vision.py 20.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from paddle import _C_ops, _legacy_C_ops, in_dynamic_mode
姜永久 已提交
16
from paddle.fluid.framework import in_dygraph_mode
R
ruri 已提交
17

18 19 20 21 22
from ...device import get_cudnn_version, is_compiled_with_rocm
from ...fluid.data_feeder import check_variable_and_dtype
from ...fluid.layer_helper import LayerHelper
from ...static import Variable

23 24
__all__ = []

25 26 27

def affine_grid(theta, out_shape, align_corners=True, name=None):
    """
28
    It generates a grid of (x,y) or (x,y,z) coordinates using the parameters of
29 30 31 32 33
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
34
        theta (Tensor) - A tensor with shape [N, 2, 3] or [N, 3, 4]. It contains a batch of affine transform parameters.
35
                           The data type can be float32 or float64.
36
        out_shape (Tensor | list | tuple): Type can be a 1-D Tensor, list, or tuple. It is used to represent the shape of the output in an affine transformation, in the format ``[N, C, H, W]`` or ``[N, C, D, H, W]``.
37 38 39 40
                                           When the format is ``[N, C, H, W]``, it represents the batch size, number of channels, height and width. When the format is ``[N, C, D, H, W]``, it represents the batch size, number of channels, depth, height and width.
                                           The data type must be int32.
        align_corners(bool, optional): if True, aligns the centers of the 4 (4D) or 8 (5D) corner pixels of the input and output tensors, and preserves the value of the corner pixels. Default: True
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
41 42

    Returns:
43
        Tensor, A Tensor with shape [batch_size, H, W, 2] or [batch, D, H, W, 3] while ('D')'H', 'W' are the (depth)height, width of feature map in affine transformation. The data type is the same as `theta`.
44 45 46 47 48 49 50 51

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            # theta shape = [1, 2, 3]
52 53
            theta = paddle.to_tensor([[[-0.7, -0.4, 0.3],
                                       [ 0.6,  0.5, 1.5]]], dtype="float32")
54
            y_t = F.affine_grid(
55
                    theta,
56 57
                    [1, 2, 3, 3],
                    align_corners=False)
W
whs 已提交
58
            print(y_t)
59

60 61 62 63 64 65 66 67 68 69 70 71 72 73
            #[[[[ 1.0333333   0.76666665]
            #   [ 0.76666665  1.0999999 ]
            #   [ 0.5         1.4333333 ]]
            #
            #  [[ 0.5666667   1.1666666 ]
            #   [ 0.3         1.5       ]
            #   [ 0.03333333  1.8333334 ]]
            #
            #  [[ 0.10000002  1.5666667 ]
            #   [-0.16666666  1.9000001 ]
            #   [-0.43333334  2.2333333 ]]]]
    """
    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Tensor.")
74

75 76 77 78 79
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None and cudnn_version >= 6000 and align_corners:
        use_cudnn = True
    else:
        use_cudnn = False
80 81
    if theta.shape[1] == 3:
        use_cudnn = False
Z
zhiboniu 已提交
82
    if is_compiled_with_rocm():
83 84 85
        use_cudnn = (
            False  # ROCM platform do not have MIOPEN kernel for affine_grid
        )
86

87
    if in_dygraph_mode():
88 89 90 91 92
        _out_shape = (
            out_shape.numpy().tolist()
            if isinstance(out_shape, Variable)
            else out_shape
        )
93
        theta = theta._use_gpudnn(use_cudnn)
94
        return _C_ops.affine_grid(theta, _out_shape, align_corners)
95
    elif in_dynamic_mode():
96 97 98 99 100 101 102 103 104 105 106 107 108 109
        _out_shape = (
            out_shape.numpy().tolist()
            if isinstance(out_shape, Variable)
            else out_shape
        )
        return _legacy_C_ops.affine_grid(
            theta,
            "output_shape",
            _out_shape,
            "align_corners",
            align_corners,
            "use_cudnn",
            use_cudnn,
        )
110

111
    helper = LayerHelper('affine_grid')
112 113 114
    check_variable_and_dtype(
        theta, 'theta', ['float32', 'float64'], 'affine_grid'
    )
115 116 117 118 119
    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {"align_corners": align_corners, "use_cudnn": use_cudnn}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
120 121 122
        check_variable_and_dtype(
            out_shape, 'out_shape', ['int32'], 'affine_grid'
        )
123 124 125
    else:
        attrs['output_shape'] = out_shape

126 127 128 129 130 131
    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
132
    return out
133 134


135 136 137 138 139 140 141 142
def grid_sample(
    x,
    grid,
    mode='bilinear',
    padding_mode='zeros',
    align_corners=True,
    name=None,
):
143
    """
144
    Sample input X by using bilinear interpolation or
145
    nearest interpolation based on flow field grid, which is usually
146 147 148 149 150
    generated by :code:`affine_grid` . When the input X is 4-D Tensor,
    the grid of shape [N, H, W, 2] is the concatenation of (x, y)
    coordinates with shape [N, H, W] each, where x is indexing the 4th
    dimension (in width dimension) of input data x and y is indexing
    the 3rd dimension (in height dimension), finally results is the
151
    bilinear interpolation or nearest value of 4 nearest corner
152 153 154 155 156 157 158 159
    points. The output tensor shape will be [N, C, H, W]. When the input X
    is 5-D Tensor, the grid of shape [N, D, H, W, 3] is the concatenation
    of (x, y, z) coordinates with shape [N, D, H, W] each, where x is
    indexing the 5th dimension (in width dimension) of input data x, y is
    indexing the 4th dimension (in height dimension) and z is indexing the
    3rd dimension (in depth dimension) finally results is the bilinear
    interpolation or nearest value of 8 nearest cornerpoints. The output
    tensor shape will be [N, C, D, H, W].
160

161 162 163 164 165 166 167 168 169 170 171 172


    Step 1:

    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    .. code-block:: text

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
173

174 175 176 177
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
    interpolate point value by 4 nearest points or nearest interpolate point value
    by nearest point.

178
    .. code-block:: text
179 180 181 182 183 184 185 186 187 188 189

        wn ------- y_n ------- en
        |           |           |
        |          d_n          |
        |           |           |
        x_w --d_w-- grid--d_e-- x_e
        |           |           |
        |          d_s          |
        |           |           |
        ws ------- y_s ------- wn

190 191 192 193 194 195 196 197 198 199 200 201 202
        For bilinear interpolation:
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
203

204
        output = wn * d_e * d_s + en * d_w * d_s
205 206
                + ws * d_e * d_n + es * d_w * d_n

207 208
    Args:
        x(Tensor): The input tensor, which is a 4-d tensor with shape
209 210
                     [N, C, H, W] or a 5-d tensor with shape [N, C, D, H, W],
                     N is the batch size, C is the channel number,
211
                     D, H and W is the feature depth, height and width.
212
                     The data type is float32 or float64.
213 214
        grid(Tensor): Input grid tensor, which is a 4-d tensor with shape [N, grid_H,
                        grid_W, 2] or a 5-d tensor with shape [N, grid_D, grid_H,
215
                        grid_W, 3]. The data type is float32 or float64.
216 217 218
        mode(str, optional): The interpolation method which can be 'bilinear' or 'nearest'.
                         Default: 'bilinear'.
        padding_mode(str, optional) The padding method used when source index
219
                   is out of input images. It can be 'zeros', 'reflection' and 'border'.
220 221 222 223 224 225 226
                   Default: zeros.
        align_corners(bool, optional): If `align_corners` is true, it will projects
                   -1 and 1 to the centers of the corner pixels. Otherwise, it will
                   projects -1 and 1 to the image edges.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
227 228

    Returns:
229

230
        Tensor, The shape of output is [N, C, grid_H, grid_W] or [N, C, grid_D, grid_H, grid_W] in which `grid_D` is the depth of grid,
231
                `grid_H` is the height of grid and `grid_W` is the width of grid. The data type is same as input tensor.
232

233
    Examples:
234

235
        .. code-block:: python
236

237 238
            import paddle
            import paddle.nn.functional as F
239 240

            # x shape=[1, 1, 3, 3]
241 242 243
            x = paddle.to_tensor([[[[-0.6,  0.8, -0.5],
                                    [-0.5,  0.2,  1.2],
                                    [ 1.4,  0.3, -0.2]]]],dtype='float64')
244
            # grid shape = [1, 3, 4, 2]
245 246 247 248 249 250 251 252 253 254 255 256
            grid = paddle.to_tensor([[[[ 0.2,  0.3],
                                       [-0.4, -0.3],
                                       [-0.9,  0.3],
                                       [-0.9, -0.6]],
                                      [[ 0.4,  0.1],
                                       [ 0.9, -0.8],
                                       [ 0.4,  0.5],
                                       [ 0.5, -0.2]],
                                      [[ 0.1, -0.8],
                                       [-0.3, -1. ],
                                       [ 0.7,  0.4],
                                       [ 0.2,  0.8]]]],dtype='float64')
257 258 259 260 261 262
            y_t = F.grid_sample(
                x,
                grid,
                mode='bilinear',
                padding_mode='border',
                align_corners=True)
W
whs 已提交
263
            print(y_t)
264

265 266 267 268 269
            # output shape = [1, 1, 3, 4]
            # [[[[ 0.34   0.016  0.086 -0.448]
            #    [ 0.55  -0.076  0.35   0.59 ]
            #    [ 0.596  0.38   0.52   0.24 ]]]]
    """
270

271
    _modes = ['bilinear', 'nearest']
272
    _padding_modes = ['zeros', 'reflection', 'border']
273 274
    if mode not in _modes:
        raise ValueError(
275 276 277 278
            "The mode of grid sample function should be in {}, but got: {}".format(
                _modes, mode
            )
        )
279 280
    if padding_mode not in _padding_modes:
        raise ValueError(
281 282 283 284
            "The padding mode of grid sample function should be in {}, but got: {}".format(
                _padding_modes, padding_mode
            )
        )
285 286

    if not isinstance(align_corners, bool):
287 288 289 290 291
        raise ValueError(
            "The align corners should be bool, but got: {}".format(
                align_corners
            )
        )
292 293 294

    cudnn_version = get_cudnn_version()
    use_cudnn = False
295 296 297 298 299 300 301
    if (
        not is_compiled_with_rocm()
        and (cudnn_version is not None)
        and align_corners
        and mode == 'bilinear'
        and padding_mode == 'zeros'
    ):
302
        use_cudnn = True
W
whs 已提交
303 304 305
        # CUDNN always computes gradients for all inputs
        x.stop_gradient = False
        grid.stop_gradient = False
306

307 308 309
    if len(grid.shape) == 5:
        use_cudnn = False

W
Wang Bojun 已提交
310
    if in_dygraph_mode():
311
        return _C_ops.grid_sample(x, grid, mode, padding_mode, align_corners)
W
Wang Bojun 已提交
312
    elif in_dynamic_mode():
313 314 315 316 317 318 319 320 321 322
        attrs = (
            'mode',
            mode,
            'padding_mode',
            padding_mode,
            'align_corners',
            align_corners,
            'use_cudnn',
            use_cudnn,
        )
323
        out = getattr(_legacy_C_ops, 'grid_sampler')(x, grid, *attrs)
324
    else:
325 326
        helper = LayerHelper("grid_sample", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sample')
327 328 329
        check_variable_and_dtype(
            grid, 'grid', ['float32', 'float64'], 'grid_sample'
        )
330 331 332 333 334
        ipts = {'X': x, 'Grid': grid}
        attrs = {
            'mode': mode,
            'padding_mode': padding_mode,
            'align_corners': align_corners,
335
            'use_cudnn': use_cudnn,
336
        }
337
        out = helper.create_variable_for_type_inference(x.dtype)
338 339 340 341 342 343
        helper.append_op(
            type='grid_sampler',
            inputs=ipts,
            attrs=attrs,
            outputs={'Output': out},
        )
344
    return out
R
ruri 已提交
345 346 347 348 349


def pixel_shuffle(x, upscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel shuffle operation.
350
    See more details in :ref:`PixelSuffle <api_paddle_nn_PixelSuffle>` .
351 352


R
ruri 已提交
353 354 355
    Parameters:
        x(Tensor): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
356 357
        data_format (str, optional): The data format of the input and output data. An optional string from: ``'NCHW'``, ``'NHWC'``. When it is ``'NCHW'``, the data is stored in the order of: [batch_size, input_channels, input_height, input_width]. Default: ``'NCHW'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
358

R
ruri 已提交
359 360
    Returns:
        Out(tensor): Reshaped tensor according to the new dimension.
361

R
ruri 已提交
362 363
    Examples:
        .. code-block:: python
364

R
ruri 已提交
365 366
            import paddle
            import paddle.nn.functional as F
367 368 369

            x = paddle.randn(shape=[2,9,4,4])
            out_var = F.pixel_shuffle(x, 3)
370 371
            print(out_var.shape)
            # [2, 1, 12, 12]
R
ruri 已提交
372 373 374 375 376
    """
    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    if data_format not in ["NCHW", "NHWC"]:
377 378
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
379 380
            "But recevie Attr(data_format): {} ".format(data_format)
        )
H
hong 已提交
381
    if in_dygraph_mode():
382
        return _C_ops.pixel_shuffle(x, upscale_factor, data_format)
姜永久 已提交
383 384 385 386
    else:
        helper = LayerHelper("pixel_shuffle", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'pixel_shuffle'
387
        )
姜永久 已提交
388 389 390 391 392 393 394 395 396 397 398
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type="pixel_shuffle",
            inputs={"X": x},
            outputs={"Out": out},
            attrs={
                "upscale_factor": upscale_factor,
                "data_format": data_format,
            },
        )
        return out
399 400


401 402 403
def pixel_unshuffle(x, downscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel unshuffle operation.
404
    See more details in :ref:`PixelUnSuffle <api_paddle_nn_PixelUnSuffle>` .
405 406 407 408

    Parameters:
        x (Tensor): 4-D tensor, the data type should be float32 or float64.
        downscale_factor (int): Factor to decrease spatial resolution.
409
        data_format (str, optional): The data format of the input and output data. An optional string of ``'NCHW'`` or ``'NHWC'``. When it is ``'NCHW'``, the data is stored in the order of [batch_size, input_channels, input_height, input_width]. Default: ``'NCHW'``.
410 411 412 413 414 415 416 417 418 419 420 421
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Out (Tensor): Reshaped tensor according to the new dimension.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.randn([2, 1, 12, 12])
            out = F.pixel_unshuffle(x, 3)
422 423
            print(out.shape)
            # [2, 9, 4, 4]
424 425 426
    """
    if len(x.shape) != 4:
        raise ValueError(
427 428 429 430
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
431 432 433 434 435 436 437 438

    if not isinstance(downscale_factor, int):
        raise TypeError("Downscale factor must be int type")

    if downscale_factor <= 0:
        raise ValueError("Downscale factor must be positive")

    if data_format not in ["NCHW", "NHWC"]:
439 440
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
441 442
            "But recevie Attr(data_format): {} ".format(data_format)
        )
443

姜永久 已提交
444
    if in_dygraph_mode():
445 446 447
        return _legacy_C_ops.pixel_unshuffle(
            x, "downscale_factor", downscale_factor, "data_format", data_format
        )
448 449 450 451

    helper = LayerHelper("pixel_unshuffle", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_unshuffle')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
452 453 454 455 456 457 458 459 460
    helper.append_op(
        type="pixel_unshuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={
            "downscale_factor": downscale_factor,
            "data_format": data_format,
        },
    )
461 462 463
    return out


464 465 466
def channel_shuffle(x, groups, data_format="NCHW", name=None):
    """
    This API implements channel shuffle operation.
467
    See more details in :ref:`api_nn_vision_ChannelShuffle`.
468 469 470 471

    Parameters:
        x (Tensor): 4-D tensor, the data type should be float32 or float64.
        groups (int): Number of groups to divide channels in.
472
        data_format (str, optional): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Out (Tensor): Rearranged tensor keeping the original tensor shape.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.arange(0, 0.6, 0.1, 'float32')
            x = paddle.reshape(x, [1, 6, 1, 1])
            # [[[[0.        ]],
            #   [[0.10000000]],
            #   [[0.20000000]],
            #   [[0.30000001]],
            #   [[0.40000001]],
            #   [[0.50000000]]]]
            y = F.channel_shuffle(x, 3)
            # [[[[0.        ]],
            #   [[0.20000000]],
            #   [[0.40000001]],
            #   [[0.10000000]],
            #   [[0.30000001]],
            #   [[0.50000000]]]]
    """
    if len(x.shape) != 4:
        raise ValueError(
501 502 503 504
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
505 506 507 508 509 510 511 512

    if not isinstance(groups, int):
        raise TypeError("groups must be int type")

    if groups <= 0:
        raise ValueError("groups must be positive")

    if data_format not in ["NCHW", "NHWC"]:
513 514
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
515 516
            "But recevie Attr(data_format): {} ".format(data_format)
        )
517

姜永久 已提交
518
    if in_dygraph_mode():
519
        return _C_ops.channel_shuffle(x, groups, data_format)
520 521 522 523

    helper = LayerHelper("channel_shuffle", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'channel_shuffle')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
524 525 526 527 528 529
    helper.append_op(
        type="channel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"groups": groups, "data_format": data_format},
    )
530
    return out