tensor.py 8.2 KB
Newer Older
Y
Yu Yang 已提交
1
from ..layer_helper import LayerHelper
2
from ..param_attr import ParamAttr
Y
Yu Yang 已提交
3 4

__all__ = [
5
    'create_tensor', 'create_parameter', 'cast', 'concat', 'sums', 'assign',
Y
Yu Yang 已提交
6 7 8 9
    'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros'
]


10
def create_tensor(dtype, name=None):
Y
Yu Yang 已提交
11 12 13 14
    helper = LayerHelper("create_tensor", **locals())
    return helper.create_variable(name=helper.name, dtype=dtype)


15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
def create_parameter(shape,
                     dtype,
                     attr=None,
                     is_bias=False,
                     default_initializer=None):
    """
    Create a parameter
    Args:
        shape(list[int]): shape of the parameter
        dtype(string): element type of the parameter
        attr(ParamAttr): attributes of the parameter
        is_bias(bool): This can affect which default initializer is chosen
                       when default_initializer is None. If is_bias,
                       initializer.Constant(0.0) will be used. Otherwise,
                       Xavier() will be used.
        default_initializer(Initializer): initializer for the parameter

    Returns:
        Parameter: the created parameter
    """
    helper = LayerHelper("create_parameter")
    if attr is None:
        attr = ParamAttr()
    return helper.create_parameter(attr, shape, dtype, is_bias,
                                   default_initializer)


42
def cast(x, dtype):
Y
Yu Yang 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
    """
    This function takes in the input with input_dtype
    and casts it to the output_dtype as the output.
    """
    helper = LayerHelper('cast', **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='cast',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'in_dtype': x.dtype,
               'out_dtype': out.dtype})
    return out


58
def concat(input, axis=0):
Y
Yu Yang 已提交
59
    """
60 61 62
    **Concat**

    This function concatenates the input along the axis mentioned
Y
Yu Yang 已提交
63
    and returns that as the output.
64 65 66 67 68 69 70 71 72 73 74

    Args:
        input(list): List of tensors to be concatenated
        axis(int): Integer axis along which the tensors will be concatenated

    Returns:
        Variable: Output variable of the concatenation

    Examples:
        .. code-block:: python
          out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth])
Y
Yu Yang 已提交
75 76 77 78 79 80 81 82 83 84 85
    """
    helper = LayerHelper('concat', **locals())
    out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(
        type='concat',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs={'axis': axis})
    return out


86
def sums(input, out=None):
K
kavyasrinet 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
    """This function performs the sum operation on the input and returns the
    result as the output.

    Args:
        input (Variable|list): The input tensor that has the elements
                               that need to be summed up.

    Returns:
        Variable: The tensor type variable that has the sum of input
                  written to it.

    Examples:
        .. code-block::python

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          a0 = layers.array_read(array=tmp, i=i)
          i = layers.increment(x=i)
          a1 = layers.array_read(array=tmp, i=i)
          mean_a0 = layers.mean(x=a0)
          mean_a1 = layers.mean(x=a1)
          a_sum = layers.sums(input=[mean_a0, mean_a1])
Y
Yu Yang 已提交
109 110 111 112 113 114 115 116
    """
    helper = LayerHelper('sum', **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=helper.input_dtype())
    helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out})
    return out


117
def assign(input, output):
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
    """
    **Assign**

    This function copies the *input* Variable to the *output* Variable.

    Args:
        input(Variable): The source variable
        output(Variable): The destination variable

    Returns:
        Variable: The destination variable that was supplied as the *output*.

    Examples:
        .. code-block:: python
          out = fluid.layers.create_tensor(dtype='float32')
          hidden = fluid.layers.fc(input=data, size=10)
          fluid.layers.assign(hidden, out)
    """
Y
Yu Yang 已提交
136 137 138 139 140 141 142 143 144
    helper = LayerHelper('assign', **locals())
    helper.append_op(
        type='scale',
        inputs={'X': [input]},
        outputs={'Out': [output]},
        attrs={'scale': 1.0})
    return output


145
def fill_constant(shape, dtype, value, out=None):
Y
Yu Yang 已提交
146
    """
147 148
    **fill_constant**

K
kavyasrinet 已提交
149
    This function creates a tensor of specified *shape* and
150
    *dtype*, and initializes this with a constant supplied in *value*.
K
kavyasrinet 已提交
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        out(Variable): Output Variable to initialize

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64')
Y
Yu Yang 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    """
    helper = LayerHelper("fill_constant", **locals())
    if out is None:
        out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant',
        inputs={},
        outputs={'Out': [out]},
        attrs={'shape': shape,
               'dtype': out.dtype,
               'value': float(value)})
    out.stop_gradient = True
    return out


def fill_constant_batch_size_like(input,
                                  shape,
                                  dtype,
                                  value,
                                  input_dim_idx=0,
187
                                  output_dim_idx=0):
188 189 190
    """
    **fill_constant_batch_size_like**

K
kavyasrinet 已提交
191 192 193
    This function creates a tensor of specified *shape*, *dtype* and batch size,
    and initializes this with a constant supplied in *value*. The batch size is
    obtained from the `input` tensor.
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210

    It also sets *stop_gradient* to True.

    Args:
        input(Variable): Tensor whose dimensions will be used to get batch size
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor
        value(float): Constant value to initialize the output tensor
        input_dim_idx(int): Index of input's batch size dimension
        output_dim_idx(int): Index of output's batch size dimension

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

211 212
          data = fluid.layers.fill_constant_batch_size_like(
              input=like, shape=[1], value=0, dtype='int64')
213
    """
Y
Yu Yang 已提交
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
    helper = LayerHelper("fill_constant_batch_size_like", **locals())
    out = helper.create_tmp_variable(dtype=dtype)
    helper.append_op(
        type='fill_constant_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': [out]},
        attrs={
            'shape': shape,
            'dtype': out.dtype,
            'value': float(value),
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx
        })
    out.stop_gradient = True
    return out


231
def ones(shape, dtype):
Y
Yu Yang 已提交
232
    """
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    **ones**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 1.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.ones(shape=[1], dtype='int64')
Y
Yu Yang 已提交
251 252 253 254
    """
    return fill_constant(value=1.0, **locals())


255
def zeros(shape, dtype):
Y
Yu Yang 已提交
256
    """
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    **zeros**

    This function creates a tensor of specified *shape* and
    *dtype*, and initializes this with 0.

    It also sets *stop_gradient* to True.

    Args:
        shape(tuple|list|None): Shape of output tensor
        dtype(np.dtype|core.DataType|str): Data type of output tensor

    Returns:
        Variable: The tensor variable storing the output

    Examples:
        .. code-block:: python

          data = fluid.layers.zeros(shape=[1], dtype='int64')
Y
Yu Yang 已提交
275 276
    """
    return fill_constant(value=0.0, **locals())