pybind.cc 18.6 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Q
qijun 已提交
15 16
#include "paddle/pybind/protobuf.h"

Q
QI JUN 已提交
17
#include <mutex>  // for call_once
18
#include <unordered_map>
Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
F
fengjiayi 已提交
20
#include "paddle/framework/executor.h"
Q
qijun 已提交
21
#include "paddle/framework/feed_fetch_method.h"
22
#include "paddle/framework/framework.pb.h"
D
dzhwinter 已提交
23
#include "paddle/framework/init.h"
Y
Yu Yang 已提交
24
#include "paddle/framework/lod_rank_table.h"
D
dangqingqing 已提交
25
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
26
#include "paddle/framework/lod_tensor_array.h"
27
#include "paddle/framework/prune.h"
Q
qijun 已提交
28
#include "paddle/framework/selected_rows.h"
Z
zchen0211 已提交
29
#include "paddle/operators/cond_op.h"
Y
Yan Chunwei 已提交
30
#include "paddle/operators/net_op.h"
Q
qijun 已提交
31
#include "paddle/platform/enforce.h"
Q
qijun 已提交
32
#include "paddle/platform/place.h"
Q
qiaolongfei 已提交
33
#include "paddle/pybind/const_value.h"
Y
Yu Yang 已提交
34
#include "paddle/pybind/exception.h"
Q
qijun 已提交
35
#include "paddle/pybind/pybind.h"
36
#include "paddle/pybind/tensor_py.h"
37
#include "paddle/string/to_string.h"
38

D
Dong Zhihong 已提交
39 40
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
D
dangqingqing 已提交
41
#include "paddle/platform/cuda_profiler.h"
D
Dong Zhihong 已提交
42
#include "paddle/platform/gpu_info.h"
D
Dong Zhihong 已提交
43 44
#endif

Q
Qiao Longfei 已提交
45 46 47
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

48
namespace paddle {
49
namespace pybind {
50 51 52
static size_t UniqueIntegerGenerator(const std::string &prefix) {
  static std::unordered_map<std::string, std::atomic<size_t>> generators;
  return generators[prefix].fetch_add(1);
53 54
}

Q
qijun 已提交
55
bool IsCompileGPU() {
56
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
57 58 59 60 61 62
  return false;
#else
  return true;
#endif
}

63
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
64
  py::module m("core", "C++ core of PaddlePaddle");
65

66 67 68 69
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

Y
Yu Yang 已提交
70 71
  BindException(m);

72 73 74
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
75
      .def("get_dims",
76
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
77
      .def("set_dims",
Q
qijun 已提交
78
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
79
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
80
           })
D
dzhwinter 已提交
81 82 83 84
      .def("set_layout",
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
Yu Yang 已提交
85
      .def("alloc_float",
D
dzhwinter 已提交
86
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
87
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
88
           })
Q
qijun 已提交
89
      .def("alloc_float",
Y
Yu Yang 已提交
90
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
91
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
92 93
           })
      .def("alloc_int",
Y
Yu Yang 已提交
94
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
95
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
96
           })
Q
qijun 已提交
97
      .def("alloc_int",
D
dzhwinter 已提交
98
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
99
             self.mutable_data<int>(place);
Q
qijun 已提交
100
           })
Y
Yu Yang 已提交
101 102
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
103
      .def("set", PyCPUTensorSetFromArray<double>)
104
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
105
      .def("set", PyCPUTensorSetFromArray<bool>)
106
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
107 108
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
109
      .def("set", PyCUDATensorSetFromArray<double>)
110
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
111
      .def("set", PyCUDATensorSetFromArray<bool>)
Q
qijun 已提交
112
#endif
113
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
114 115 116 117 118
      .def("set_float_element", TensorSetElement<float>)
      .def("get_float_element", TensorGetElement<float>)
      .def("set_double_element", TensorSetElement<double>)
      .def("get_double_element", TensorGetElement<double>)
      .def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
Y
Yu Yang 已提交
119

120
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
121 122
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
123 124 125
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
126
#ifndef PADDLE_WITH_CUDA
127
            new (&instance) LoDTensor(lod);
128
#else
Y
Yu Yang 已提交
129
             LoD new_lod;
130 131
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
132
             new (&instance) LoDTensor(new_lod);
133
#endif
134
          })
Y
Yu Yang 已提交
135
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
D
dangqingqing 已提交
136
      .def("set_lod",
137
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
138
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
139
             self.set_lod(lod);
140
#else
Y
Yu Yang 已提交
141
             LoD new_lod;
142 143 144 145
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
146
           })
147
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
148
#ifndef PADDLE_WITH_CUDA
D
dangqingqing 已提交
149
        return self.lod();
150 151 152 153 154
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
Y
Yu Yang 已提交
155
               [](Vector<size_t> item) ->
156 157 158 159 160 161 162 163
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
164 165
      });

Q
qijun 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
179 180 181 182 183 184 185 186 187
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
188 189 190 191 192 193 194 195 196 197 198
      .def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
        return self.rows();
#else
         auto rows = self.rows();
         std::vector<int64_t> new_rows;
         new_rows.reserve(rows.size());
         std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
         return new_rows;
#endif
      });
Q
qijun 已提交
199

200
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
201 202 203

All parameter, weight, gradient are variables in Paddle.
)DOC")
204
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
205
      .def("set_int",
206 207
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
208 209 210 211 212 213 214
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
215
      .def("get_tensor",
216 217
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
218 219
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
220 221 222
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
223 224 225 226 227
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
228 229 230
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
D
Dong Zhihong 已提交
231 232 233 234 235 236 237
#ifdef PADDLE_WITH_CUDA
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
#endif
Y
Yan Chunwei 已提交
238
      .def("get_net",
D
dongzhihong 已提交
239 240
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
241
           },
Y
Yu Yang 已提交
242
           py::return_value_policy::reference);
243

244
  py::class_<Scope>(m, "Scope", "")
D
dongzhihong 已提交
245
      .def("var",
246
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
247
             return self.Var(name);
Y
Yu Yang 已提交
248
           },
249
           py::return_value_policy::reference)
250
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
251
      .def(py::init<>())
252
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
253
           py::return_value_policy::reference)
Y
Yu Yang 已提交
254
      .def("drop_kids", &Scope::DropKids);
255

Y
Yu Yang 已提交
256 257
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
258 259
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
260 261 262 263 264 265 266 267 268 269
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
270 271
    return ret_values;
  });
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
288
  m.def("prune", [](const ProgramDesc &origin,
289
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
290
    ProgramDesc prog_with_targets(origin);
291
    for (const auto &t : targets) {
292
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget();
293
    }
294
    proto::ProgramDesc pruned_desc;
295
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
296
    return new ProgramDesc(pruned_desc);
297
  });
Y
Yu Yang 已提交
298
  m.def("inference_optimize", [](ProgramDesc &origin) {
299
    proto::ProgramDesc pruned_desc;
300
    InferenceOptimize(*(origin.Proto()), &pruned_desc);
Y
Yu Yang 已提交
301
    return new ProgramDesc(pruned_desc);
302
  });
F
fengjiayi 已提交
303 304
  m.def("empty_var_name", []() { return framework::kEmptyVarName; });
  m.def("grad_var_suffix", []() { return framework::kGradVarSuffix; });
305 306 307
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
308 309
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
310
  // clang-format off
Y
Yu Yang 已提交
311
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
312 313
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
314
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
315 316 317
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
318
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
319
                      -> paddle::platform::DeviceContext* {
320
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
321
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
322
#else
Q
qijun 已提交
323
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
324
#endif
Q
qijun 已提交
325
                  });
D
Dong Zhihong 已提交
326
// clang-format on
Q
qijun 已提交
327

D
Dong Zhihong 已提交
328 329 330
#ifdef PADDLE_WITH_CUDA
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
331
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
332
      .def(py::init<int>())
D
dzhwinter 已提交
333
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
334

335 336 337
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
338

Y
Yu Yang 已提交
339 340 341 342 343 344 345
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
346
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
347 348 349
             self = gpu_place;
           });

Y
Yu Yang 已提交
350 351 352
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
353
                    proto::OpDesc desc;
Y
Yu Yang 已提交
354 355 356 357 358
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
359
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
360 361 362 363 364 365
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
366
      .def("run",
367
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
368 369 370
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
371
              const platform::CUDAPlace &place) { self.Run(scope, place); })
Y
Yu Yang 已提交
372 373 374 375 376 377 378
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
379 380
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
381
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
382
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
383 384 385 386
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
387

Y
Yu Yang 已提交
388 389 390 391 392 393 394
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
395 396
      .def("append_op", [](operators::NetOp &self,
                           const OperatorBase &op) { self.AppendOp(op); })
D
dongzhihong 已提交
397 398 399 400
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
401

Z
cond op  
zchen0211 已提交
402 403 404 405
  // cond_op
  py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
      .def_static("create",
                  [](py::bytes protobin) -> operators::CondOp * {
406
                    proto::OpDesc desc;
Z
cond op  
zchen0211 已提交
407 408 409 410 411
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
412
                    auto cond_op = OpRegistry::CreateOp(desc);
Z
cond op  
zchen0211 已提交
413 414 415 416 417 418 419 420 421 422 423
                    return static_cast<operators::CondOp *>(cond_op.release());
                  })
      .def("set_truenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_truenet(net.Clone());
           })
      .def("set_falsenet",
           [](operators::CondOp &self, const operators::NetOp &net) -> void {
             self.set_falsenet(net.Clone());
           });

F
fengjiayi 已提交
424
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
425
      .def(py::init<const platform::Place &>())
426
      .def("run", &Executor::Run);
F
fengjiayi 已提交
427

428
  m.def("unique_integer", UniqueIntegerGenerator);
D
dzhwinter 已提交
429
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
430
  m.def("init_glog", framework::InitGLOG);
D
dzhwinter 已提交
431
  m.def("init_devices", &framework::InitDevices);
432

D
dzhwinter 已提交
433 434 435 436 437 438
  m.def("use_cpu", framework::UseCPU);
  m.def("use_mkldnn", framework::UseMKLDNN);
  m.def("use_cuda", framework::UseCUDA);
  m.def("use_cudnn", framework::UseCUDNN);
  m.def("use_all", framework::UseALL);

Q
qijun 已提交
439
  m.def("is_compile_gpu", IsCompileGPU);
440
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
441
  m.def("get_fetch_variable", framework::GetFetchVariable);
Q
qijun 已提交
442

F
fengjiayi 已提交
443 444 445 446
  BindProgramDesc(m);
  BindBlockDesc(m);
  BindVarDsec(m);
  BindOpDesc(m);
Q
qiaolongfei 已提交
447
  BindConstValue(m);
Y
Yu Yang 已提交
448

Y
Yu Yang 已提交
449 450 451 452 453 454 455 456 457
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

Y
Yu Yang 已提交
475
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
476
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
477
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
478 479 480 481

  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
482
#endif
Y
Yu Yang 已提交
483

484
  return m.ptr();
L
Luo Tao 已提交
485
}
486
}  // namespace pybind
487
}  // namespace paddle