vision.py 20.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from ...device import get_cudnn_version
16
from ...static import Variable
R
ruri 已提交
17
from ...fluid.layer_helper import LayerHelper
18
from ...fluid.data_feeder import check_variable_and_dtype
19
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
20 21
from ...device import is_compiled_with_rocm
from paddle import in_dynamic_mode
H
hong 已提交
22
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
23
from paddle.framework import _non_static_mode
R
ruri 已提交
24

25 26
__all__ = []

27 28 29

def affine_grid(theta, out_shape, align_corners=True, name=None):
    """
30
    It generates a grid of (x,y) or (x,y,z) coordinates using the parameters of
31 32 33 34 35
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    Args:
36
        theta (Tensor) - A tensor with shape [N, 2, 3] or [N, 3, 4]. It contains a batch of affine transform parameters.
37
                           The data type can be float32 or float64.
38
        out_shape (Tensor | list | tuple): Type can be a 1-D Tensor, list, or tuple. It is used to represent the shape of the output in an affine transformation, in the format ``[N, C, H, W]`` or ``[N, C, D, H, W]``.
39 40 41 42
                                           When the format is ``[N, C, H, W]``, it represents the batch size, number of channels, height and width. When the format is ``[N, C, D, H, W]``, it represents the batch size, number of channels, depth, height and width.
                                           The data type must be int32.
        align_corners(bool, optional): if True, aligns the centers of the 4 (4D) or 8 (5D) corner pixels of the input and output tensors, and preserves the value of the corner pixels. Default: True
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
43 44

    Returns:
45
        Tensor, A Tensor with shape [batch_size, H, W, 2] or [batch, D, H, W, 3] while ('D')'H', 'W' are the (depth)height, width of feature map in affine transformation. The data type is the same as `theta`.
46 47 48 49 50 51 52 53

    Examples:

        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            # theta shape = [1, 2, 3]
54 55
            theta = paddle.to_tensor([[[-0.7, -0.4, 0.3],
                                       [ 0.6,  0.5, 1.5]]], dtype="float32")
56
            y_t = F.affine_grid(
57
                    theta,
58 59
                    [1, 2, 3, 3],
                    align_corners=False)
W
whs 已提交
60
            print(y_t)
61

62 63 64 65 66 67 68 69 70 71 72 73 74 75
            #[[[[ 1.0333333   0.76666665]
            #   [ 0.76666665  1.0999999 ]
            #   [ 0.5         1.4333333 ]]
            #
            #  [[ 0.5666667   1.1666666 ]
            #   [ 0.3         1.5       ]
            #   [ 0.03333333  1.8333334 ]]
            #
            #  [[ 0.10000002  1.5666667 ]
            #   [-0.16666666  1.9000001 ]
            #   [-0.43333334  2.2333333 ]]]]
    """
    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Tensor.")
76

77 78 79 80 81
    cudnn_version = get_cudnn_version()
    if cudnn_version is not None and cudnn_version >= 6000 and align_corners:
        use_cudnn = True
    else:
        use_cudnn = False
82 83
    if theta.shape[1] == 3:
        use_cudnn = False
Z
zhiboniu 已提交
84
    if is_compiled_with_rocm():
85 86 87
        use_cudnn = (
            False  # ROCM platform do not have MIOPEN kernel for affine_grid
        )
88

89
    if in_dygraph_mode():
90 91 92 93 94
        _out_shape = (
            out_shape.numpy().tolist()
            if isinstance(out_shape, Variable)
            else out_shape
        )
95 96
        theta = theta._use_cudnn(use_cudnn)
        return _C_ops.affine_grid(theta, _out_shape, align_corners)
97
    elif in_dynamic_mode():
98 99 100 101 102 103 104 105 106 107 108 109 110 111
        _out_shape = (
            out_shape.numpy().tolist()
            if isinstance(out_shape, Variable)
            else out_shape
        )
        return _legacy_C_ops.affine_grid(
            theta,
            "output_shape",
            _out_shape,
            "align_corners",
            align_corners,
            "use_cudnn",
            use_cudnn,
        )
112

113
    helper = LayerHelper('affine_grid')
114 115 116
    check_variable_and_dtype(
        theta, 'theta', ['float32', 'float64'], 'affine_grid'
    )
117 118 119 120 121
    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {"align_corners": align_corners, "use_cudnn": use_cudnn}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
122 123 124
        check_variable_and_dtype(
            out_shape, 'out_shape', ['int32'], 'affine_grid'
        )
125 126 127
    else:
        attrs['output_shape'] = out_shape

128 129 130 131 132 133
    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs,
    )
134
    return out
135 136


137 138 139 140 141 142 143 144
def grid_sample(
    x,
    grid,
    mode='bilinear',
    padding_mode='zeros',
    align_corners=True,
    name=None,
):
145
    """
146
    Sample input X by using bilinear interpolation or
147
    nearest interpolation based on flow field grid, which is usually
148 149 150 151 152
    generated by :code:`affine_grid` . When the input X is 4-D Tensor,
    the grid of shape [N, H, W, 2] is the concatenation of (x, y)
    coordinates with shape [N, H, W] each, where x is indexing the 4th
    dimension (in width dimension) of input data x and y is indexing
    the 3rd dimension (in height dimension), finally results is the
153
    bilinear interpolation or nearest value of 4 nearest corner
154 155 156 157 158 159 160 161
    points. The output tensor shape will be [N, C, H, W]. When the input X
    is 5-D Tensor, the grid of shape [N, D, H, W, 3] is the concatenation
    of (x, y, z) coordinates with shape [N, D, H, W] each, where x is
    indexing the 5th dimension (in width dimension) of input data x, y is
    indexing the 4th dimension (in height dimension) and z is indexing the
    3rd dimension (in depth dimension) finally results is the bilinear
    interpolation or nearest value of 8 nearest cornerpoints. The output
    tensor shape will be [N, C, D, H, W].
162

163 164 165 166 167 168 169 170 171 172 173 174


    Step 1:

    Get (x, y) grid coordinates and scale to [0, H-1/W-1].

    .. code-block:: text

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

    Step 2:
175

176 177 178 179
    Indices input data X with grid (x, y) in each [H, W] area, and bilinear
    interpolate point value by 4 nearest points or nearest interpolate point value
    by nearest point.

180
    .. code-block:: text
181 182 183 184 185 186 187 188 189 190 191

        wn ------- y_n ------- en
        |           |           |
        |          d_n          |
        |           |           |
        x_w --d_w-- grid--d_e-- x_e
        |           |           |
        |          d_s          |
        |           |           |
        ws ------- y_s ------- wn

192 193 194 195 196 197 198 199 200 201 202 203 204
        For bilinear interpolation:
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
205

206
        output = wn * d_e * d_s + en * d_w * d_s
207 208
                + ws * d_e * d_n + es * d_w * d_n

209 210
    Args:
        x(Tensor): The input tensor, which is a 4-d tensor with shape
211 212
                     [N, C, H, W] or a 5-d tensor with shape [N, C, D, H, W],
                     N is the batch size, C is the channel number,
213
                     D, H and W is the feature depth, height and width.
214
                     The data type is float32 or float64.
215 216
        grid(Tensor): Input grid tensor, which is a 4-d tensor with shape [N, grid_H,
                        grid_W, 2] or a 5-d tensor with shape [N, grid_D, grid_H,
217
                        grid_W, 3]. The data type is float32 or float64.
218 219 220
        mode(str, optional): The interpolation method which can be 'bilinear' or 'nearest'.
                         Default: 'bilinear'.
        padding_mode(str, optional) The padding method used when source index
221
                   is out of input images. It can be 'zeros', 'reflection' and 'border'.
222 223 224 225 226 227 228
                   Default: zeros.
        align_corners(bool, optional): If `align_corners` is true, it will projects
                   -1 and 1 to the centers of the corner pixels. Otherwise, it will
                   projects -1 and 1 to the image edges.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
229 230

    Returns:
231

232
        Tensor, The shape of output is [N, C, grid_H, grid_W] or [N, C, grid_D, grid_H, grid_W] in which `grid_D` is the depth of grid,
233
                `grid_H` is the height of grid and `grid_W` is the width of grid. The data type is same as input tensor.
234

235
    Examples:
236

237
        .. code-block:: python
238

239 240
            import paddle
            import paddle.nn.functional as F
241 242

            # x shape=[1, 1, 3, 3]
243 244 245
            x = paddle.to_tensor([[[[-0.6,  0.8, -0.5],
                                    [-0.5,  0.2,  1.2],
                                    [ 1.4,  0.3, -0.2]]]],dtype='float64')
246
            # grid shape = [1, 3, 4, 2]
247 248 249 250 251 252 253 254 255 256 257 258
            grid = paddle.to_tensor([[[[ 0.2,  0.3],
                                       [-0.4, -0.3],
                                       [-0.9,  0.3],
                                       [-0.9, -0.6]],
                                      [[ 0.4,  0.1],
                                       [ 0.9, -0.8],
                                       [ 0.4,  0.5],
                                       [ 0.5, -0.2]],
                                      [[ 0.1, -0.8],
                                       [-0.3, -1. ],
                                       [ 0.7,  0.4],
                                       [ 0.2,  0.8]]]],dtype='float64')
259 260 261 262 263 264
            y_t = F.grid_sample(
                x,
                grid,
                mode='bilinear',
                padding_mode='border',
                align_corners=True)
W
whs 已提交
265
            print(y_t)
266

267 268 269 270 271
            # output shape = [1, 1, 3, 4]
            # [[[[ 0.34   0.016  0.086 -0.448]
            #    [ 0.55  -0.076  0.35   0.59 ]
            #    [ 0.596  0.38   0.52   0.24 ]]]]
    """
272

273
    _modes = ['bilinear', 'nearest']
274
    _padding_modes = ['zeros', 'reflection', 'border']
275 276
    if mode not in _modes:
        raise ValueError(
277 278 279 280
            "The mode of grid sample function should be in {}, but got: {}".format(
                _modes, mode
            )
        )
281 282
    if padding_mode not in _padding_modes:
        raise ValueError(
283 284 285 286
            "The padding mode of grid sample function should be in {}, but got: {}".format(
                _padding_modes, padding_mode
            )
        )
287 288

    if not isinstance(align_corners, bool):
289 290 291 292 293
        raise ValueError(
            "The align corners should be bool, but got: {}".format(
                align_corners
            )
        )
294 295 296

    cudnn_version = get_cudnn_version()
    use_cudnn = False
297 298 299 300 301 302 303
    if (
        not is_compiled_with_rocm()
        and (cudnn_version is not None)
        and align_corners
        and mode == 'bilinear'
        and padding_mode == 'zeros'
    ):
304
        use_cudnn = True
W
whs 已提交
305 306 307
        # CUDNN always computes gradients for all inputs
        x.stop_gradient = False
        grid.stop_gradient = False
308

309 310 311
    if len(grid.shape) == 5:
        use_cudnn = False

W
Wang Bojun 已提交
312
    if in_dygraph_mode():
313
        return _C_ops.grid_sample(x, grid, mode, padding_mode, align_corners)
W
Wang Bojun 已提交
314
    elif in_dynamic_mode():
315 316 317 318 319 320 321 322 323 324
        attrs = (
            'mode',
            mode,
            'padding_mode',
            padding_mode,
            'align_corners',
            align_corners,
            'use_cudnn',
            use_cudnn,
        )
325
        out = getattr(_legacy_C_ops, 'grid_sampler')(x, grid, *attrs)
326
    else:
327 328
        helper = LayerHelper("grid_sample", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'grid_sample')
329 330 331
        check_variable_and_dtype(
            grid, 'grid', ['float32', 'float64'], 'grid_sample'
        )
332 333 334 335 336
        ipts = {'X': x, 'Grid': grid}
        attrs = {
            'mode': mode,
            'padding_mode': padding_mode,
            'align_corners': align_corners,
337
            'use_cudnn': use_cudnn,
338
        }
339
        out = helper.create_variable_for_type_inference(x.dtype)
340 341 342 343 344 345
        helper.append_op(
            type='grid_sampler',
            inputs=ipts,
            attrs=attrs,
            outputs={'Output': out},
        )
346
    return out
R
ruri 已提交
347 348 349 350 351 352


def pixel_shuffle(x, upscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel shuffle operation.
    See more details in :ref:`api_nn_vision_PixelShuffle` .
353 354


R
ruri 已提交
355 356 357
    Parameters:
        x(Tensor): 4-D tensor, the data type should be float32 or float64.
        upscale_factor(int): factor to increase spatial resolution.
358
        data_format (str, optional): The data format of the input and output data. An optional string from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in the order of: [batch_size, input_channels, input_height, input_width].
R
ruri 已提交
359
        name (str, optional): The default value is None.  Normally there is no need for user to set this property.
360

R
ruri 已提交
361 362
    Returns:
        Out(tensor): Reshaped tensor according to the new dimension.
363

R
ruri 已提交
364 365
    Examples:
        .. code-block:: python
366

R
ruri 已提交
367 368
            import paddle
            import paddle.nn.functional as F
369 370 371

            x = paddle.randn(shape=[2,9,4,4])
            out_var = F.pixel_shuffle(x, 3)
R
ruri 已提交
372
            out = out_var.numpy()
373
            print(out.shape)
R
ruri 已提交
374 375 376 377 378 379
            # (2, 1, 12, 12)
    """
    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    if data_format not in ["NCHW", "NHWC"]:
380 381
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
382 383
            "But recevie Attr(data_format): {} ".format(data_format)
        )
H
hong 已提交
384
    if in_dygraph_mode():
385
        return _C_ops.pixel_shuffle(x, upscale_factor, data_format)
R
ruri 已提交
386

H
hong 已提交
387
    if _in_legacy_dygraph():
388 389 390
        return _legacy_C_ops.pixel_shuffle(
            x, "upscale_factor", upscale_factor, "data_format", data_format
        )
R
ruri 已提交
391 392

    helper = LayerHelper("pixel_shuffle", **locals())
393
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_shuffle')
R
ruri 已提交
394
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
395 396 397 398 399 400
    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor, "data_format": data_format},
    )
R
ruri 已提交
401
    return out
402 403


404 405 406 407 408 409 410 411
def pixel_unshuffle(x, downscale_factor, data_format="NCHW", name=None):
    """
    This API implements pixel unshuffle operation.
    See more details in :ref:`api_nn_vision_PixelUnshuffle` .

    Parameters:
        x (Tensor): 4-D tensor, the data type should be float32 or float64.
        downscale_factor (int): Factor to decrease spatial resolution.
412
        data_format (str, optional): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
413 414 415 416 417 418 419 420 421 422 423 424
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Out (Tensor): Reshaped tensor according to the new dimension.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.randn([2, 1, 12, 12])
            out = F.pixel_unshuffle(x, 3)
425 426
            print(out.shape)
            # [2, 9, 4, 4]
427 428 429
    """
    if len(x.shape) != 4:
        raise ValueError(
430 431 432 433
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
434 435 436 437 438 439 440 441

    if not isinstance(downscale_factor, int):
        raise TypeError("Downscale factor must be int type")

    if downscale_factor <= 0:
        raise ValueError("Downscale factor must be positive")

    if data_format not in ["NCHW", "NHWC"]:
442 443
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
444 445
            "But recevie Attr(data_format): {} ".format(data_format)
        )
446 447

    if _non_static_mode():
448 449 450
        return _legacy_C_ops.pixel_unshuffle(
            x, "downscale_factor", downscale_factor, "data_format", data_format
        )
451 452 453 454

    helper = LayerHelper("pixel_unshuffle", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pixel_unshuffle')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
455 456 457 458 459 460 461 462 463
    helper.append_op(
        type="pixel_unshuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={
            "downscale_factor": downscale_factor,
            "data_format": data_format,
        },
    )
464 465 466
    return out


467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
def channel_shuffle(x, groups, data_format="NCHW", name=None):
    """
    This API implements channel shuffle operation.
    See more details in :ref:`api_nn_vision_ChannelShuffle` .

    Parameters:
        x (Tensor): 4-D tensor, the data type should be float32 or float64.
        groups (int): Number of groups to divide channels in.
        data_format (str): The data format of the input and output data. An optional string of NCHW or NHWC. The default is NCHW. When it is NCHW, the data is stored in the order of [batch_size, input_channels, input_height, input_width].
        name (str, optional): Name for the operation (optional, default is None). Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Out (Tensor): Rearranged tensor keeping the original tensor shape.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn.functional as F
            x = paddle.arange(0, 0.6, 0.1, 'float32')
            x = paddle.reshape(x, [1, 6, 1, 1])
            # [[[[0.        ]],
            #   [[0.10000000]],
            #   [[0.20000000]],
            #   [[0.30000001]],
            #   [[0.40000001]],
            #   [[0.50000000]]]]
            y = F.channel_shuffle(x, 3)
            # [[[[0.        ]],
            #   [[0.20000000]],
            #   [[0.40000001]],
            #   [[0.10000000]],
            #   [[0.30000001]],
            #   [[0.50000000]]]]
    """
    if len(x.shape) != 4:
        raise ValueError(
504 505 506 507
            "Input x should be 4D tensor, but received x with the shape of {}".format(
                x.shape
            )
        )
508 509 510 511 512 513 514 515

    if not isinstance(groups, int):
        raise TypeError("groups must be int type")

    if groups <= 0:
        raise ValueError("groups must be positive")

    if data_format not in ["NCHW", "NHWC"]:
516 517
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'."
518 519
            "But recevie Attr(data_format): {} ".format(data_format)
        )
520 521

    if _non_static_mode():
522 523 524
        return _legacy_C_ops.channel_shuffle(
            x, "groups", groups, "data_format", data_format
        )
525 526 527 528

    helper = LayerHelper("channel_shuffle", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'channel_shuffle')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
529 530 531 532 533 534
    helper.append_op(
        type="channel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"groups": groups, "data_format": data_format},
    )
535
    return out