translated_layer.py 60.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
17

18 19
import numpy as np

20
import paddle
21 22
from paddle import _legacy_C_ops
from paddle.fluid import backward, core, framework, unique_name
23
from paddle.fluid.data_feeder import check_type
24
from paddle.fluid.dygraph.base import switch_to_static_graph
25 26
from paddle.fluid.framework import OpProtoHolder
from paddle.framework import in_dynamic_mode
27
from paddle.jit.dy2static.partial_program import (
28
    LazyInitialized,
29
    add_build_strategy_for,
30
)
31
from paddle.jit.dy2static.utils import construct_grad_names
32
from paddle.nn.layer import layers
33

J
JYChen 已提交
34
__all__ = []
35

36 37 38
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
39
INFER_PROPERTY_SUFFIX = '.meta'
40

41 42 43
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
44 45 46 47 48 49 50 51 52


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
53 54 55
        raise ValueError(
            "Unsupported program version: %d\n" % program_desc._version()
        )
56 57 58 59
    return program_desc


def _is_persistable(var_desc):
60 61 62 63 64 65
    if (
        var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var_desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var_desc.type() == core.VarDesc.VarType.READER
        or var_desc.type() == core.VarDesc.VarType.RAW
    ):
66 67 68 69 70 71 72
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
73
    for block_idx in range(program_desc.num_blocks()):
74
        block = program_desc.block(block_idx)
75
        for op_idx in range(block.op_size()):
76 77 78 79 80
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
81
    for block_idx in range(program_desc.num_blocks()):
82
        block = program_desc.block(block_idx)
83
        for op_idx in range(block.op_size()):
84 85 86 87 88 89 90 91 92 93 94 95
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
96
    for i in range(program_desc.num_blocks()):
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
115
    for i in range(program_desc.num_blocks()):
116 117 118 119 120 121
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


122
@switch_to_static_graph
123 124 125
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
126
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
127
    """
128 129 130
    suffix = LOADED_VAR_SUFFIX
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
131 132


133 134 135
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
136 137 138


def _append_loaded_suffix_to_var(program_desc):
139
    suffix_varname_dict = {}
140 141 142 143
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
144
        suffix_varname_dict[new_name] = old_name
145
        var_desc.set_name(new_name)
146
        for block_idx in range(program_desc.num_blocks()):
147
            block = program_desc.block(block_idx)
148
            block._rename_var(old_name.encode(), new_name.encode())
149
            for op_idx in range(block.op_size()):
150 151 152
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
153
    return suffix_varname_dict
154 155


156 157 158 159 160 161
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
162
    new_old_dict = {}
163 164 165 166 167 168 169
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
170
def _rename_var_program_desc(program_desc, include=None, exclude=None):
171
    """
172 173 174 175 176 177 178 179
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
180 181 182 183 184

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
185 186 187 188 189

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
190
    """
191 192
    dict_rename_var_old_new = {}
    dict_rename_var_new_old = {}
193
    old_names = []
194
    # Store all old names
195
    for b_idx in range(program_desc.num_blocks()):
196 197 198
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
199 200 201 202

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
203
    for b_idx in range(program_desc.num_blocks()):
204 205 206
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
207 208
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
209 210 211 212 213
            should_rename = (
                (include is None or name_old in include)
                and (exclude is None or name_old not in exclude)
                and not is_double_grad_var
            )
W
WeiXin 已提交
214
            if should_rename:
215 216 217 218
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
219 220 221
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
222 223 224 225 226 227
                        temp_name
                    )
                    if (
                        name_new
                        not in old_names[:var_idx] + old_names[var_idx + 1 :]
                    ):
W
WeiXin 已提交
228 229 230
                        break
            else:
                name_new = name_old
231
            if name_old != name_new:
232
                cur_block._rename_var(name_old.encode(), name_new.encode())
233 234 235 236 237 238 239 240
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
241
            for b_idx in range(program_desc.num_blocks()):
242 243 244 245 246
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
247 248
                            name_old, dict_rename_var_old_new[name_old]
                        )
249 250 251
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
252 253
                var_name
            ]
254
            dict_rename_var_new_old[
255 256
                double_grad_rename_dict[var_name]
            ] = var_name
257 258

    # Rename on program desc
259
    for b_idx in range(program_desc.num_blocks()):
260
        cur_block = program_desc.block(b_idx)
261
        for op_idx in range(cur_block.op_size()):
262 263 264
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
265 266 267 268
                    if (
                        input_arg_name
                        != dict_rename_var_old_new[input_arg_name]
                    ):
269 270
                        op._rename_input(
                            input_arg_name,
271 272
                            dict_rename_var_old_new[input_arg_name],
                        )
273
                        if cur_block.has_var(input_arg_name.encode()):
274
                            cur_block._rename_var(
275
                                input_arg_name.encode(),
276 277 278 279
                                dict_rename_var_old_new[
                                    input_arg_name
                                ].encode(),
                            )
280 281
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
282 283 284 285
                    if (
                        output_arg_name
                        != dict_rename_var_old_new[output_arg_name]
                    ):
286 287
                        op._rename_output(
                            output_arg_name,
288 289
                            dict_rename_var_old_new[output_arg_name],
                        )
290
                        if cur_block.has_var(output_arg_name.encode()):
291
                            cur_block._rename_var(
292
                                output_arg_name.encode(),
293 294 295 296
                                dict_rename_var_old_new[
                                    output_arg_name
                                ].encode(),
                            )
297 298 299 300
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


301 302 303 304 305
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
306
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
307 308 309 310 311 312 313
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
314
    for i in range(program_desc.num_blocks()):
315
        block = program_desc.block(i)
316
        for j in range(block.op_size()):
317 318 319 320 321
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


322
class _ProgramHolder:
323 324 325
    """
    Holds the execution information of a Program.

326 327
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
328 329 330 331 332 333
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
334
        super().__init__()
335

336
        # input, output, persistable, double_grads var info
337
        self._input_descs = []
338
        self._output_descs = []
339
        self._double_grad_descs = []
340
        self._persistable_names = []
W
WangZhen 已提交
341
        self._grad_var_names = {}
342 343 344 345

        # execution scope
        self._inner_scope = core.Scope()

346 347
        # append suffix var name dict
        self._suffix_varname_dict = None
348 349 350 351
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
352 353
            self._infer_program_desc
        )
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
373
        start_op_index = self._infer_program_desc.block(0).op_size() + len(
374 375
            self._output_descs
        )
376
        end_op_index = whole_program.desc.block(0).op_size()
377 378 379 380
        if start_op_index < end_op_index:
            return add_build_strategy_for(
                whole_program, start_op_index, end_op_index
            )
381 382 383 384 385 386 387
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

388 389 390 391 392 393 394 395
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

396 397 398 399 400 401 402 403
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

404
    @property
405 406
    def input_descs(self):
        return self._input_descs
407 408

    @property
409
    def output_descs(self):
410 411 412 413 414 415
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

416 417 418 419
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

420 421 422 423
    @property
    def scope(self):
        return self._inner_scope

424 425 426 427
    @property
    def grad_var_names(self):
        return self._grad_var_names

428
    def _preprocess(self, program_desc):
W
WeiXin 已提交
429 430
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
431
        rename_new_old_dict, _ = _rename_var_program_desc(
432 433
            program_desc, list_persistable_var
        )
434 435 436 437
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
438
        for i in range(root_block.op_size()):
439 440 441
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
442
                feed_var_name = op.input('X')[0].encode()
443
                root_block._remove_var(feed_var_name)
444
                self._input_descs.append(
445 446
                    root_block.find_var(op.output('Out')[0].encode())
                )
447
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
448 449
                'save_infer_model/scale_'
            ):
450
                ops_to_remove.append(i)
451
                out_var_name = op.output('Out')[0].encode()
452 453
                root_block._remove_var(out_var_name)
                self._output_descs.append(
454 455
                    root_block.find_var(op.input('X')[0].encode())
                )
456 457
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
458
                fetch_var_name = op.output('Out')[0].encode()
459 460 461 462
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
463 464
                        root_block.find_var(op.input('X')[0].encode())
                    )
465 466 467 468 469 470 471
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

472 473 474 475 476 477
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

478
        # 2. Input processing, reverse feed vars
479
        self._input_descs.reverse()
480 481 482 483

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
484 485 486 487 488
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
489
        # use, multiple outputs may be associated with multiple branches.
490 491 492 493
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
494 495 496 497 498
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
499
        # - append loaded suffix to persistable vars
500
        # NOTE: [why need to append suffix to persistable vars]
501 502 503 504 505 506
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
507
        # to add the LOADED suffix to the parameters of the model loaded
508
        self._suffix_varname_dict = _get_loaded_var_new_old(
509 510
            program_desc, rename_new_old_dict
        )
511

512 513 514 515 516 517 518 519 520 521 522 523
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
524
                var = paddle.scale(var, 1.0, name=f"translated_layer/scale_{i}")
525 526 527 528 529 530
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
531
    def _get_train_forward_program(self, infer_program_desc):
532 533 534 535 536 537 538 539
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
540
        # rewrite a series of methods for append_backward for program_desc.
541 542
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
543 544
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
545
        for block_idx in range(program.num_blocks):
546 547 548
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
549 550 551 552
                    if (
                        "ReserveSpace" not in op.output_names
                        or len(op.output("ReserveSpace")) == 0
                    ):
553 554
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
555 556
                                ".".join(["reserve_space", 'tmp'])
                            ),
557 558 559
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
560 561
                            stop_gradient=True,
                        )
562
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
563 564
                    continue

565 566 567 568 569
                # There are some situations that users will add backward op in Forward
                # function of Layer. And because backward op doesn't have proto. So, we
                # should skip it when we meet it.
                if not OpProtoHolder.instance().has_op_proto(op.type):
                    continue
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
                proto = OpProtoHolder.instance().get_op_proto(op.type)
                has_create_intermediate_out = False
                for output_proto in proto.outputs:
                    if output_proto.intermediate:
                        intermediate_name = output_proto.name
                        if intermediate_name not in op.output_names:
                            has_create_intermediate_out = True
                            intermediate_var = block.create_var(
                                name=unique_name.generate_with_ignorable_key(
                                    ".".join(
                                        [
                                            op.type + '_' + intermediate_name,
                                            'tmp',
                                        ]
                                    )
                                ),
                                type=core.VarDesc.VarType.LOD_TENSOR,
                                persistable=False,
                                stop_gradient=True,
                            )
                            op.desc.set_output(
                                intermediate_name, [intermediate_var.name]
                            )
                if has_create_intermediate_out:
                    op.desc.infer_var_type(block.desc)
                    op.desc.infer_shape(block.desc)

597 598 599 600 601
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
602

603 604 605 606 607
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
        check_type(
            targets,
            'targets',
            (framework.Variable, list, tuple),
            'paddle.static.gradients',
        )
        grad_info_map = backward.calc_gradient_helper(
            targets=targets, inputs=[]
        )
        x_vars = [
            program.block(0).var(desc.name()) for desc in self._input_descs
        ]
        param_vars = [
            program.block(0).var(name) for name in self._persistable_names
        ]
        out_vars = [
            program.block(0).var(desc.name()) for desc in self._output_descs
        ]

        self._grad_var_names = construct_grad_names(
            grad_info_map, x_vars, param_vars, out_vars
        )

631 632 633 634
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
635
#
636 637 638 639 640 641 642
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
643
#
644 645 646
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
647
# 1. Data Sharing:
648
#   The variable/parameter of the dynamic graph is not in the scope, so before the op
649 650 651
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
652
#
653 654 655 656
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
657
#   We can not separate the program into forward and backward part, which will
658 659 660 661 662
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
663 664 665
def _load_persistable_vars_by_program(
    model_path, program_holder, params_filename=None
):
666 667 668 669
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
670
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
671
        if _is_parameter(each_var, program_holder.infer_program):
672
            # create output param
W
wanghuancoder 已提交
673 674 675 676 677 678 679
            new_var = framework.EagerParamBase(
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                name=each_var.name(),
                type=each_var.type(),
                persistable=True,
            )
680
        else:
681
            new_var = framework._create_tensor(
682 683 684 685 686 687
                type=each_var.type(),
                name=each_var.name(),
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                persistable=True,
            )
688 689 690 691 692
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
693 694
                attrs={'file_path': os.path.join(model_path, orig_each_name)},
            )
695 696 697 698 699
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
700
        dict_name_old_new = {
701
            v: k for k, v in program_holder._suffix_varname_dict.items()
702 703 704
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
705 706 707 708 709

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
710 711
            attrs={'file_path': os.path.join(model_path, params_filename)},
        )
712 713 714 715 716 717 718 719

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
720
    # After loading the model, the stop_gradient information
721 722 723 724 725 726 727 728 729 730 731 732
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


733 734 735
def _load_persistable_vars(
    model_path, var_info_path, program_holder, params_filename
):
736 737
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
738
        extra_var_info = pickle.load(f)
739 740

    # 2. construct var dict
741
    load_var_dict = {}
742
    load_var_list = []
743
    inv_suffix_varname_dict = {
744
        value: key for key, value in program_holder._suffix_varname_dict.items()
745
    }
746 747 748

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
749
    # var in `extra_var_info` may have been pruned
750 751 752 753 754
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
755 756
                name,
            )
757 758
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
759
        # create output var or param
760 761
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
W
wanghuancoder 已提交
762 763 764 765 766 767
            new_var = framework.EagerParamBase(
                shape=[1],  # only to pass check, this shape is not meaningful
                dtype=core.VarDesc.VarType.FP32,
                name=new_name,
                persistable=True,
            )
768
        else:
769
            new_var = framework._create_tensor(name=new_name, persistable=True)
770 771 772 773 774 775

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
776 777 778 779 780 781
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
782 783 784 785 786 787
        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': var_file_path},
        )
788 789 790 791

    return load_var_dict


792 793
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
794
    no_suffix_var_dict = {}
795 796 797 798 799 800
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


801 802
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
803
    program_holder_dict = {}
804 805 806 807 808

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
809 810
        model_name = model_filename[: -len(INFER_MODEL_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
811 812 813 814 815
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
816 817 818 819 820
                model_name
            ):
                parsing_names = filename[
                    len(model_name) : -len(INFER_MODEL_SUFFIX) + 1
                ].split('.')
821 822 823 824 825
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
826 827 828
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
829 830
                _load_program_desc(model_file_path)
            )
831 832 833 834 835 836 837 838 839 840 841
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
842 843
                        _load_program_desc(model_file_path)
                    )
844 845 846 847

    return program_holder_dict


848 849 850
def _construct_params_and_buffers(
    model_path, programs, params_filename=None, append_suffix=True
):
851 852
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
853
    params_path = os.path.join(model_path, str(params_filename))
854

855
    if os.path.exists(var_info_path):
856 857 858 859 860
        var_dict = _load_persistable_vars(
            model_path, var_info_path, programs['forward'], params_filename
        )
        model_name = params_filename[: -len(INFER_PARAMS_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
861
        for file_name in os.listdir(model_path):
862
            if file_name.startswith(model_name) and file_name.endswith(
863 864 865 866 867
                INFER_PARAMS_SUFFIX
            ):
                parsing_names = file_name[
                    len(model_name) : -len(INFER_PARAMS_SUFFIX) + 1
                ].split('.')
868 869 870 871
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
872 873 874 875
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
876 877 878 879
                _load_persistable_vars(
                    model_path, var_info_path, programs[func_name], file_name
                )
            )
880 881
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
882
        return {}
883
    else:
884 885 886
        var_dict = _load_persistable_vars_by_program(
            model_path, programs['forward'], params_filename
        )
887 888 889 890

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

891 892 893
    return var_dict


0
0x45f 已提交
894
def _valid_vars(vars):
895
    return vars if vars else None
0
0x45f 已提交
896 897


W
WeiXin 已提交
898 899 900
def _run_dygraph(instance, input, program_holder):
    # 1. prepare inputs, outputs, attrs
    input_vars = []
901
    input_var_names = []
W
WeiXin 已提交
902
    for i, value in enumerate(input):
W
wanghuancoder 已提交
903
        if not isinstance(value, (np.ndarray, core.eager.Tensor)):
W
WeiXin 已提交
904
            raise TypeError(
W
wanghuancoder 已提交
905
                "The type of input in TranslatedLayer must be numpy array or Variable(Tensor), but received %s."
906 907
                % type(value)
            )
W
wanghuancoder 已提交
908
        # NOTE: In order to unify the API, firstly convert the input to Tensor
W
WeiXin 已提交
909
        if isinstance(value, np.ndarray):
W
wanghuancoder 已提交
910 911 912 913 914 915 916
            var = core.eager.Tensor(
                value=value,
                name=program_holder.input_descs[i].name(),
                persistable=False,
                place=framework._current_expected_place(),
                zero_copy=True,
            )
W
WeiXin 已提交
917 918
        else:
            var = value
919
            # NOTE: we changed var name here,
W
WeiXin 已提交
920 921
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
922
        input_var_names.append(var.name)
W
WeiXin 已提交
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
939 940
                % var_name
            )
W
WeiXin 已提交
941 942 943

    output_vars = []
    for var_desc in program_holder.output_descs:
W
wanghuancoder 已提交
944 945 946 947 948 949 950
        var = core.eager.Tensor(
            dtype=var_desc.dtype(),
            dims=var_desc.shape(),
            name=var_desc.name(),
            type=var_desc.type(),
            persistable=False,
        )
W
WeiXin 已提交
951 952 953
        output_vars.append(var)

    # hold forward variables
W
wanghuancoder 已提交
954
    tmp_scope_vec = [program_holder.scope]
W
WeiXin 已提交
955

956 957
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
W
wanghuancoder 已提交
958 959 960 961 962 963 964
        var = core.eager.Tensor(
            dtype=var_desc.dtype(),
            dims=var_desc.shape(),
            name=var_desc.name(),
            type=var_desc.type(),
            persistable=False,
        )
965 966
        double_grad_vars.append(var)

W
WeiXin 已提交
967
    # 2. run program by op
968 969 970 971 972 973 974 975 976 977
    trace_program = (
        program_holder.infer_program
        if instance._is_test
        else program_holder.train_program
    )
    forward_program = (
        program_holder._infer_program_desc
        if instance._is_test
        else program_holder.forward_program
    )
W
WeiXin 已提交
978
    end_op_index = program_holder.infer_program.block(0).op_size()
979 980 981

    attrs = [
        'global_block',
982 983 984 985 986 987 988 989
        trace_program.block(0),
        'start_op_index',
        0,
        'end_op_index',
        end_op_index,
        'is_test',
        instance._is_test,
        'program_id',
990
        paddle.utils._hash_with_id(trace_program, instance),
991 992
        'x_names',
        input_var_names,
993
    ]
994 995 996 997
    if not instance._is_test:
        attrs.extend(
            (
                'param_grad_names',
998
                program_holder.grad_var_names.get('param', []),
999
                'out_grad_names',
1000 1001 1002
                program_holder.grad_var_names.get('out', []),
                'x_grad_names',
                program_holder.grad_var_names.get('x', []),
1003 1004
            )
        )
1005

1006
    use_interpretorcore = True
1007 1008 1009
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
            (
                'forward_global_block',
                forward_program.block(0),
                'backward_global_block',
                program_holder.backward_program.block(0),
            )
        )

    _legacy_C_ops.run_program(
        _valid_vars(input_vars),
        _valid_vars(persistable_vars),
        _valid_vars(output_vars),
        tmp_scope_vec,
        _valid_vars(double_grad_vars),
        None,
1025
        *attrs,
1026
    )
1027

W
WeiXin 已提交
1028 1029 1030
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
1031
    # set param grad Tensor by forward Tensor(LoDTensor)
W
WeiXin 已提交
1032 1033 1034 1035
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
1036
        grad_var_name = persistable_var.name + core.grad_var_suffix()
1037
        grad_var = trace_program.block(0).find_var(grad_var_name.encode())
1038
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
1055 1056
        trace_program, exclude=param_var_names
    )
W
WeiXin 已提交
1057 1058 1059
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
1060 1061 1062 1063 1064 1065 1066
    _append_block(
        main_program,
        trace_program,
        program_holder,
        input,
        dict_rename_var_old_new,
    )
W
WeiXin 已提交
1067
    main_program._sync_with_cpp()
1068 1069 1070
    outs = _get_output_from_program(
        main_program, program_holder, dict_rename_var_old_new
    )
W
WeiXin 已提交
1071 1072 1073 1074 1075 1076 1077 1078
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
1079

W
WeiXin 已提交
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


1098 1099 1100 1101 1102 1103 1104
def _append_block(
    dest_program,
    src_program_desc,
    program_holder,
    input_variables,
    dict_rename_var_old_new=None,
):
W
WeiXin 已提交
1105 1106
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1107

W
WeiXin 已提交
1108 1109 1110 1111 1112
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1113
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1114 1115 1116 1117
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
1118 1119 1120 1121 1122 1123 1124 1125
    param_var_names = _collect_current_and_parent_var(
        dest_program, origin_block_idx
    )
    append_var_from_block_desc_static(
        dest_program.block(origin_block_idx),
        src_program_desc.block(0),
        exclude=param_var_names,
    )
W
WeiXin 已提交
1126 1127 1128 1129 1130

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
1131 1132 1133 1134
            "The number of input is invalid, expected {}, but received {}.".format(
                len(name_inp_desc), len(input_names)
            )
        )
W
WeiXin 已提交
1135 1136 1137 1138 1139 1140
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
1141 1142
            outputs={'Out': [out_name]},
        )
W
WeiXin 已提交
1143 1144

    append_ops = append_op_from_block_desc_static(
1145 1146
        dest_program.block(origin_block_idx), src_program_desc.block(0)
    )
W
WeiXin 已提交
1147 1148 1149
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1
1150
    parent_idx = 0
W
WeiXin 已提交
1151 1152 1153 1154 1155 1156 1157 1158 1159
    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1160 1161 1162
            append_var_from_block_desc_static(
                dest_block, src_block, exclude=param_var_names
            )
1163
            append_ops += append_op_from_block_desc_static(
1164 1165
                dest_block, src_block
            )
W
WeiXin 已提交
1166 1167 1168 1169 1170 1171 1172 1173 1174

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
1175 1176 1177
            op._set_attr(
                'sub_block', dest_program.block(offset_block_idx + origin_id)
            )
W
WeiXin 已提交
1178 1179 1180 1181
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


1182 1183 1184
def _get_output_from_program(
    program, program_holder, dict_rename_var_old_new=None
):
W
WeiXin 已提交
1185 1186 1187
    """
    Get output name of 'program' according to program_holder
    """
1188
    outs = []
W
WeiXin 已提交
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1233 1234 1235 1236 1237 1238 1239 1240
    op = framework.Operator(
        block=block,
        desc=op_append,
        type=op_type,
        inputs=None,
        outputs=None,
        attrs=None,
    )
W
WeiXin 已提交
1241 1242 1243 1244
    block.ops.append(op)
    return op


1245 1246 1247
def append_var_from_block_desc_static(
    block, src_block_desc, include=None, exclude=None
):
W
WeiXin 已提交
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
1266 1267
            exclude is None or var_desc_name not in exclude
        )
W
WeiXin 已提交
1268 1269 1270
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
1271 1272 1273
                core.VarDesc.VarType.SELECTED_ROWS,
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1274 1275 1276 1277 1278 1279 1280
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
1281 1282
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1283 1284 1285 1286 1287
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1288 1289 1290 1291 1292
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1293
            vars_append.append(
1294
                current_block.create_var(
W
WeiXin 已提交
1295 1296 1297 1298 1299 1300
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
1301 1302 1303
                    set_need_check_feed=var_desc.need_check_feed(),
                )
            )
W
WeiXin 已提交
1304 1305 1306
    return vars_append


1307 1308
class TranslatedLayer(layers.Layer):
    """
1309 1310
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1311
    general Layer object in eval or train mode.
1312

1313
    .. note:
1314
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1315 1316 1317 1318

    Examples:
        .. code-block:: python

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
            >>> # doctest: +SKIP
            >>> import numpy as np
            >>> import paddle
            >>> import paddle.nn as nn
            >>> import paddle.optimizer as opt

            >>> BATCH_SIZE = 16
            >>> BATCH_NUM = 4
            >>> EPOCH_NUM = 4

            >>> IMAGE_SIZE = 784
            >>> CLASS_NUM = 10

            >>> # define a random dataset
            >>> class RandomDataset(paddle.io.Dataset):
            ...     def __init__(self, num_samples):
            ...         self.num_samples = num_samples
            ...
            ...     def __getitem__(self, idx):
            ...         image = np.random.random([IMAGE_SIZE]).astype('float32')
            ...         label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
            ...         return image, label
            ...
            ...     def __len__(self):
            ...         return self.num_samples
            ...
            >>> class LinearNet(nn.Layer):
            ...     def __init__(self):
            ...         super().__init__()
            ...         self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
            ...
            ...     @paddle.jit.to_static
            ...     def forward(self, x):
            ...         return self._linear(x)
            ...
            >>> def train(layer, loader, loss_fn, opt):
            ...     for epoch_id in range(EPOCH_NUM):
            ...         for batch_id, (image, label) in enumerate(loader()):
            ...             out = layer(image)
            ...             loss = loss_fn(out, label)
            ...             loss.backward()
            ...             opt.step()
            ...             opt.clear_grad()
            ...             print("Epoch {} batch {}: loss = {}".format(
            ...                 epoch_id, batch_id, np.mean(loss.numpy())))
            ...
            >>> # 1. train & save model.
            >>> # create network
            >>> layer = LinearNet()
            >>> loss_fn = nn.CrossEntropyLoss()
            >>> adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

            >>> # create data loader
            >>> dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            >>> loader = paddle.io.DataLoader(dataset,
            ...     batch_size=BATCH_SIZE,
            ...     shuffle=True,
            ...     drop_last=True,
            ...     num_workers=2
            ... )
            >>> # train
            >>> train(layer, loader, loss_fn, adam)

            >>> # save
            >>> model_path = "linear.example.model"
            >>> paddle.jit.save(layer, model_path)

            >>> # 2. load model as TranslatedLayer
            >>> # load
            >>> translated_layer = paddle.jit.load(model_path)

            >>> # inference
            >>> translated_layer.eval()
            >>> x = paddle.randn([1, IMAGE_SIZE], 'float32')
            >>> pred = translated_layer(x)

            >>> # fine-tune
            >>> translated_layer.train()
            >>> adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            >>> train(translated_layer, loader, loss_fn, adam)
1399 1400 1401 1402

    """

    def __init__(self, programs, persistable_vars):
1403
        super().__init__()
1404 1405 1406 1407 1408 1409 1410

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1411
                "TranslatedLayer need to use persistable variable dict for initialization."
1412 1413 1414 1415
            )

        self._program_holder_dict = programs

1416 1417 1418 1419
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
W
wanghuancoder 已提交
1420
        # in the form of `self.**.**``, but the EagerParamBase or BarBase
1421 1422
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
1423
        self._persistable_var_name_dict = {}
1424 1425 1426
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
W
wanghuancoder 已提交
1427
                if isinstance(var, framework.EagerParamBase):
1428 1429 1430
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
W
wanghuancoder 已提交
1431
                elif isinstance(var, core.eager.Tensor):
1432 1433 1434 1435 1436 1437 1438
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1439 1440

        self._is_test = True
W
WeiXin 已提交
1441
        self._input_args_names = None
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1459
        # 2. load layer parameters & buffers
1460
        persistable_vars = _construct_params_and_buffers(
1461 1462
            model_path, programs, params_filename
        )
1463 1464 1465 1466 1467 1468

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1469 1470 1471 1472
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1473
            setattr(
1474 1475
                TranslatedLayer,
                method_name,
1476
                TranslatedLayer._execution_method_creator(
1477 1478 1479
                    method_name, program_holder
                ),
            )
1480 1481 1482 1483 1484 1485 1486 1487

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
W
WeiXin 已提交
1488 1489 1490 1491
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
1492
            if in_dynamic_mode():
W
WeiXin 已提交
1493 1494 1495 1496 1497 1498 1499
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
1500 1501
                    core.ProgramDesc(program_holder.infer_program)
                )
W
WeiXin 已提交
1502 1503 1504 1505
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1506 1507 1508

    def train(self):
        self._is_test = False
1509
        self.training = True
1510 1511 1512

    def eval(self):
        self._is_test = True
1513
        self.training = False
1514 1515 1516 1517 1518 1519 1520 1521

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1522

1523 1524 1525 1526 1527
        Returns:
            Program

        Examples:
            .. code-block:: python
1528

1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598
                >>> # doctest: +SKIP
                >>> import numpy as np
                >>> import paddle
                >>> from paddle import nn
                >>> import paddle.optimizer as opt

                >>> BATCH_SIZE = 16
                >>> BATCH_NUM = 4
                >>> EPOCH_NUM = 4

                >>> IMAGE_SIZE = 784
                >>> CLASS_NUM = 10

                >>> # define a random dataset
                >>> class RandomDataset(paddle.io.Dataset):
                ...     def __init__(self, num_samples):
                ...         self.num_samples = num_samples
                ...
                ...     def __getitem__(self, idx):
                ...         image = np.random.random([IMAGE_SIZE]).astype('float32')
                ...         label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                ...         return image, label
                ...
                ...     def __len__(self):
                ...         return self.num_samples
                ...
                >>> class LinearNet(nn.Layer):
                ...     def __init__(self):
                ...         super().__init__()
                ...         self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
                ...
                ...     @paddle.jit.to_static
                ...     def forward(self, x):
                ...         return self._linear(x)
                ...
                >>> def train(layer, loader, loss_fn, opt):
                ...     for epoch_id in range(EPOCH_NUM):
                ...         for batch_id, (image, label) in enumerate(loader()):
                ...             out = layer(image)
                ...             loss = loss_fn(out, label)
                ...             loss.backward()
                ...             opt.step()
                ...             opt.clear_grad()
                ...             print("Epoch {} batch {}: loss = {}".format(
                ...                 epoch_id, batch_id, np.mean(loss.numpy())))
                ...
                >>> # create network
                >>> layer = LinearNet()
                >>> loss_fn = nn.CrossEntropyLoss()
                >>> adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
                >>> # create data loader
                >>> dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                >>> loader = paddle.io.DataLoader(dataset,
                ...     batch_size=BATCH_SIZE,
                ...     shuffle=True,
                ...     drop_last=True,
                ...     num_workers=2
                ... )
                >>> # train
                >>> train(layer, loader, loss_fn, adam)

                >>> # save
                >>> model_path = "linear.example.model"
                >>> paddle.jit.save(layer, model_path)

                >>> # load
                >>> translated_layer = paddle.jit.load(model_path)

                >>> # get program
                >>> program = translated_layer.program()
1599 1600
        """
        # 1. get program holder
1601
        program_holder = self._get_program_holder(method_name)
1602 1603 1604 1605 1606 1607 1608

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1609 1610 1611 1612 1613

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
1614 1615 1616
                "The method `%s` does not exist in loaded TranslatedLayer."
                % method_name
            )
1617 1618 1619 1620 1621 1622 1623 1624 1625
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1626 1627 1628 1629 1630
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1642 1643
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1644
            # construct the description of Output tensor
1645 1646 1647 1648 1649
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1650 1651 1652
            output_spec.append(spec)

        return output_spec