hogwild_worker.cc 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/data_type.h"
16
#include "paddle/fluid/framework/device_worker.h"
17
#include "paddle/fluid/framework/device_worker_factory.h"
18
#include "paddle/fluid/operators/distributed/distributed.h"
19
#include "paddle/fluid/platform/cpu_helper.h"
D
dongdaxiang 已提交
20
#include "paddle/fluid/platform/lodtensor_printer.h"
21 22 23 24

namespace paddle {
namespace framework {

25
void HogwildWorker::Initialize(const TrainerDesc &desc) {
D
dongdaxiang 已提交
26
  fetch_config_ = desc.fetch_config();
27 28
  param_ = desc.hogwild_param();
  skip_ops_.resize(param_.skip_ops_size());
29
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
30 31
    skip_ops_[i] = param_.skip_ops(i);
  }
32
  use_cvm_ = desc.use_cvm();
33
  thread_barrier_ = desc.thread_barrier();
34

35 36 37
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }
D
dongdaxiang 已提交
38 39
}

40 41
void HogwildWorker::CreateThreadOperators(const ProgramDesc &program) {
  auto &block = program.Block(0);
42
  op_names_.clear();
43
  for (auto &op_desc : block.AllOps()) {
44 45
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
46
    OperatorBase *local_op_ptr = local_op.release();
47 48 49 50 51
    ops_.push_back(local_op_ptr);
    continue;
  }
}

52 53
void HogwildWorker::CreateThreadScope(const ProgramDesc &program) {
  auto &block = program.Block(0);
54 55

  PADDLE_ENFORCE_NOT_NULL(
56 57 58
      root_scope_,
      platform::errors::NotFound(
          "Root scope should be set before creating thread scope."));
59 60

  thread_scope_ = &root_scope_->NewScope();
61 62

  for (auto &var : block.AllVars()) {
63
    all_param_.push_back(var->Name());
64
    if (var->Persistable()) {
65
      auto *ptr = root_scope_->Var(var->Name());
66
      InitializeVariable(ptr, var->GetType());
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
      if (stat_var_name_map_.find(var->Name()) != stat_var_name_map_.end() &&
          thread_id_ != 0) {
        int tensor_dim =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>()->numel();
        auto *ptr1 = thread_scope_->Var(var->Name());
        InitializeVariable(ptr1, var->GetType());
        LoDTensor *thread_tensor = ptr1->GetMutable<LoDTensor>();
        LoDTensor *root_tensor =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>();
#define MemsetCallback(cpp_type, proto_type)                     \
  do {                                                           \
    if (root_tensor->type() == proto_type) {                     \
      SetZero<cpp_type>(thread_tensor, root_tensor, tensor_dim); \
    }                                                            \
  } while (0)
        _ForEachDataType_(MemsetCallback);
      }
84
    } else {
85
      auto *ptr = thread_scope_->Var(var->Name());
86 87 88 89 90
      InitializeVariable(ptr, var->GetType());
    }
  }
}

91 92 93 94 95 96 97
template <typename T>
void HogwildWorker::SetZero(LoDTensor *tensor, LoDTensor *root_tensor,
                            int tensor_dim) {
  T *ptr = tensor->mutable_data<T>(root_tensor->dims(), platform::CPUPlace());
  memset(ptr, 0, sizeof(T) * tensor_dim);
}

98
void HogwildWorker::BindingDataFeedMemory() {
99
  const std::vector<std::string> &input_feed =
100
      device_reader_->GetUseSlotAlias();
101
  for (auto name : input_feed) {
102
    device_reader_->AddFeedVar(thread_scope_->FindVar(name), name);
103 104 105
  }
}

106
void HogwildWorker::CreateDeviceResource(const ProgramDesc &main_prog) {
107 108 109 110 111 112
  CreateThreadScope(main_prog);
  CreateThreadOperators(main_prog);
}

void HogwildWorker::TrainFilesWithProfiler() {
  platform::SetNumThreads(1);
113
  device_reader_->Start();
114 115
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
116
  for (auto &op : ops_) {
117 118 119 120 121 122 123 124 125 126 127 128
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
D
dongdaxiang 已提交
129
  uint64_t total_inst = 0;
130
  while ((cur_batch = device_reader_->Next()) > 0) {
131
    VLOG(3) << "read a batch in thread " << thread_id_;
132 133 134 135
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
136 137 138 139 140 141 142
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (ops_[i]->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
143
      timeline.Start();
144
      VLOG(3) << "Going to run op " << op_name[i];
145 146 147
      if (!need_skip) {
        ops_[i]->Run(*thread_scope_, place_);
      }
148
      VLOG(3) << "Op " << op_name[i] << " Finished";
149 150 151 152
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
153 154

    if (need_dump_field_) {
H
hutuxian 已提交
155 156 157 158
      DumpField(*thread_scope_, dump_mode_, dump_interval_);
    }
    if (need_dump_param_ && thread_id_ == 0) {
      DumpParam(*thread_scope_, batch_cnt);
159 160
    }

D
dongdaxiang 已提交
161
    total_inst += cur_batch;
162
    ++batch_cnt;
D
dongdaxiang 已提交
163
    PrintFetchVars();
164 165 166 167 168 169 170
    if (thread_id_ == 0) {
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < ops_.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
D
dongdaxiang 已提交
171
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
172
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
173 174
      }
    }
D
dongdaxiang 已提交
175
    thread_scope_->DropKids();
176 177
    timeline.Start();
  }
178

H
hutuxian 已提交
179
  if (need_dump_field_ || need_dump_param_) {
180 181 182
    writer_.Flush();
  }

183 184 185 186 187 188
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
189 190 191 192 193 194
}

void HogwildWorker::TrainFiles() {
  platform::SetNumThreads(1);

  // how to accumulate fetched values here
195
  device_reader_->Start();
196
  int cur_batch;
197
  while ((cur_batch = device_reader_->Next()) > 0) {
198
    for (auto &op : ops_) {
199 200 201 202 203 204 205 206 207 208
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
209 210
    }

D
dongdaxiang 已提交
211
    PrintFetchVars();
D
dongdaxiang 已提交
212
    thread_scope_->DropKids();
213
  }
214 215 216 217 218 219
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
220 221
}

D
dongdaxiang 已提交
222 223 224 225
void HogwildWorker::PrintFetchVars() {
  // call count
  batch_num_++;
  int batch_per_print = fetch_config_.print_period();
D
dongdaxiang 已提交
226
  if (thread_id_ == 0) {
D
dongdaxiang 已提交
227 228
    if (batch_num_ % batch_per_print == 0) {
      int fetch_var_num = fetch_config_.fetch_var_names_size();
D
dongdaxiang 已提交
229
      for (int i = 0; i < fetch_var_num; ++i) {
D
dongdaxiang 已提交
230
        platform::PrintVar(thread_scope_, fetch_config_.fetch_var_names(i),
D
dongdaxiang 已提交
231
                           fetch_config_.fetch_var_str_format(i));
D
dongdaxiang 已提交
232 233 234 235 236
      }
    }
  }
}

237 238
}  // end namespace framework
}  // end namespace paddle