benchmark.cc 11.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <iostream>
T
tensor-tang 已提交
16
#include <random>
T
tensor-tang 已提交
17 18 19 20 21
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/kernels.h"
22
#include "paddle/fluid/platform/device_tracer.h"
T
tensor-tang 已提交
23 24 25 26 27 28
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
DEFINE_string(filter, "", "The Benchmark name would be run.");

class BenchJITKernel {
 public:
  BenchJITKernel() = default;
  virtual ~BenchJITKernel() = default;
  virtual void Run() = 0;
  virtual const char* Name() = 0;
  virtual const char* Dtype() = 0;
  virtual const char* Place() = 0;
};

static std::vector<BenchJITKernel*> g_all_benchmarks;

BenchJITKernel* InsertBenchmark(BenchJITKernel* b) {
  g_all_benchmarks.push_back(b);
  return b;
}

#define BENCH_JITKERNEL(name, dtype, place)                                    \
  class BenchJITKernel_##name##_##dtype##_##place##_ : public BenchJITKernel { \
   public:                                                                     \
    const char* Name() override { return #name; }                              \
    const char* Dtype() override { return #dtype; }                            \
    const char* Place() override { return #place; }                            \
    void Run() override;                                                       \
  };                                                                           \
  static auto inserted_##name##_##dtype##_##place##_ =                         \
      InsertBenchmark(new BenchJITKernel_##name##_##dtype##_##place##_());     \
  void BenchJITKernel_##name##_##dtype##_##place##_::Run()

#define BENCH_FP32_CPU(name) BENCH_JITKERNEL(name, FP32, CPU)

void RUN_ALL_BENCHMARK() {
  for (auto p : g_all_benchmarks) {
    if (!FLAGS_filter.empty() && FLAGS_filter != p->Name()) {
      continue;
    }
    LOG(INFO) << "Benchmark " << p->Name() << "." << p->Dtype() << "."
              << p->Place();
    p->Run();
  }
}
T
tensor-tang 已提交
72 73 74

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
75 76
               const T upper = static_cast<T>(20.f), unsigned int seed = 100) {
  std::mt19937 rng(seed);
T
tensor-tang 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

T
tensor-tang 已提交
91 92 93 94 95 96 97
template <typename KernelTuples, typename... Args>
struct BenchFunc {
  // return this function avg time
  double operator()(const typename KernelTuples::func_type tgt, Args... args) {
    for (int i = 0; i < FLAGS_burning; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
98
    auto start = paddle::platform::PosixInNsec() * 1e-3;
T
tensor-tang 已提交
99 100 101
    for (int i = 0; i < FLAGS_repeat; ++i) {
      tgt(args...);
    }
T
tensor-tang 已提交
102
    auto end = paddle::platform::PosixInNsec() * 1e-3;
103
    return static_cast<double>(end - start) / FLAGS_repeat;
T
tensor-tang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
  }
};

namespace jit = paddle::operators::jit;

template <jit::KernelType KT, typename KernelTuples, typename PlaceType,
          typename... Args>
void BenchAllImpls(const typename KernelTuples::attr_type& attr, Args... args) {
  BenchFunc<KernelTuples, Args...> benchmark;
  std::vector<std::pair<std::string, double>> infos;
  // test refer
  auto refer = jit::GetRefer<KT, KernelTuples>();
  if (!refer) {
    LOG(FATAL) << "Refer can not be empty!";
  }
  infos.push_back(std::make_pair("Refer", benchmark(refer, args...)));

  // test jitcode
  auto jitcode = jit::GetJitCode<KT, KernelTuples, PlaceType>(attr);
  if (jitcode) {
    infos.push_back(std::make_pair("JitCode", benchmark(jitcode, args...)));
  }
  // test all impls in more
  jit::KernelKey kkey(KT, PlaceType());
  auto& pool = jit::KernelPool().Instance().AllKernels();
  auto iter = pool.find(kkey);
  if (iter != pool.end()) {
    auto& impls = iter->second;
    for (auto& impl : impls) {
T
tensor-tang 已提交
133
      auto i = dynamic_cast<const jit::KernelMore<KernelTuples>*>(impl.get());
T
tensor-tang 已提交
134 135
      if (i && i->UseMe(attr)) {
        auto more = i->GetFunc();
T
tensor-tang 已提交
136 137
        infos.push_back(
            std::make_pair(i->ImplType(), benchmark(more, args...)));
T
tensor-tang 已提交
138 139
      }
    }
T
tensor-tang 已提交
140
  }
T
tensor-tang 已提交
141 142 143 144
  // Test result from Get function
  auto tgt = jit::Get<KT, KernelTuples, PlaceType>(attr);
  if (!tgt) {
    LOG(FATAL) << "Target can not be empty!";
T
tensor-tang 已提交
145
  }
T
tensor-tang 已提交
146 147 148 149 150 151 152 153 154
  infos.push_back(std::make_pair("Target", benchmark(tgt, args...)));

  // print
  std::ostringstream loginfos;
  loginfos << "Kernel Type " << jit::to_string(KT) << ": " << attr << ": ";
  for (auto pair : infos) {
    loginfos << pair.first << " takes " << pair.second << " us; ";
  }
  LOG(INFO) << loginfos.str();
T
tensor-tang 已提交
155 156
}

157 158
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchXYZNKernel() {
T
tensor-tang 已提交
159 160 161 162
  for (int d : TestSizes()) {
    std::vector<T> x(d), y(d), z(d);
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());
T
tensor-tang 已提交
163 164
    BenchAllImpls<KT, jit::XYZNTuples<T>, PlaceType>(d, x.data(), y.data(),
                                                     z.data(), d);
T
tensor-tang 已提交
165 166
  }
}
167

168 169 170 171 172 173
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchAXYNKernel() {
  for (int d : TestSizes()) {
    const T a = static_cast<T>(3);
    std::vector<T> x(d), y(d);
    RandomVec<T>(d, x.data());
T
tensor-tang 已提交
174 175
    BenchAllImpls<KT, jit::AXYNTuples<T>, PlaceType>(d, &a, x.data(), y.data(),
                                                     d);
176 177 178 179 180 181 182 183
  }
}

template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchXYNKernel() {
  for (int d : TestSizes()) {
    std::vector<T> x(d), y(d);
    RandomVec<T>(d, x.data());
T
tensor-tang 已提交
184
    BenchAllImpls<KT, jit::XYNTuples<T>, PlaceType>(d, x.data(), y.data(), d);
185 186 187
  }
}

T
tensor-tang 已提交
188 189 190 191
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchLSTMKernel() {
  for (bool use_peephole : {true, false}) {
    for (int d : TestSizes()) {
T
tensor-tang 已提交
192
      const jit::lstm_attr_t attr(d, jit::kVSigmoid, jit::kVTanh, jit::kVTanh,
T
tensor-tang 已提交
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
                                  use_peephole);
      std::vector<T> x(4 * d), ct_1(d), ct(d), ht(d), wp(3 * d), checked(2 * d);
      RandomVec<T>(4 * d, x.data(), -2.f, 2.f);
      RandomVec<T>(3 * d, wp.data(), -2.f, 2.f);
      RandomVec<T>(d, ct_1.data(), -2.f, 2.f);
      const T* ct_1_data = ct_1.data();
      const T* wp_data = wp.data();
      T* x_data = x.data();
      T* checked_data = checked.data();
      T* ct_data = ct.data();
      T* ht_data = ht.data();
      jit::lstm_t step;
      step.gates = x_data;
      step.ct_1 = ct_1_data;
      step.ct = ct_data;
      step.ht = ht_data;
      if (use_peephole) {
        step.wp = wp_data;
        step.checked = checked_data;
      }
T
tensor-tang 已提交
213
      BenchAllImpls<KT, jit::LSTMTuples<T>, PlaceType>(attr, &step, &attr);
T
tensor-tang 已提交
214 215 216 217
    }
  }
}

218 219 220
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchGRUKernel() {
  for (int d : TestSizes()) {
T
tensor-tang 已提交
221
    const jit::gru_attr_t attr(d, jit::kVSigmoid, jit::kVTanh);
222 223 224 225 226 227 228 229 230 231
    std::vector<T> x(3 * d), ht_1(d), ht(d);
    RandomVec<T>(3 * d, x.data(), -2.f, 2.f);
    RandomVec<T>(d, ht_1.data(), -2.f, 2.f);
    const T* ht_1_data = ht_1.data();
    T* x_data = x.data();
    T* ht_data = ht.data();
    jit::gru_t step;
    step.gates = x_data;
    step.ht_1 = ht_1_data;
    step.ht = ht_data;
T
tensor-tang 已提交
232
    BenchAllImpls<KT, jit::GRUTuples<T>, PlaceType>(attr, &step, &attr);
233 234 235
  }
}

236 237
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchSeqPoolKernel() {
238 239
  std::vector<jit::SeqPoolType> pool_types = {
      jit::SeqPoolType::kSum, jit::SeqPoolType::kAvg, jit::SeqPoolType::kSqrt};
240
  for (auto type : pool_types) {
T
tensor-tang 已提交
241
    for (int w : TestSizes()) {
T
tensor-tang 已提交
242
      jit::seq_pool_attr_t attr(w, type);
T
tensor-tang 已提交
243
      for (int h : TestSizes()) {
T
tensor-tang 已提交
244
        attr.h = h;
245 246 247 248 249 250 251 252 253 254 255
        std::vector<T> x(h * w), y(w);
        RandomVec<T>(h * w, x.data(), -2.f, 2.f);
        const T* x_data = x.data();
        T* y_data = y.data();
        BenchAllImpls<KT, jit::SeqPoolTuples<T>, PlaceType>(attr, x_data,
                                                            y_data, &attr);
      }
    }
  }
}

T
tensor-tang 已提交
256 257 258
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchMatMulKernel() {
  for (int m : {1, 2, 3, 4}) {
259
    for (int n : TestSizes()) {
T
tensor-tang 已提交
260 261 262 263 264 265 266 267 268 269 270 271 272 273
      for (int k : TestSizes()) {
        std::vector<T> a(m * k), b(k * n), c(m * n);
        RandomVec<T>(m * k, a.data(), -2.f, 2.f);
        RandomVec<T>(k * n, b.data(), -2.f, 2.f);
        const T* a_data = a.data();
        const T* b_data = b.data();
        T* c_data = c.data();
        BenchAllImpls<KT, jit::MatMulTuples<T>, PlaceType>(k, a_data, b_data,
                                                           c_data, m, n, k);
      }
    }
  }
}

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
using T = float;
using PlaceType = paddle::platform::CPUPlace;

// xyzn
BENCH_FP32_CPU(kVMul) { BenchXYZNKernel<jit::kVMul, T, PlaceType>(); }

BENCH_FP32_CPU(kVAdd) { BenchXYZNKernel<jit::kVAdd, T, PlaceType>(); }

BENCH_FP32_CPU(kVAddRelu) { BenchXYZNKernel<jit::kVAddRelu, T, PlaceType>(); }

BENCH_FP32_CPU(kVSub) { BenchXYZNKernel<jit::kVSub, T, PlaceType>(); }

// axyn
BENCH_FP32_CPU(kVScal) { BenchAXYNKernel<jit::kVScal, T, PlaceType>(); }

BENCH_FP32_CPU(kVAddBias) { BenchAXYNKernel<jit::kVAddBias, T, PlaceType>(); }

// xyn
BENCH_FP32_CPU(kVRelu) { BenchXYNKernel<jit::kVRelu, T, PlaceType>(); }

BENCH_FP32_CPU(kVIdentity) { BenchXYNKernel<jit::kVIdentity, T, PlaceType>(); }

BENCH_FP32_CPU(kVSquare) { BenchXYNKernel<jit::kVSquare, T, PlaceType>(); }

BENCH_FP32_CPU(kVExp) { BenchXYNKernel<jit::kVExp, T, PlaceType>(); }

BENCH_FP32_CPU(kVSigmoid) { BenchXYNKernel<jit::kVSigmoid, T, PlaceType>(); }

BENCH_FP32_CPU(kVTanh) { BenchXYNKernel<jit::kVTanh, T, PlaceType>(); }

// lstm and peephole
BENCH_FP32_CPU(kLSTMCtHt) { BenchLSTMKernel<jit::kLSTMCtHt, T, PlaceType>(); }

BENCH_FP32_CPU(kLSTMC1H1) { BenchLSTMKernel<jit::kLSTMC1H1, T, PlaceType>(); }

// gru functions
BENCH_FP32_CPU(kGRUH1) { BenchGRUKernel<jit::kGRUH1, T, PlaceType>(); }

BENCH_FP32_CPU(kGRUHtPart1) {
  BenchGRUKernel<jit::kGRUHtPart1, T, PlaceType>();
}

BENCH_FP32_CPU(kGRUHtPart2) {
  BenchGRUKernel<jit::kGRUHtPart2, T, PlaceType>();
}

// seq pool function
BENCH_FP32_CPU(kSeqPool) { BenchSeqPoolKernel<jit::kSeqPool, T, PlaceType>(); }

// matmul
BENCH_FP32_CPU(kMatMul) { BenchMatMulKernel<jit::kMatMul, T, PlaceType>(); }

326 327 328 329 330 331
// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
332
//     --filter: the bench name would be run
333 334 335 336 337
int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
T
tensor-tang 已提交
338

339
  RUN_ALL_BENCHMARK();
340
}