data_feeder.py 10.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from . import core
Y
Yu Yang 已提交
16
import numpy
C
chengduoZH 已提交
17
import os
Y
Yu Yang 已提交
18
import six.moves as six
Y
yuyang18 已提交
19
import multiprocessing
Y
Yu Yang 已提交
20

21
from .framework import Variable, default_main_program
Y
Yu Yang 已提交
22 23 24 25 26 27 28 29 30

__all__ = ['DataFeeder']


class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
31 32 33 34 35 36 37
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
38
        if dtype == core.VarDesc.VarType.FP32:
Y
Yu Yang 已提交
39
            self.dtype = 'float32'
40
        elif dtype == core.VarDesc.VarType.INT64:
Y
Yu Yang 已提交
41
            self.dtype = 'int64'
42
        elif dtype == core.VarDesc.VarType.FP64:
Y
Yu Yang 已提交
43
            self.dtype = 'float64'
44
        elif dtype == core.VarDesc.VarType.INT32:
Y
Yu Yang 已提交
45
            self.dtype = 'int32'
F
fengjiayi 已提交
46 47
        elif dtype == core.VarDesc.VarType.UINT8:
            self.dtype = 'uint8'
Y
Yu Yang 已提交
48 49
        else:
            raise ValueError("dtype must be any of [int32, float32, int64, "
F
fengjiayi 已提交
50
                             "float64, uint8]")
Y
Yu Yang 已提交
51 52 53 54 55

        self.data = []
        self.lod = []

        for i in six.range(lod_level):
56
            self.lod.append([])
Y
Yu Yang 已提交
57 58 59 60 61 62 63 64

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
65
            lod[0].append(len(data))
Y
Yu Yang 已提交
66
            for each_data in data:
K
Kexin Zhao 已提交
67
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
68 69

    def done(self):
70 71 72
        arr = numpy.array(self.data, dtype=self.dtype)
        if self.shape:
            arr = arr.reshape(self.shape)
Y
Yu Yang 已提交
73 74 75
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
76
            t.set_recursive_sequence_lengths(self.lod)
Y
Yu Yang 已提交
77 78 79 80
        return t


class DataFeeder(object):
C
chengduoZH 已提交
81
    """
C
chengduoZH 已提交
82 83
    DataFeeder converts the data that returned by a reader into a data
    structure that can feed into Executor and ParallelExecutor. The reader
C
chengduoZH 已提交
84
    usually returns a list of mini-batch data entries. Each data entry in
C
chengduoZH 已提交
85 86
    the list is one sample. Each sample is a list or a tuple with one
    feature or multiple features.
C
chengduoZH 已提交
87 88 89 90 91 92

    The simple usage shows below:

    ..  code-block:: python

        place = fluid.CPUPlace()
C
chengduoZH 已提交
93
        img = fluid.layers.data(name='image', shape=[1, 28, 28])
C
chengduoZH 已提交
94
        label = fluid.layers.data(name='label', shape=[1], dtype='int64')
C
chengduoZH 已提交
95 96
        feeder = fluid.DataFeeder([img, label], fluid.CPUPlace())
        result = feeder.feed([([0] * 784, [9]), ([1] * 784, [1])])
C
chengduoZH 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111


    If you want to feed data into GPU side separately in advance when you
    use multi-GPU to train a model, you can use `decorate_reader` function.

    ..  code-block:: python

        place=fluid.CUDAPlace(0)
        feeder = fluid.DataFeeder(place=place, feed_list=[data, label])
        reader = feeder.decorate_reader(
            paddle.batch(flowers.train(), batch_size=16))

    Args:
        feed_list(list): The Variables or Variables'name that will
            feed into model.
C
chengduoZH 已提交
112 113 114 115
        place(Place): place indicates feed data into CPU or GPU, if you want to
            feed data into GPU, please using `fluid.CUDAPlace(i)` (`i` represents
            the GPU id), or if you want to feed data into CPU, please using
            `fluid.CPUPlace()`.
C
chengduoZH 已提交
116 117 118 119
        program(Program): The Program that will feed data into, if program
            is None, it will use default_main_program(). Default None.

    Raises:
C
chengduoZH 已提交
120
        ValueError: If some Variable is not in this Program.
C
chengduoZH 已提交
121 122 123 124 125 126 127 128

    Examples:
        .. code-block:: python

            # ...
            place = fluid.CPUPlace()
            feed_list = [
                main_program.global_block().var(var_name) for var_name in feed_vars_name
C
chengduoZH 已提交
129
            ] # feed_vars_name is a list of variables' name.
C
chengduoZH 已提交
130 131 132 133 134 135
            feeder = fluid.DataFeeder(feed_list, place)
            for data in reader():
                outs = exe.run(program=main_program,
                               feed=feeder.feed(data))
    """

F
fengjiayi 已提交
136
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
137 138 139 140
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
141 142
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
143
        for each_var in feed_list:
144
            if isinstance(each_var, str):
F
fengjiayi 已提交
145
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            shape = each_var.shape
            batch_size_dim = -1
            for i, s in enumerate(shape):
                if s < 0:
                    batch_size_dim = i
                    break
            if batch_size_dim == -1:
                raise ValueError("Variable {0} must has a batch size dimension",
                                 each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
            self.feed_shapes.append(shape)

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
165
        """
C
chengduoZH 已提交
166 167
        According to feed_list and iterable, converters the input into
        a data structure that can feed into Executor and ParallelExecutor.
C
chengduoZH 已提交
168 169 170 171 172 173 174

        Args:
            iterable(list|tuple): the input data.

        Returns:
            dict: the result of conversion.
        """
Y
Yu Yang 已提交
175 176 177 178 179 180 181 182 183 184 185
        converter = []
        for lod_level, shape, dtype in six.zip(
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
186 187 188
            assert len(each_sample) == len(converter), (
                "The number of fields in data (%s) does not match " +
                "len(feed_list) (%s)") % (len(each_sample), len(converter))
Y
Yu Yang 已提交
189 190 191 192 193 194
            for each_converter, each_slot in six.zip(converter, each_sample):
                each_converter.feed(each_slot)
        ret_dict = {}
        for each_name, each_converter in six.zip(self.feed_names, converter):
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
195 196

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
197 198
        """
        Takes multiple mini-batches. Each mini-batch will be feed on each
C
chengduoZH 已提交
199
        device in advance.
C
chengduoZH 已提交
200 201 202

        Args:
            iterable(list|tuple): the input data.
C
chengduoZH 已提交
203
            num_places(int): the number of devices. Default None.
C
chengduoZH 已提交
204 205 206 207 208 209 210

        Returns:
            dict: the result of conversion.

        Notes:
            The number of devices and number of mini-batches must be same.
        """
Y
yuyang18 已提交
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
                for i in six.xrange(self._get_number_of_places_(num_places))
            ]
        else:
            places = [
                core.CPUPlace()
                for _ in six.xrange(self._get_number_of_places_(num_places))
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
        for p, batch in six.zip(places, iterable):
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
            return core.get_cuda_device_count()
        else:
C
chengduoZH 已提交
240 241 242
            cpu_num = int(
                os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
            return cpu_num
Y
yuyang18 已提交
243 244 245 246 247 248

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
        """
        Converter the input data into a data that returned by reader into
        multiple mini-batches. Each mini-batch will be feed on each device.

        Args:
            reader(fun): the input data.
            multi_devices(bool): the number of places. Default None.
            num_places(int): the number of places. Default None.
            drop_last(bool): the number of places. Default None.

        Returns:
            dict: the result of conversion.

        Raises:
            ValueError: If drop_last is False and the data batch which cannot
            fit for devices.
        """

Y
yuyang18 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__