benchmark.cc 5.0 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License. */

#include <iostream>
T
tensor-tang 已提交
16
#include <random>
T
tensor-tang 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/port.h"

DEFINE_int32(burning, 10, "Burning times.");
DEFINE_int32(repeat, 3000, "Repeat times.");
DEFINE_int32(max_size, 1000, "The Max size would be tested.");

inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
void RandomVec(const int n, T* a, const T lower = static_cast<T>(-20.f),
               const T upper = static_cast<T>(20.f)) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

std::vector<int> TestSizes() {
  std::vector<int> s;
  for (int i = 1; i <= FLAGS_max_size; ++i) {
    s.push_back(i);
  }
  return s;
}

// return this function avg time
55 56 57 58
template <typename T, typename KernelTuples>
double BenchTartgetFunc(const typename KernelTuples::func_type tgt,
                        const std::vector<T>& x, const std::vector<T>& y,
                        std::vector<T>& z) {  // NOLINT
T
tensor-tang 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
  const T* x_data = x.data();
  const T* y_data = y.data();
  const int d = z.size();
  T* z_data = z.data();

  for (int i = 0; i < FLAGS_burning; ++i) {
    tgt(x_data, y_data, z_data, d);
  }
  auto start = GetCurrentUS();
  for (int i = 0; i < FLAGS_repeat; ++i) {
    tgt(x_data, y_data, z_data, d);
  }
  auto end = GetCurrentUS();
  return (end - start) / FLAGS_repeat;
}

75 76
template <paddle::operators::jit::KernelType KT, typename T, typename PlaceType>
void BenchXYZNKernel() {
T
tensor-tang 已提交
77 78 79 80 81 82 83
  namespace jit = paddle::operators::jit;
  for (int d : TestSizes()) {
    std::vector<std::pair<std::string, double>> infos;
    std::vector<T> x(d), y(d), z(d);
    RandomVec<T>(d, x.data());
    RandomVec<T>(d, y.data());
    // refer
84
    auto refer = jit::GetRefer<KT, jit::XYZNTuples<T>>();
T
tensor-tang 已提交
85
    if (refer) {
86
      auto res = BenchTartgetFunc<T, jit::XYZNTuples<T>>(refer, x, y, z);
T
tensor-tang 已提交
87 88 89 90
      infos.push_back(std::make_pair("Refer", res));
    }

    // test jitcode
91
    auto jitcode = jit::GetJitCode<KT, jit::XYZNTuples<T>, PlaceType>(d);
T
tensor-tang 已提交
92
    if (jitcode) {
93
      auto res = BenchTartgetFunc<T, jit::XYZNTuples<T>>(jitcode, x, y, z);
T
tensor-tang 已提交
94 95 96 97 98 99 100 101 102 103
      infos.push_back(std::make_pair("JitCode", res));
    }

    // test all impls in more
    jit::KernelKey kkey(KT, PlaceType());
    auto& pool = jit::KernelPool().Instance().AllKernels();
    auto iter = pool.find(kkey);
    if (iter != pool.end()) {
      auto& impls = iter->second;
      for (auto& impl : impls) {
104
        auto i = dynamic_cast<const jit::KernelImpl<jit::XYZNTuples<T>>*>(
T
tensor-tang 已提交
105
            impl.get());
T
tensor-tang 已提交
106 107
        if (i && i->UseMe(d)) {
          auto more = i->GetFunc();
108
          auto res = BenchTartgetFunc<T, jit::XYZNTuples<T>>(more, x, y, z);
T
tensor-tang 已提交
109 110 111 112 113 114
          infos.push_back(std::make_pair("More", res));
        }
      }
    }

    // Test result from Get function
115
    auto tgt = jit::Get<KT, jit::XYZNTuples<T>, PlaceType>(d);
T
tensor-tang 已提交
116 117 118
    if (!tgt) {
      LOG(ERROR) << "Target can not be empty!";
    }
119
    auto res = BenchTartgetFunc<T, jit::XYZNTuples<T>>(tgt, x, y, z);
T
tensor-tang 已提交
120 121 122 123
    infos.push_back(std::make_pair("Target", res));

    // print
    std::ostringstream loginfos;
124
    loginfos << "Kernel Type: " << jit::to_string(KT) << ", size " << d << ": ";
T
tensor-tang 已提交
125 126 127 128 129 130
    for (auto pair : infos) {
      loginfos << pair.first << " takes " << pair.second << " us; ";
    }
    LOG(INFO) << loginfos.str();
  }
}
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

// Benchmark all jit kernels including jitcode, mkl and refer.
// To use this tool, run command: ./benchmark [options...]
// Options:
//     --burning: the burning time before count
//     --repeat: the repeat times
//     --max_size: the max size would be tested
int main(int argc, char* argv[]) {
  gflags::ParseCommandLineFlags(&argc, &argv, true);
  google::InitGoogleLogging(argv[0]);
  LOG(INFO) << "Burning " << FLAGS_burning << " times, Repeat " << FLAGS_repeat
            << " times.";
  using T = float;
  using PlaceType = paddle::platform::CPUPlace;
  namespace jit = paddle::operators::jit;
  BenchXYZNKernel<jit::vmul, T, PlaceType>();
  BenchXYZNKernel<jit::vadd, T, PlaceType>();
  BenchXYZNKernel<jit::vaddrelu, T, PlaceType>();
  BenchXYZNKernel<jit::vsub, T, PlaceType>();
}