid.Program()
            self.set_program_and_run(main_program, 3)
766

W
wanghuancoder 已提交
767 768 769 770 771 772 773 774 775 776 777
            self.assertTrue(
                self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
            )
            self.assertEqual(self.sliced_arr.shape, self.shape)
            np.testing.assert_array_equal(
                self.out,
                np.stack([self.data, self.data, self.data], axis=self.axis),
            )
            np.testing.assert_array_equal(self.g_x0, np.ones_like(self.data))
            np.testing.assert_array_equal(self.g_x1, np.ones_like(self.data))
            np.testing.assert_array_equal(self.g_x2, np.ones_like(self.data))
778

779

780 781 782 783 784
class TestImperativeVarBaseGetItem(unittest.TestCase):
    def test_getitem_with_long(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
            var = fluid.dygraph.to_variable(data)
785
            sliced = var[:, 10:, : var.shape[1]]  # var.shape[1] is 80L here
786 787
            self.assertEqual(sliced.shape, [2, 70, 80])

788
            sliced = var[:, var.shape[0] :, var.shape[0] : var.shape[1]]
789 790 791 792 793 794 795
            self.assertEqual(sliced.shape, [2, 78, 78])

    def test_getitem_with_float(self):
        def test_float_in_slice_item():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
796
                sliced = var[:, 1.1:, : var.shape[1]]
797 798 799 800 801 802 803 804 805 806 807 808

        self.assertRaises(Exception, test_float_in_slice_item)

        def test_float_in_index():
            with fluid.dygraph.guard():
                data = np.random.random((2, 80, 16128)).astype('float32')
                var = fluid.dygraph.to_variable(data)
                sliced = var[1.1]

        self.assertRaises(Exception, test_float_in_index)


809 810 811 812 813 814 815
class TestInferShape(unittest.TestCase):
    def test(self):
        x = paddle.ones(shape=[3, 4, 5])
        x.desc.set_shape([3, -1, 5])
        self.assertEqual(x.shape, (3, -1, 5))

        out0 = paddle.slice(x, axes=[1], starts=[0], ends=[3])
816
        self.assertEqual(out0.shape, (3, -1, 5))
817

818 819 820 821 822 823
    def test_axis_less_than_zero(self):
        # Using paddle.disable_static will make other unittests fail.
        with fluid.dygraph.guard():
            x_arr = np.arange(0, 24, dtype=np.float32).reshape([2, 3, 4])
            x = paddle.to_tensor(x_arr)

824 825 826 827 828 829 830 831
            pp_slice = paddle.slice(
                x,
                [
                    100,
                ],
                [0],
                [1],
            )
832
            np_slice = x_arr[:, :, 0:1]
833
            np.testing.assert_array_equal(pp_slice, np_slice)
834

835
            pp_slice = paddle.slice(x, (-100,), [0], [1])
836
            np_slice = x_arr[0:1]
837
            np.testing.assert_array_equal(pp_slice, np_slice)
838 839 840 841 842

            x_arr = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(x_arr, (0, 0, 0)))

            starts = paddle.to_tensor(
843 844
                np.reshape(np.array([], dtype=np.int32), (0,))
            )
845
            ends = paddle.to_tensor(
846 847
                np.reshape(np.array([], dtype=np.int32), (0,))
            )
848 849 850 851 852 853 854 855 856 857 858 859 860

            with self.assertRaises(ValueError):
                paddle.slice(x, [-1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [1000000], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, [], starts, ends)

            with self.assertRaises(ValueError):
                paddle.slice(x, 0, starts, ends)

861

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882
class TestSliceOpError(unittest.TestCase):
    def test_dismatch_shape(self):
        with fluid.dygraph.guard():
            with self.assertRaises(ValueError):
                array = np.array([], dtype=np.float32)
                x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
                paddle.slice(x, axes=[0], starts=[], ends=[])

            with self.assertRaises(ValueError):
                array = np.array([], dtype=np.float32)
                x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
                paddle.slice(x, axes=[0], starts=[0], ends=[])

            # if shape match, pass
            array = np.array([], dtype=np.float32)
            x = paddle.to_tensor(np.reshape(array, [0]), dtype='float32')
            out = paddle.slice(x, axes=[0], starts=[0], ends=[0])
            self.assertEqual(out.numel(), 0)
            # self.assertEqual(out.shape)


883 884 885
@unittest.skipIf(
    not core.is_compiled_with_cuda(), "core is not compiled with CUDA"
)
886 887 888 889
class TestImperativeCUDAPinnedInput(unittest.TestCase):
    def test_input_cuda_pinned_var(self):
        with fluid.dygraph.guard():
            data = np.random.random((2, 80, 16128)).astype('float32')
W
Weilong Wu 已提交
890
            var = core.eager.Tensor(
891 892 893 894 895 896 897
                value=data,
                name='',
                persistable=False,
                place=fluid.CUDAPinnedPlace(),
                zero_copy=False,
            )
            sliced = var[:, 10:, : var.shape[1]]
898 899 900
            self.assertEqual(sliced.shape, [2, 70, 80])


901 902
class TestSliceDoubleGradCheck(unittest.TestCase):
    def slice_wrapper(self, x):
903 904 905
        return paddle.slice(
            x[0], axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
906 907 908 909 910 911 912

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
913
        data = paddle.static.data('data', [4, 5, 6], dtype)
914
        data.persistable = True
915 916 917
        out = paddle.slice(
            data, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
918 919
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

920 921 922 923 924 925
        gradient_checker.double_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.double_grad_check_for_dygraph(
            self.slice_wrapper, [data], out, x_init=[data_arr], place=place
        )
926 927

    def test_grad(self):
W
wanghuancoder 已提交
928 929 930 931 932 933
        with paddle_static_guard():
            places = [fluid.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(fluid.CUDAPlace(0))
            for p in places:
                self.func(p)
934 935 936 937


class TestSliceTripleGradCheck(unittest.TestCase):
    def slice_wrapper(self, x):
938 939 940
        return paddle.slice(
            x[0], axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
941 942 943 944 945 946 947

    @prog_scope()
    def func(self, place):
        # the shape of input variable should be clearly specified, not inlcude -1.
        eps = 0.005
        dtype = np.float32

G
GGBond8488 已提交
948
        data = paddle.static.data('data', [4, 5, 6], dtype)
949
        data.persistable = True
950 951 952
        out = paddle.slice(
            data, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[3, 2, 4]
        )
953 954
        data_arr = np.random.uniform(-1, 1, data.shape).astype(dtype)

955 956 957 958 959 960
        gradient_checker.triple_grad_check(
            [data], out, x_init=[data_arr], place=place, eps=eps
        )
        gradient_checker.triple_grad_check_for_dygraph(
            self.slice_wrapper, [data], out, x_init=[data_arr], place=place
        )
961 962

    def test_grad(self):
W
wanghuancoder 已提交
963 964 965 966 967 968
        with paddle_static_guard():
            places = [fluid.CPUPlace()]
            if core.is_compiled_with_cuda():
                places.append(fluid.CUDAPlace(0))
            for p in places:
                self.func(p)
969 970


W
whs 已提交
971
if __name__ == '__main__':
H
hong 已提交
972
    paddle.enable_static()
W
whs 已提交
973
    unittest.main()