hogwild_worker.cc 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/framework/data_type.h"
16
#include "paddle/fluid/framework/device_worker.h"
17
#include "paddle/fluid/framework/device_worker_factory.h"
18
#include "paddle/fluid/operators/distributed/distributed.h"
19
#include "paddle/fluid/platform/cpu_helper.h"
D
dongdaxiang 已提交
20
#include "paddle/fluid/platform/lodtensor_printer.h"
21 22 23 24

namespace paddle {
namespace framework {

25
void HogwildWorker::Initialize(const TrainerDesc &desc) {
D
dongdaxiang 已提交
26
  fetch_config_ = desc.fetch_config();
27 28
  param_ = desc.hogwild_param();
  skip_ops_.resize(param_.skip_ops_size());
29
  for (int i = 0; i < param_.skip_ops_size(); ++i) {
30 31
    skip_ops_[i] = param_.skip_ops(i);
  }
32
  use_cvm_ = desc.use_cvm();
33
  thread_barrier_ = desc.thread_barrier();
34 35 36 37 38 39

  dump_fields_.resize(desc.dump_fields_size());
  for (int i = 0; i < desc.dump_fields_size(); ++i) {
    dump_fields_[i] = desc.dump_fields(i);
  }

40 41 42 43
  for (int i = 0; i < param_.stat_var_names_size(); ++i) {
    stat_var_name_map_[param_.stat_var_names(i)] = 1;
  }

44 45 46 47 48 49 50 51
  need_dump_param_ = false;
  dump_param_.resize(desc.dump_param_size());
  for (int i = 0; i < desc.dump_param_size(); ++i) {
    dump_param_[i] = desc.dump_param(i);
  }
  if (desc.dump_param_size() != 0) {
    need_dump_param_ = true;
  }
D
dongdaxiang 已提交
52 53
}

54 55
void HogwildWorker::CreateThreadOperators(const ProgramDesc &program) {
  auto &block = program.Block(0);
56
  op_names_.clear();
57
  for (auto &op_desc : block.AllOps()) {
58 59
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
60
    OperatorBase *local_op_ptr = local_op.release();
61 62 63 64 65
    ops_.push_back(local_op_ptr);
    continue;
  }
}

66 67
void HogwildWorker::CreateThreadScope(const ProgramDesc &program) {
  auto &block = program.Block(0);
68 69 70 71 72

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
73 74

  for (auto &var : block.AllVars()) {
75
    if (var->Persistable()) {
76
      auto *ptr = root_scope_->Var(var->Name());
77
      InitializeVariable(ptr, var->GetType());
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
      if (stat_var_name_map_.find(var->Name()) != stat_var_name_map_.end() &&
          thread_id_ != 0) {
        int tensor_dim =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>()->numel();
        auto *ptr1 = thread_scope_->Var(var->Name());
        InitializeVariable(ptr1, var->GetType());
        LoDTensor *thread_tensor = ptr1->GetMutable<LoDTensor>();
        LoDTensor *root_tensor =
            root_scope_->FindVar(var->Name())->GetMutable<LoDTensor>();
#define MemsetCallback(cpp_type, proto_type)                     \
  do {                                                           \
    if (root_tensor->type() == proto_type) {                     \
      SetZero<cpp_type>(thread_tensor, root_tensor, tensor_dim); \
    }                                                            \
  } while (0)
        _ForEachDataType_(MemsetCallback);
      }
95
    } else {
96
      auto *ptr = thread_scope_->Var(var->Name());
97 98 99 100 101
      InitializeVariable(ptr, var->GetType());
    }
  }
}

102 103 104 105 106 107 108
template <typename T>
void HogwildWorker::SetZero(LoDTensor *tensor, LoDTensor *root_tensor,
                            int tensor_dim) {
  T *ptr = tensor->mutable_data<T>(root_tensor->dims(), platform::CPUPlace());
  memset(ptr, 0, sizeof(T) * tensor_dim);
}

109
void HogwildWorker::BindingDataFeedMemory() {
110
  const std::vector<std::string> &input_feed =
111
      device_reader_->GetUseSlotAlias();
112
  for (auto name : input_feed) {
113
    device_reader_->AddFeedVar(thread_scope_->FindVar(name), name);
114 115 116
  }
}

117
void HogwildWorker::CreateDeviceResource(const ProgramDesc &main_prog) {
118 119 120 121 122 123
  CreateThreadScope(main_prog);
  CreateThreadOperators(main_prog);
}

void HogwildWorker::TrainFilesWithProfiler() {
  platform::SetNumThreads(1);
124
  device_reader_->Start();
125 126
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
127
  for (auto &op : ops_) {
128 129 130 131 132 133 134 135 136 137 138 139
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
D
dongdaxiang 已提交
140
  uint64_t total_inst = 0;
141
  while ((cur_batch = device_reader_->Next()) > 0) {
142
    VLOG(3) << "read a batch in thread " << thread_id_;
143 144 145 146
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
147 148 149 150 151 152 153
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (ops_[i]->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
154
      timeline.Start();
155
      VLOG(3) << "Going to run op " << op_name[i];
156 157 158
      if (!need_skip) {
        ops_[i]->Run(*thread_scope_, place_);
      }
159
      VLOG(3) << "Op " << op_name[i] << " Finished";
160 161 162 163
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

    if (need_dump_field_) {
      size_t batch_size = device_reader_->GetCurBatchSize();
      std::vector<std::string> ars(batch_size);
      for (auto &ar : ars) {
        ar.clear();
      }
      auto &ins_id_vec = device_reader_->GetInsIdVec();
      auto &ins_content_vec = device_reader_->GetInsContentVec();
      for (size_t i = 0; i < ins_id_vec.size(); i++) {
        ars[i] += ins_id_vec[i];
        ars[i] = ars[i] + "\t" + ins_content_vec[i];
      }
      for (auto &field : dump_fields_) {
        Variable *var = thread_scope_->FindVar(field);
        if (var == nullptr) {
          continue;
        }
        LoDTensor *tensor = var->GetMutable<LoDTensor>();
        if (!CheckValidOutput(tensor, batch_size)) {
          continue;
        }
        for (size_t i = 0; i < batch_size; ++i) {
          auto output_dim = tensor->dims()[1];
          std::string output_dimstr =
              boost::lexical_cast<std::string>(output_dim);
          ars[i] = ars[i] + "\t" + field + ":" + output_dimstr;
          auto bound = GetTensorBound(tensor, i);
          ars[i] += PrintLodTensor(tensor, bound.first, bound.second);
        }
      }
      // #pragma omp parallel for
      for (size_t i = 0; i < ars.size(); i++) {
        if (ars[i].length() == 0) {
          continue;
        }
        writer_ << ars[i];
      }
      if (need_dump_param_ && thread_id_ == 0) {
        DumpParam(batch_cnt);
      }
    }

D
dongdaxiang 已提交
207
    total_inst += cur_batch;
208
    ++batch_cnt;
D
dongdaxiang 已提交
209
    PrintFetchVars();
210 211 212 213 214 215 216
    if (thread_id_ == 0) {
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
        for (size_t i = 0; i < ops_.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
D
dongdaxiang 已提交
217
        fprintf(stderr, "IO percent: %f\n", read_time / total_time * 100);
D
dongdaxiang 已提交
218
        fprintf(stderr, "%6.2f instances/s\n", total_inst / total_time);
219 220
      }
    }
D
dongdaxiang 已提交
221
    thread_scope_->DropKids();
222 223
    timeline.Start();
  }
224 225 226 227 228

  if (need_dump_field_) {
    writer_.Flush();
  }

229 230 231 232 233 234
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
235 236
}

237 238 239 240
void HogwildWorker::SetChannelWriter(ChannelObject<std::string> *queue) {
  writer_.Reset(queue);
}

241 242 243 244
void HogwildWorker::TrainFiles() {
  platform::SetNumThreads(1);

  // how to accumulate fetched values here
245
  device_reader_->Start();
246
  int cur_batch;
247
  while ((cur_batch = device_reader_->Next()) > 0) {
248
    for (auto &op : ops_) {
249 250 251 252 253 254 255 256 257 258
      bool need_skip = false;
      for (auto t = 0u; t < skip_ops_.size(); ++t) {
        if (op->Type().find(skip_ops_[t]) != std::string::npos) {
          need_skip = true;
          break;
        }
      }
      if (!need_skip) {
        op->Run(*thread_scope_, place_);
      }
259 260
    }

D
dongdaxiang 已提交
261
    PrintFetchVars();
D
dongdaxiang 已提交
262
    thread_scope_->DropKids();
263
  }
264 265 266 267 268 269
#ifdef PADDLE_WITH_DISTRIBUTE
  if (thread_barrier_) {
    operators::distributed::Communicator::GetInstance()
        ->BarrierTriggerDecrement();
  }
#endif
270 271
}

D
dongdaxiang 已提交
272 273 274 275
void HogwildWorker::PrintFetchVars() {
  // call count
  batch_num_++;
  int batch_per_print = fetch_config_.print_period();
D
dongdaxiang 已提交
276
  if (thread_id_ == 0) {
D
dongdaxiang 已提交
277 278
    if (batch_num_ % batch_per_print == 0) {
      int fetch_var_num = fetch_config_.fetch_var_names_size();
D
dongdaxiang 已提交
279
      for (int i = 0; i < fetch_var_num; ++i) {
D
dongdaxiang 已提交
280
        platform::PrintVar(thread_scope_, fetch_config_.fetch_var_names(i),
D
dongdaxiang 已提交
281
                           fetch_config_.fetch_var_str_format(i));
D
dongdaxiang 已提交
282 283 284 285 286
      }
    }
  }
}

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
void HogwildWorker::SetNeedDump(bool need_dump_field) {
  need_dump_field_ = need_dump_field;
}

void HogwildWorker::DumpParam(const int batch_id) {
  std::ostringstream os;
  for (auto &param : dump_param_) {
    os.str("");
    Variable *var = thread_scope_->FindVar(param);
    if (var == nullptr) {
      continue;
    }
    LoDTensor *tensor = var->GetMutable<LoDTensor>();
    int64_t len = tensor->numel();
    os << "(" << batch_id << "," << param << ")"
       << PrintLodTensor(tensor, 0, len);
    writer_ << os.str();
  }
}

307 308
}  // end namespace framework
}  // end namespace paddle