vision.py 20.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...device import get_cudnn_version
16
from ...static import Variable
R
ruri 已提交
17
from ...fluid.layer_helper import LayerHelper
18
from ...fluid.data_feeder import check_variable_and_dtype
19
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
20 21
from ...device import is_compiled_with_rocm
from paddle import in_dynamic_mode
H
hong 已提交
22
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
23
from paddle.framework import _non_static_mode
R
ruri 已提交
24

25 26
__all__ = []

27 28 29

def affine_grid(theta, out_shape, align_corners=True, name=None):
    """
30
    It generates a grid of (x,y) or (x,y,z) coordinates using the parameters of
31 32 33 34 35
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
36
        theta (Tensor) - A tensor with shape [N, 2, 3] or [N, 3, 4]. It contains a batch of affine transform parameters.
37
                           The data type can be float32 or float64.
38
        out_shape (Tensor | list | tuple): Type can be a 1-D Tensor, list, or tuple. It is used to represent the shape of the output in an affine transformation, in the format ``[N, C, H, W]`` or ``[N, C, D, H, W]``.
39 40 41 42
                                           When the format is ``[N, C, H, W]``, it represents the batch size, number of channels, height and width. When the format is ``[N, C, D, H, W]``, it represents the batch size, number of channels, depth, height and width.
                                           The data type must be int32.
        align_corners(bool, optional): if True, aligns the centers of the 4 (4D) or 8 (5D) corner pixels of the input and output tensors, and preserves the value of the corner pixels. Default: True
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
43 44

    Returns:
45
        Tensor, A Tensor with shape [batch_size, H, W, 2] or [batch, D, H, W, 3] while ('D')'H', 'W' are the (depth)height, width of feature map in affine transformation. The data type is the same as `theta`.
46 47 48 49 50 51 52 53

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            # theta shape = [1, 2, 3]
54 55
            theta = paddle.to_tensor([[[-0.7, -0.4, 0.3],
                                       [ 0.6,  0.5, 1.5]]], dtype="float32")
56
            y_t = F.affine_grid(
57
                    theta,
58 59
                    [1, 2, 3, 3],
                    align_corners=False)
W
whs 已提交
60
            print(y_t)
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75
            #[[[[ 1.0333333   0.76666665]
            #   [ 0.76666665  1.0999999 ]
            #   [ 0.5         1.4333333 ]]
            #
            #  [[ 0.5666667   1.1666666 ]
            #   [ 0.3         1.5       ]
            #   [ 0.03333333  1.8333334 ]]
            #
            #  [[ 0.10000002  1.5666667 ]
            #   [-0.16666666  1.9000001 ]
            #   [-0.43333334  2.2333333 ]]]]
    """
    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Tensor.")
76

77 78 79 80 81
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None and cudnn_version >= 6000 and align_corners:
        use_cudnn = True
    else:
        use_cudnn = False
82 83
    if theta.shape[1] == 3:
        use_cudnn = False
Z
zhiboniu 已提交
84
    if is_compiled_with_rocm():
85
        use_cudnn = False  # ROCM platform do not have MIOPEN kernel for affine_grid
86

87 88 89
    if in_dygraph_mode():
        _out_shape = out_shape.numpy().tolist() if isinstance(
            out_shape, Variable) else out_shape
90
        return _C_ops.affine_grid(theta, _out_shape, use_cudnn, align_corners)
91
    elif in_dynamic_mode():
92 93
        _out_shape = out_shape.numpy().tolist() if isinstance(
            out_shape, Variable) else out_shape
94 95 96
        return _legacy_C_ops.affine_grid(theta, "output_shape", _out_shape,
                                         "align_corners", align_corners,
                                         "use_cudnn", use_cudnn)
97

98 99 100
    helper = LayerHelper('affine_grid')
    check_variable_and_dtype(theta, 'theta', ['float32', 'float64'],
                             'affine_grid')
101 102 103 104 105 106 107 108 109 110
    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {"align_corners": align_corners, "use_cudnn": use_cudnn}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
        check_variable_and_dtype(out_shape, 'out_shape', ['int32'],
                                 'affine_grid')
    else:
        attrs['output_shape'] = out_shape

111 112 113 114
    helper.append_op(type='affine_grid',
                     inputs=ipts,
                     outputs={'Output': out},
                     attrs=None if len(attrs) == 0 else attrs)
115
    return out
116 117 118 119 120 121 122 123 124


def grid_sample(x,
                grid,
                mode='bilinear',
                padding_mode='zeros',
                align_corners=True,
                name=None):
    """
125
    Sample input X by using bilinear interpolation or
126
    nearest interpolation based on flow field grid, which is usually
127 128 129 130 131
    generated by :code:`affine_grid` . When the input X is 4-D Tensor,
    the grid of shape [N, H, W, 2] is the concatenation of (x, y)
    coordinates with shape [N, H, W] each, where x is indexing the 4th
    dimension (in width dimension) of input data x and y is indexing
    the 3rd dimension (in height dimension), finally results is the
132
    bilinear interpolation or nearest value of 4 nearest corner
133 134 135 136 137 138 139 140
    points. The output tensor shape will be [N, C, H, W]. When the input X
    is 5-D Tensor, the grid of shape [N, D, H, W, 3] is the concatenation
    of (x, y, z) coordinates with shape [N, D, H, W] each, where x is
    indexing the 5th dimension (in width dimension) of input data x, y is
    indexing the 4th dimension (in height dimension) and z is indexing the
    3rd dimension (in depth dimension) finally results is the bilinear
    interpolation or nearest value of 8 nearest cornerpoints. The output
    tensor shape will be [N, C, D, H, W].
141

142 143 144 145 146 147 148 149 150 151 152 153


    Step 1:

    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    .. code-block:: text

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
154

155 156 157 158
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
    interpolate point value by 4 nearest points or nearest interpolate point value
    by nearest point.

159
    .. code-block:: text
160 161 162 163 164 165 166 167 168 169 170

        wn ------- y_n ------- en
        |           |           |
        |          d_n          |
        |           |           |
        x_w --d_w-- grid--d_e-- x_e
        |           |           |
        |          d_s          |
        |           |           |
        ws ------- y_s ------- wn

171 172 173 174 175 176 177 178 179 180 181 182 183
        For bilinear interpolation:
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
184

185
        output = wn * d_e * d_s + en * d_w * d_s
186 187
                + ws * d_e * d_n + es * d_w * d_n

188 189
    Args:
        x(Tensor): The input tensor, which is a 4-d tensor with shape
190 191
                     [N, C, H, W] or a 5-d tensor with shape [N, C, D, H, W],
                     N is the batch size, C is the channel number,
192
                     D, H and W is the feature depth, height and width.
193
                     The data type is float32 or float64.
194 195
        grid(Tensor): Input grid tensor, which is a 4-d tensor with shape [N, grid_H,
                        grid_W, 2] or a 5-d tensor with shape [N, grid_D, grid_H,
196
                        grid_W, 3]. The data type is float32 or float64.
197 198 199
        mode(str, optional): The interpolation method which can be 'bilinear' or 'nearest'.
                         Default: 'bilinear'.
        padding_mode(str, optional) The padding method used when source index
200
                   is out of input images. It can be 'zeros', 'reflection' and 'border'.
201 202 203 204 205 206 207
                   Default: zeros.
        align_corners(bool, optional): If `align_corners` is true, it will projects
                   -1 and 1 to the centers of the corner pixels. Otherwise, it will
                   projects -1 and 1 to the image edges.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
208 209

    Returns:
210

211
        Tensor, The shape of output is [N, C, grid_H, grid_W] or [N, C, grid_D, grid_H, grid_W] in which `grid_D` is the depth of grid,
212
                `grid_H` is the height of grid and `grid_W` is the width of grid. The data type is same as input tensor.
213

214
    Examples:
215

216
        .. code-block:: python
217

218 219
            import paddle
            import paddle.nn.functional as F
220 221

            # x shape=[1, 1, 3, 3]
222 223 224
            x = paddle.to_tensor([[[[-0.6,  0.8, -0.5],
                                    [-0.5,  0.2,  1.2],
                                    [ 1.4,  0.3, -0.2]]]],dtype='float64')
225
            # grid shape = [1, 3, 4, 2]
226 227 228 229 230 231 232 233 234 235 236 237
            grid = paddle.to_tensor([[[[ 0.2,  0.3],
                                       [-0.4, -0.3],
                                       [-0.9,  0.3],
                                       [-0.9, -0.6]],
                                      [[ 0.4,  0.1],
                                       [ 0.9, -0.8],
                                       [ 0.4,  0.5],
                                       [ 0.5, -0.2]],
                                      [[ 0.1, -0.8],
                                       [-0.3, -1. ],
                                       [ 0.7,  0.4],
                                       [ 0.2,  0.8]]]],dtype='float64')
238 239 240 241 242 243
            y_t = F.grid_sample(
                x,
                grid,
                mode='bilinear',
                padding_mode='border',
                align_corners=True)
W
whs 已提交
244
            print(y_t)
245

246 247 248 249 250
            # output shape = [1, 1, 3, 4]
            # [[[[ 0.34   0.016  0.086 -0.448]
            #    [ 0.55  -0.076  0.35   0.59 ]
            #    [ 0.596  0.38   0.52   0.24 ]]]]
    """
251

252
    _modes = ['bilinear', 'nearest']
253
    _padding_modes = ['zeros', 'reflection', 'border']
254 255 256 257 258 259
    if mode not in _modes:
        raise ValueError(
            "The mode of grid sample function should be in {}, but got: {}".
            format(_modes, mode))
    if padding_mode not in _padding_modes:
        raise ValueError(
260 261
            "The padding mode of grid sample function should be in {}, but got: {}"
            .format(_padding_modes, padding_mode))
262 263 264 265 266 267 268

    if not isinstance(align_corners, bool):
        raise ValueError("The align corners should be bool, but got: {}".format(
            align_corners))

    cudnn_version = get_cudnn_version()
    use_cudnn = False
Z
zhiboniu 已提交
269
    if not is_compiled_with_rocm() and (
270 271
            cudnn_version is not None
    ) and align_corners and mode == 'bilinear' and padding_mode == 'zeros':
272
        use_cudnn = True
W
whs 已提交
273 274 275
        # CUDNN always computes gradients for all inputs
        x.stop_gradient = False
        grid.stop_gradient = False
276

277 278 279
    if len(grid.shape) == 5:
        use_cudnn = False

W
Wang Bojun 已提交
280
    if in_dygraph_mode():
281
        return _C_ops.grid_sample(x, grid, mode, padding_mode, align_corners)
W
Wang Bojun 已提交
282
    elif in_dynamic_mode():
283 284
        attrs = ('mode', mode, 'padding_mode', padding_mode, 'align_corners',
                 align_corners, 'use_cudnn', use_cudnn)
285
        out = getattr(_legacy_C_ops, 'grid_sampler')(x, grid, *attrs)
286
    else:
287 288 289 290 291 292 293 294 295 296 297
        helper = LayerHelper("grid_sample", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sample')
        check_variable_and_dtype(grid, 'grid', ['float32', 'float64'],
                                 'grid_sample')
        ipts = {'X': x, 'Grid': grid}
        attrs = {
            'mode': mode,
            'padding_mode': padding_mode,
            'align_corners': align_corners,
            'use_cudnn': use_cudnn
        }
298
        out = helper.create_variable_for_type_inference(x.dtype)
299 300 301 302
        helper.append_op(type='grid_sampler',
                         inputs=ipts,
                         attrs=attrs,
                         outputs={'Output': out})
303
    return out
R
ruri 已提交
304 305 306 307 308 309


def pixel_shuffle(x, upscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel shuffle operation.
    See more details in :ref:`api_nn_vision_PixelShuffle` .
310 311


R
ruri 已提交
312 313 314
    Parameters:
        x(Tensor): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
315
        data_format (str, optional): The data format of the input and output data. An optional string from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
R
ruri 已提交
316
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
317

R
ruri 已提交
318 319
    Returns:
        Out(tensor): Reshaped tensor according to the new dimension.
320

R
ruri 已提交
321 322
    Examples:
        .. code-block:: python
323

R
ruri 已提交
324 325
            import paddle
            import paddle.nn.functional as F
326 327 328

            x = paddle.randn(shape=[2,9,4,4])
            out_var = F.pixel_shuffle(x, 3)
R
ruri 已提交
329
            out = out_var.numpy()
330
            print(out.shape)
R
ruri 已提交
331 332 333 334 335 336
            # (2, 1, 12, 12)
    """
    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    if data_format not in ["NCHW", "NHWC"]:
337 338 339
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
            "But recevie Attr(data_format): {} ".format(data_format))
H
hong 已提交
340
    if in_dygraph_mode():
341
        return _C_ops.pixel_shuffle(x, upscale_factor, data_format)
R
ruri 已提交
342

H
hong 已提交
343
    if _in_legacy_dygraph():
344 345
        return _legacy_C_ops.pixel_shuffle(x, "upscale_factor", upscale_factor,
                                           "data_format", data_format)
R
ruri 已提交
346 347

    helper = LayerHelper("pixel_shuffle", **locals())
348
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_shuffle')
R
ruri 已提交
349
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
350 351 352 353 354 355 356
    helper.append_op(type="pixel_shuffle",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={
                         "upscale_factor": upscale_factor,
                         "data_format": data_format
                     })
R
ruri 已提交
357
    return out
358 359


360 361 362 363 364 365 366 367
def pixel_unshuffle(x, downscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel unshuffle operation.
    See more details in :ref:`api_nn_vision_PixelUnshuffle` .

    Parameters:
        x (Tensor): 4-D tensor, the data type should be float32 or float64.
        downscale_factor (int): Factor to decrease spatial resolution.
368
        data_format (str, optional): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
369 370 371 372 373 374 375 376 377 378 379 380
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Out (Tensor): Reshaped tensor according to the new dimension.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.randn([2, 1, 12, 12])
            out = F.pixel_unshuffle(x, 3)
381 382
            print(out.shape)
            # [2, 9, 4, 4]
383 384 385 386 387 388 389 390 391 392 393 394 395
    """
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))

    if not isinstance(downscale_factor, int):
        raise TypeError("Downscale factor must be int type")

    if downscale_factor <= 0:
        raise ValueError("Downscale factor must be positive")

    if data_format not in ["NCHW", "NHWC"]:
396 397 398
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
            "But recevie Attr(data_format): {} ".format(data_format))
399 400

    if _non_static_mode():
401 402 403
        return _legacy_C_ops.pixel_unshuffle(x, "downscale_factor",
                                             downscale_factor, "data_format",
                                             data_format)
404 405 406 407

    helper = LayerHelper("pixel_unshuffle", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_unshuffle')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
408 409 410 411 412 413 414
    helper.append_op(type="pixel_unshuffle",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={
                         "downscale_factor": downscale_factor,
                         "data_format": data_format
                     })
415 416 417
    return out


418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
def channel_shuffle(x, groups, data_format="NCHW", name=None):
    """
    This API implements channel shuffle operation.
    See more details in :ref:`api_nn_vision_ChannelShuffle` .

    Parameters:
        x (Tensor): 4-D tensor, the data type should be float32 or float64.
        groups (int): Number of groups to divide channels in.
        data_format (str): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Out (Tensor): Rearranged tensor keeping the original tensor shape.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.arange(0, 0.6, 0.1, 'float32')
            x = paddle.reshape(x, [1, 6, 1, 1])
            # [[[[0.        ]],
            #   [[0.10000000]],
            #   [[0.20000000]],
            #   [[0.30000001]],
            #   [[0.40000001]],
            #   [[0.50000000]]]]
            y = F.channel_shuffle(x, 3)
            # [[[[0.        ]],
            #   [[0.20000000]],
            #   [[0.40000001]],
            #   [[0.10000000]],
            #   [[0.30000001]],
            #   [[0.50000000]]]]
    """
    if len(x.shape) != 4:
        raise ValueError(
            "Input x should be 4D tensor, but received x with the shape of {}".
            format(x.shape))

    if not isinstance(groups, int):
        raise TypeError("groups must be int type")

    if groups <= 0:
        raise ValueError("groups must be positive")

    if data_format not in ["NCHW", "NHWC"]:
465 466 467
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
            "But recevie Attr(data_format): {} ".format(data_format))
468 469

    if _non_static_mode():
470 471
        return _legacy_C_ops.channel_shuffle(x, "groups", groups, "data_format",
                                             data_format)
472 473 474 475

    helper = LayerHelper("channel_shuffle", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'channel_shuffle')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
476 477 478 479 480 481 482
    helper.append_op(type="channel_shuffle",
                     inputs={"X": x},
                     outputs={"Out": out},
                     attrs={
                         "groups": groups,
                         "data_format": data_format
                     })
483
    return out