hogwild_worker.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tangwei12 已提交
15
#include <ctime>
16 17

#include "paddle/fluid/framework/convert_utils.h"
18
#include "paddle/fluid/framework/data_type.h"
19
#include "paddle/fluid/framework/device_worker.h"
Z
zhang wenhui 已提交
20
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
21
#include "paddle/fluid/platform/cpu_helper.h"
D
dongdaxiang 已提交
22
#include "paddle/fluid/platform/lodtensor_printer.h"
23

T
tangwei12 已提交
24
#if defined PADDLE_WITH_PSCORE
25
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
T
tangwei12 已提交
26 27
#endif

28 29 30
namespace paddle {
namespace framework {

31
void HogwildWorker::Initialize(const TrainerDesc &desc) {
D
dongdaxiang 已提交
32
  fetch_config_ = desc.fetch_config();
33 34
  param_ = desc.hogwild_param();
  skip_ops_.resize(param_.skip_ops_size());
35
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
36 37
    skip_ops_[i] = param_.skip_ops(i);
  }
38
  use_cvm_ = desc.use_cvm();
39
  thread_barrier_ = desc.thread_barrier();
40

41 42 43
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }
D
dongdaxiang 已提交
44 45
}

46 47
void HogwildWorker::CreateThreadOperators(const ProgramDesc &program) {
  auto &block = program.Block(0);
48
  op_names_.clear();
49
  for (auto &op_desc : block.AllOps()) {
50 51
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
52
    OperatorBase *local_op_ptr = local_op.release();
53 54 55
    ops_.push_back(local_op_ptr);
    continue;
  }
Z
zhang wenhui 已提交
56 57
  operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
      program, 0, ops_);
58 59
}

60 61
void HogwildWorker::CreateThreadScope(const ProgramDesc &program) {
  auto &block = program.Block(0);
62 63

  PADDLE_ENFORCE_NOT_NULL(
64 65 66
      root_scope_,
      platform::errors::NotFound(
          "Root scope should be set before creating thread scope."));
67 68

  thread_scope_ = &root_scope_->NewScope();
69 70

  for (auto &var : block.AllVars()) {
71
    all_param_.push_back(var->Name());
72
    if (var->Persistable()) {
73
      auto *ptr = root_scope_->Var(var->Name());
74
      InitializeVariable(ptr, var->GetType());
75 76 77 78 79 80 81 82 83
      if (stat_var_name_map_.find(var->Name()) != stat_var_name_map_.end() &&
          thread_id_ != 0) {
        int tensor_dim =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>()->numel();
        auto *ptr1 = thread_scope_->Var(var->Name());
        InitializeVariable(ptr1, var->GetType());
        LoDTensor *thread_tensor = ptr1->GetMutable<LoDTensor>();
        LoDTensor *root_tensor =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>();
84 85 86 87 88
#define MemsetCallback(cpp_type, proto_type)                                  \
  do {                                                                        \
    if (framework::TransToProtoVarType(root_tensor->dtype()) == proto_type) { \
      SetZero<cpp_type>(thread_tensor, root_tensor, tensor_dim);              \
    }                                                                         \
89 90 91
  } while (0)
        _ForEachDataType_(MemsetCallback);
      }
92
    } else {
93
      auto *ptr = thread_scope_->Var(var->Name());
94 95 96 97 98
      InitializeVariable(ptr, var->GetType());
    }
  }
}

99
template <typename T>
100 101
void HogwildWorker::SetZero(LoDTensor *tensor,
                            LoDTensor *root_tensor,
102 103 104 105 106
                            int tensor_dim) {
  T *ptr = tensor->mutable_data<T>(root_tensor->dims(), platform::CPUPlace());
  memset(ptr, 0, sizeof(T) * tensor_dim);
}

107
void HogwildWorker::BindingDataFeedMemory() {
108
  const std::vector<std::string> &input_feed =
109
      device_reader_->GetUseSlotAlias();
110
  for (auto name : input_feed) {
111
    device_reader_->AddFeedVar(thread_scope_->FindVar(name), name);
112 113 114
  }
}

115
void HogwildWorker::CreateDeviceResource(const ProgramDesc &main_prog) {
116 117 118 119 120 121
  CreateThreadScope(main_prog);
  CreateThreadOperators(main_prog);
}

void HogwildWorker::TrainFilesWithProfiler() {
  platform::SetNumThreads(1);
122
  device_reader_->Start();
123 124
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
125
  for (auto &op : ops_) {
126 127 128 129 130 131 132 133 134 135 136 137
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
D
dongdaxiang 已提交
138
  uint64_t total_inst = 0;
139
  while ((cur_batch = device_reader_->Next()) > 0) {
140
    VLOG(3) << "read a batch in thread " << thread_id_;
141 142 143 144
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
145 146 147 148 149 150 151
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (ops_[i]->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
152
      timeline.Start();
153
      VLOG(3) << "Going to run op " << op_name[i];
154 155
      if (!need_skip) {
        ops_[i]->Run(*thread_scope_, place_);
156 157 158
#ifdef PADDLE_WITH_HETERPS
        dev_ctx_->Wait();
#endif
159
      }
160
      VLOG(3) << "Op " << op_name[i] << " Finished";
161 162 163 164
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
165 166

    if (need_dump_field_) {
H
hutuxian 已提交
167 168 169 170
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
171 172
    }

D
dongdaxiang 已提交
173
    total_inst += cur_batch;
174
    ++batch_cnt;
D
dongdaxiang 已提交
175
    PrintFetchVars();
176 177 178 179 180 181 182 183 184 185
#ifdef PADDLE_WITH_HETERPS
    dev_ctx_->Wait();
    VLOG(1) << "GpuPs worker " << thread_id_ << " train cost " << total_time
            << " seconds, ins_num: " << total_inst;
    for (size_t i = 0; i < op_name.size(); ++i) {
      VLOG(1) << "card:" << thread_id_ << ", op: " << op_name[i]
              << ", mean time: " << op_total_time[i] / total_inst
              << "s, totol time:" << op_total_time[i] << "sec";
    }
#else
186 187 188
    if (thread_id_ == 0) {
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < ops_.size(); ++i) {
189 190 191 192 193
          fprintf(stderr,
                  "op_name:[%zu][%s], op_mean_time:[%fs]\n",
                  i,
                  op_name[i].c_str(),
                  op_total_time[i] / batch_cnt);
194 195
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
D
dongdaxiang 已提交
196
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
197
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
198 199
      }
    }
200
#endif
D
dongdaxiang 已提交
201
    thread_scope_->DropKids();
202 203
    timeline.Start();
  }
204

H
hutuxian 已提交
205
  if (need_dump_field_ || need_dump_param_) {
206 207 208
    writer_.Flush();
  }

T
tangwei12 已提交
209
#if defined PADDLE_WITH_PSCORE
210
  if (thread_barrier_) {
T
tangwei12 已提交
211
    paddle::distributed::Communicator::GetInstance()->BarrierTriggerDecrement();
212 213
  }
#endif
214 215 216 217
}

void HogwildWorker::TrainFiles() {
  platform::SetNumThreads(1);
218 219
  platform::Timer timeline;
  timeline.Start();
220

221
  int total_ins_num = 0;
222
  // how to accumulate fetched values here
223
  device_reader_->Start();
224
  int cur_batch;
W
wangguanqun 已提交
225
  int batch_cnt = 0;
D
danleifeng 已提交
226 227 228 229

#if defined(PADDLE_WITH_HETERPS) && defined(PADDLE_WITH_CUDA)
  platform::SetDeviceId(thread_id_);
#endif
230
  while ((cur_batch = device_reader_->Next()) > 0) {
231
    for (auto &op : ops_) {
232 233 234 235 236 237 238 239 240 241
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
242 243
    }

W
wangguanqun 已提交
244 245 246 247 248 249 250
    if (need_dump_field_) {
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
    }

251
    total_ins_num += cur_batch;
W
wangguanqun 已提交
252
    ++batch_cnt;
D
dongdaxiang 已提交
253
    PrintFetchVars();
D
dongdaxiang 已提交
254
    thread_scope_->DropKids();
D
danleifeng 已提交
255 256 257
#ifdef PADDLE_WITH_HETERPS
    dev_ctx_->Wait();
#endif
258
  }
259
  timeline.Pause();
D
danleifeng 已提交
260
  VLOG(1) << "worker " << thread_id_ << " train cost " << timeline.ElapsedSec()
261
          << " seconds, ins_num: " << total_ins_num;
W
wangguanqun 已提交
262 263 264 265 266

  if (need_dump_field_ || need_dump_param_) {
    writer_.Flush();
  }

T
tangwei12 已提交
267
#if defined PADDLE_WITH_PSCORE
268
  if (thread_barrier_) {
T
tangwei12 已提交
269
    paddle::distributed::Communicator::GetInstance()->BarrierTriggerDecrement();
270 271
  }
#endif
272 273
}

D
dongdaxiang 已提交
274 275 276 277
void HogwildWorker::PrintFetchVars() {
  // call count
  batch_num_++;
  int batch_per_print = fetch_config_.print_period();
T
tangwei12 已提交
278 279 280 281 282 283 284 285 286 287
  int fetch_var_num = fetch_config_.fetch_var_names_size();

  if (fetch_var_num == 0) {
    return;
  }

  if (thread_id_ == 0 && batch_num_ % batch_per_print == 0) {
    time_t curtime;
    time(&curtime);
    char mbstr[80];
288 289
    std::strftime(
        mbstr, sizeof(mbstr), "%Y-%m-%d %H:%M:%S", std::localtime(&curtime));
T
tangwei12 已提交
290 291 292 293 294 295

    std::stringstream ss;
    ss << "time: [" << mbstr << "], ";
    ss << "batch: [" << batch_num_ << "], ";

    for (int i = 0; i < fetch_var_num; ++i) {
296 297 298 299
      platform::PrintVar(thread_scope_,
                         fetch_config_.fetch_var_names(i),
                         fetch_config_.fetch_var_str_format(i),
                         &ss);
T
tangwei12 已提交
300 301
      if (i < fetch_var_num - 1) {
        ss << ", ";
D
dongdaxiang 已提交
302 303
      }
    }
T
tangwei12 已提交
304 305

    std::cout << ss.str() << std::endl;
D
dongdaxiang 已提交
306 307 308
  }
}

309 310
}  // end namespace framework
}  // end namespace paddle