translated_layer.py 59.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
17

18 19
import numpy as np

20
import paddle
21 22
from paddle import _legacy_C_ops
from paddle.fluid import backward, core, framework, unique_name
23
from paddle.fluid.dygraph.base import switch_to_static_graph
24 25
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
26
    _is_enable_standalone_executor,
27
)
28
from paddle.fluid.framework import OpProtoHolder, _non_static_mode
29
from paddle.jit.dy2static.partial_program import (
30
    LazyInitialized,
31
    add_build_strategy_for,
32
)
33
from paddle.nn.layer import layers
34

35 36
from .dy2static.utils import _out_grad_names, _param_grad_names

J
JYChen 已提交
37
__all__ = []
38

39 40 41
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
42
INFER_PROPERTY_SUFFIX = '.meta'
43

44 45 46
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
47 48 49 50 51 52 53 54 55


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
56 57 58
        raise ValueError(
            "Unsupported program version: %d\n" % program_desc._version()
        )
59 60 61 62
    return program_desc


def _is_persistable(var_desc):
63 64 65 66 67 68
    if (
        var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var_desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var_desc.type() == core.VarDesc.VarType.READER
        or var_desc.type() == core.VarDesc.VarType.RAW
    ):
69 70 71 72 73 74 75
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
76
    for block_idx in range(program_desc.num_blocks()):
77
        block = program_desc.block(block_idx)
78
        for op_idx in range(block.op_size()):
79 80 81 82 83
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
84
    for block_idx in range(program_desc.num_blocks()):
85
        block = program_desc.block(block_idx)
86
        for op_idx in range(block.op_size()):
87 88 89 90 91 92 93 94 95 96 97 98
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
99
    for i in range(program_desc.num_blocks()):
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
118
    for i in range(program_desc.num_blocks()):
119 120 121 122 123 124
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


125
@switch_to_static_graph
126 127 128
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
129
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
130
    """
131 132 133
    suffix = LOADED_VAR_SUFFIX
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
134 135


136 137 138
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
139 140 141


def _append_loaded_suffix_to_var(program_desc):
142
    suffix_varname_dict = {}
143 144 145 146
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
147
        suffix_varname_dict[new_name] = old_name
148
        var_desc.set_name(new_name)
149
        for block_idx in range(program_desc.num_blocks()):
150
            block = program_desc.block(block_idx)
151
            block._rename_var(old_name.encode(), new_name.encode())
152
            for op_idx in range(block.op_size()):
153 154 155
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
156
    return suffix_varname_dict
157 158


159 160 161 162 163 164
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
165
    new_old_dict = {}
166 167 168 169 170 171 172
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
173
def _rename_var_program_desc(program_desc, include=None, exclude=None):
174
    """
175 176 177 178 179 180 181 182
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
183 184 185 186 187

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
188 189 190 191 192

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
193
    """
194 195
    dict_rename_var_old_new = {}
    dict_rename_var_new_old = {}
196
    old_names = []
197
    # Store all old names
198
    for b_idx in range(program_desc.num_blocks()):
199 200 201
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
202 203 204 205

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
206
    for b_idx in range(program_desc.num_blocks()):
207 208 209
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
210 211
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
212 213 214 215 216
            should_rename = (
                (include is None or name_old in include)
                and (exclude is None or name_old not in exclude)
                and not is_double_grad_var
            )
W
WeiXin 已提交
217
            if should_rename:
218 219 220 221
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
222 223 224
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
225 226 227 228 229 230
                        temp_name
                    )
                    if (
                        name_new
                        not in old_names[:var_idx] + old_names[var_idx + 1 :]
                    ):
W
WeiXin 已提交
231 232 233
                        break
            else:
                name_new = name_old
234
            if name_old != name_new:
235
                cur_block._rename_var(name_old.encode(), name_new.encode())
236 237 238 239 240 241 242 243
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
244
            for b_idx in range(program_desc.num_blocks()):
245 246 247 248 249
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
250 251
                            name_old, dict_rename_var_old_new[name_old]
                        )
252 253 254
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
255 256
                var_name
            ]
257
            dict_rename_var_new_old[
258 259
                double_grad_rename_dict[var_name]
            ] = var_name
260 261

    # Rename on program desc
262
    for b_idx in range(program_desc.num_blocks()):
263
        cur_block = program_desc.block(b_idx)
264
        for op_idx in range(cur_block.op_size()):
265 266 267
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
268 269 270 271
                    if (
                        input_arg_name
                        != dict_rename_var_old_new[input_arg_name]
                    ):
272 273
                        op._rename_input(
                            input_arg_name,
274 275
                            dict_rename_var_old_new[input_arg_name],
                        )
276
                        if cur_block.has_var(input_arg_name.encode()):
277
                            cur_block._rename_var(
278
                                input_arg_name.encode(),
279 280 281 282
                                dict_rename_var_old_new[
                                    input_arg_name
                                ].encode(),
                            )
283 284
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
285 286 287 288
                    if (
                        output_arg_name
                        != dict_rename_var_old_new[output_arg_name]
                    ):
289 290
                        op._rename_output(
                            output_arg_name,
291 292
                            dict_rename_var_old_new[output_arg_name],
                        )
293
                        if cur_block.has_var(output_arg_name.encode()):
294
                            cur_block._rename_var(
295
                                output_arg_name.encode(),
296 297 298 299
                                dict_rename_var_old_new[
                                    output_arg_name
                                ].encode(),
                            )
300 301 302 303
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


304 305 306 307 308
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
309
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
310 311 312 313 314 315 316
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
317
    for i in range(program_desc.num_blocks()):
318
        block = program_desc.block(i)
319
        for j in range(block.op_size()):
320 321 322 323 324
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


325
class _ProgramHolder:
326 327 328
    """
    Holds the execution information of a Program.

329 330
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
331 332 333 334 335 336
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
337
        super().__init__()
338

339
        # input, output, persistable, double_grads var info
340
        self._input_descs = []
341
        self._output_descs = []
342
        self._double_grad_descs = []
343
        self._persistable_names = []
344 345 346 347

        # execution scope
        self._inner_scope = core.Scope()

348 349
        # append suffix var name dict
        self._suffix_varname_dict = None
350 351 352 353
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
354 355
            self._infer_program_desc
        )
356

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
375
        start_op_index = self._infer_program_desc.block(0).op_size() + len(
376 377
            self._output_descs
        )
378
        end_op_index = whole_program.desc.block(0).op_size()
379 380 381 382
        if start_op_index < end_op_index:
            return add_build_strategy_for(
                whole_program, start_op_index, end_op_index
            )
383 384 385 386 387 388 389
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

390 391 392 393 394 395 396 397
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

398 399 400 401 402 403 404 405
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

406
    @property
407 408
    def input_descs(self):
        return self._input_descs
409 410

    @property
411
    def output_descs(self):
412 413 414 415 416 417
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

418 419 420 421
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

422 423 424 425 426
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
427 428
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
429
        rename_new_old_dict, _ = _rename_var_program_desc(
430 431
            program_desc, list_persistable_var
        )
432 433 434 435
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
436
        for i in range(root_block.op_size()):
437 438 439
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
440
                feed_var_name = op.input('X')[0].encode()
441
                root_block._remove_var(feed_var_name)
442
                self._input_descs.append(
443 444
                    root_block.find_var(op.output('Out')[0].encode())
                )
445
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
446 447
                'save_infer_model/scale_'
            ):
448
                ops_to_remove.append(i)
449
                out_var_name = op.output('Out')[0].encode()
450 451
                root_block._remove_var(out_var_name)
                self._output_descs.append(
452 453
                    root_block.find_var(op.input('X')[0].encode())
                )
454 455
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
456
                fetch_var_name = op.output('Out')[0].encode()
457 458 459 460
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
461 462
                        root_block.find_var(op.input('X')[0].encode())
                    )
463 464 465 466 467 468 469
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

470 471 472 473 474 475
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

476
        # 2. Input processing, reverse feed vars
477
        self._input_descs.reverse()
478 479 480 481

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
482 483 484 485 486
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
487
        # use, multiple outputs may be associated with multiple branches.
488 489 490 491
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
492 493 494 495 496
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
497
        # - append loaded suffix to persistable vars
498
        # NOTE: [why need to append suffix to persistable vars]
499 500 501 502 503 504
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
505
        # to add the LOADED suffix to the parameters of the model loaded
506
        self._suffix_varname_dict = _get_loaded_var_new_old(
507 508
            program_desc, rename_new_old_dict
        )
509

510 511 512 513 514 515 516 517 518 519 520 521
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
2
201716010711 已提交
522
                var = paddle.scale(
523 524
                    var, 1.0, name="translated_layer/scale_{}".format(i)
                )
525 526 527 528 529 530
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
531
    def _get_train_forward_program(self, infer_program_desc):
532 533 534 535 536 537 538 539
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
540
        # rewrite a series of methods for append_backward for program_desc.
541 542
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
543 544
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
545
        for block_idx in range(program.num_blocks):
546 547 548
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
549 550 551 552
                    if (
                        "ReserveSpace" not in op.output_names
                        or len(op.output("ReserveSpace")) == 0
                    ):
553 554
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
555 556
                                ".".join(["reserve_space", 'tmp'])
                            ),
557 558 559
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
560 561
                            stop_gradient=True,
                        )
562
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
563 564
                    continue

565 566 567 568 569
                # There are some situations that users will add backward op in Forward
                # function of Layer. And because backward op doesn't have proto. So, we
                # should skip it when we meet it.
                if not OpProtoHolder.instance().has_op_proto(op.type):
                    continue
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596
                proto = OpProtoHolder.instance().get_op_proto(op.type)
                has_create_intermediate_out = False
                for output_proto in proto.outputs:
                    if output_proto.intermediate:
                        intermediate_name = output_proto.name
                        if intermediate_name not in op.output_names:
                            has_create_intermediate_out = True
                            intermediate_var = block.create_var(
                                name=unique_name.generate_with_ignorable_key(
                                    ".".join(
                                        [
                                            op.type + '_' + intermediate_name,
                                            'tmp',
                                        ]
                                    )
                                ),
                                type=core.VarDesc.VarType.LOD_TENSOR,
                                persistable=False,
                                stop_gradient=True,
                            )
                            op.desc.set_output(
                                intermediate_name, [intermediate_var.name]
                            )
                if has_create_intermediate_out:
                    op.desc.infer_var_type(block.desc)
                    op.desc.infer_shape(block.desc)

597 598 599 600 601
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
602

603 604 605 606 607 608 609 610 611 612
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
613
#
614 615 616 617 618 619 620
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
621
#
622 623 624
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
625
# 1. Data Sharing:
626 627 628 629
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
630
#
631 632 633 634
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
635
#   We can not separate the program into forward and backward part, which will
636 637 638 639 640
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
641 642 643
def _load_persistable_vars_by_program(
    model_path, program_holder, params_filename=None
):
644 645 646 647
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
648
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
649 650
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
W
wanghuancoder 已提交
651 652 653 654 655 656 657
            new_var = framework.EagerParamBase(
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                name=each_var.name(),
                type=each_var.type(),
                persistable=True,
            )
658
        else:
659 660 661 662 663 664 665
            new_var = framework._varbase_creator(
                type=each_var.type(),
                name=each_var.name(),
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                persistable=True,
            )
666 667 668 669 670
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
671 672
                attrs={'file_path': os.path.join(model_path, orig_each_name)},
            )
673 674 675 676 677
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
678
        dict_name_old_new = {
679
            v: k for k, v in program_holder._suffix_varname_dict.items()
680 681 682
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
683 684 685 686 687

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
688 689
            attrs={'file_path': os.path.join(model_path, params_filename)},
        )
690 691 692 693 694 695 696 697

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
698
    # After loading the model, the stop_gradient information
699 700 701 702 703 704 705 706 707 708 709 710
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


711 712 713
def _load_persistable_vars(
    model_path, var_info_path, program_holder, params_filename
):
714 715
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
716
        extra_var_info = pickle.load(f)
717 718

    # 2. construct var dict
719
    load_var_dict = {}
720
    load_var_list = []
721
    inv_suffix_varname_dict = {
722
        value: key for key, value in program_holder._suffix_varname_dict.items()
723
    }
724 725 726

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
727
    # var in `extra_var_info` may have been pruned
728 729 730 731 732
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
733 734
                name,
            )
735 736
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
737 738 739
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
W
wanghuancoder 已提交
740 741 742 743 744 745
            new_var = framework.EagerParamBase(
                shape=[1],  # only to pass check, this shape is not meaningful
                dtype=core.VarDesc.VarType.FP32,
                name=new_name,
                persistable=True,
            )
746
        else:
747 748 749
            new_var = framework._varbase_creator(
                name=new_name, persistable=True
            )
750 751 752 753 754 755

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
756 757 758 759 760 761
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
762 763 764 765 766 767
        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': var_file_path},
        )
768 769 770 771

    return load_var_dict


772 773
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
774
    no_suffix_var_dict = {}
775 776 777 778 779 780
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


781 782
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
783
    program_holder_dict = {}
784 785 786 787 788

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
789 790
        model_name = model_filename[: -len(INFER_MODEL_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
791 792 793 794 795
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
796 797 798 799 800
                model_name
            ):
                parsing_names = filename[
                    len(model_name) : -len(INFER_MODEL_SUFFIX) + 1
                ].split('.')
801 802 803 804 805
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
806 807 808
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
809 810
                _load_program_desc(model_file_path)
            )
811 812 813 814 815 816 817 818 819 820 821
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
822 823
                        _load_program_desc(model_file_path)
                    )
824 825 826 827

    return program_holder_dict


828 829 830
def _construct_params_and_buffers(
    model_path, programs, params_filename=None, append_suffix=True
):
831 832
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
833
    params_path = os.path.join(model_path, str(params_filename))
834

835
    if os.path.exists(var_info_path):
836 837 838 839 840
        var_dict = _load_persistable_vars(
            model_path, var_info_path, programs['forward'], params_filename
        )
        model_name = params_filename[: -len(INFER_PARAMS_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
841
        for file_name in os.listdir(model_path):
842
            if file_name.startswith(model_name) and file_name.endswith(
843 844 845 846 847
                INFER_PARAMS_SUFFIX
            ):
                parsing_names = file_name[
                    len(model_name) : -len(INFER_PARAMS_SUFFIX) + 1
                ].split('.')
848 849 850 851
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
852 853 854 855
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
856 857 858 859
                _load_persistable_vars(
                    model_path, var_info_path, programs[func_name], file_name
                )
            )
860 861
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
862
        return {}
863
    else:
864 865 866
        var_dict = _load_persistable_vars_by_program(
            model_path, programs['forward'], params_filename
        )
867 868 869 870

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

871 872 873
    return var_dict


0
0x45f 已提交
874
def _valid_vars(vars):
875
    return vars if vars else None
0
0x45f 已提交
876 877


W
WeiXin 已提交
878 879 880 881 882
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
W
wanghuancoder 已提交
883
        if not isinstance(value, (np.ndarray, core.eager.Tensor)):
W
WeiXin 已提交
884
            raise TypeError(
W
wanghuancoder 已提交
885
                "The type of input in TranslatedLayer must be numpy array or Variable(Tensor), but received %s."
886 887
                % type(value)
            )
W
wanghuancoder 已提交
888
        # NOTE: In order to unify the API, firstly convert the input to Tensor
W
WeiXin 已提交
889
        if isinstance(value, np.ndarray):
W
wanghuancoder 已提交
890 891 892 893 894 895 896
            var = core.eager.Tensor(
                value=value,
                name=program_holder.input_descs[i].name(),
                persistable=False,
                place=framework._current_expected_place(),
                zero_copy=True,
            )
W
WeiXin 已提交
897 898
        else:
            var = value
899
            # NOTE: we changed var name here,
W
WeiXin 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
918 919
                % var_name
            )
W
WeiXin 已提交
920 921 922

    output_vars = []
    for var_desc in program_holder.output_descs:
W
wanghuancoder 已提交
923 924 925 926 927 928 929
        var = core.eager.Tensor(
            dtype=var_desc.dtype(),
            dims=var_desc.shape(),
            name=var_desc.name(),
            type=var_desc.type(),
            persistable=False,
        )
W
WeiXin 已提交
930 931 932
        output_vars.append(var)

    # hold forward variables
W
wanghuancoder 已提交
933
    tmp_scope_vec = [program_holder.scope]
W
WeiXin 已提交
934

935 936
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
W
wanghuancoder 已提交
937 938 939 940 941 942 943
        var = core.eager.Tensor(
            dtype=var_desc.dtype(),
            dims=var_desc.shape(),
            name=var_desc.name(),
            type=var_desc.type(),
            persistable=False,
        )
944 945
        double_grad_vars.append(var)

W
WeiXin 已提交
946
    # 2. run program by op
947 948 949 950 951 952 953 954 955 956
    trace_program = (
        program_holder.infer_program
        if instance._is_test
        else program_holder.train_program
    )
    forward_program = (
        program_holder._infer_program_desc
        if instance._is_test
        else program_holder.forward_program
    )
W
WeiXin 已提交
957
    end_op_index = program_holder.infer_program.block(0).op_size()
958 959 960

    attrs = [
        'global_block',
961 962 963 964 965 966 967 968
        trace_program.block(0),
        'start_op_index',
        0,
        'end_op_index',
        end_op_index,
        'is_test',
        instance._is_test,
        'program_id',
969
        paddle.utils._hash_with_id(trace_program, instance),
970
    ]
971 972 973 974 975 976 977 978 979
    if not instance._is_test:
        attrs.extend(
            (
                'param_grad_names',
                _param_grad_names(trace_program, persistable_vars),
                'out_grad_names',
                _out_grad_names(trace_program, end_op_index, len(output_vars)),
            )
        )
980

981 982 983 984
    use_interpretorcore = (
        _is_enable_standalone_executor()
        and _is_dy2st_enable_standalone_executor()
    )
985 986 987
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
            (
                'forward_global_block',
                forward_program.block(0),
                'backward_global_block',
                program_holder.backward_program.block(0),
            )
        )

    _legacy_C_ops.run_program(
        _valid_vars(input_vars),
        _valid_vars(persistable_vars),
        _valid_vars(output_vars),
        tmp_scope_vec,
        _valid_vars(double_grad_vars),
        None,
        *attrs
    )
1005

W
WeiXin 已提交
1006 1007 1008
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
W
wanghuancoder 已提交
1009
    # set param grad Tensor by forward Tensor(LoDTensor)
W
WeiXin 已提交
1010 1011 1012 1013
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
1014
        grad_var_name = persistable_var.name + core.grad_var_suffix()
1015
        grad_var = trace_program.block(0).find_var(grad_var_name.encode())
1016
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
1033 1034
        trace_program, exclude=param_var_names
    )
W
WeiXin 已提交
1035 1036 1037
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
1038 1039 1040 1041 1042 1043 1044
    _append_block(
        main_program,
        trace_program,
        program_holder,
        input,
        dict_rename_var_old_new,
    )
W
WeiXin 已提交
1045
    main_program._sync_with_cpp()
1046 1047 1048
    outs = _get_output_from_program(
        main_program, program_holder, dict_rename_var_old_new
    )
W
WeiXin 已提交
1049 1050 1051 1052 1053 1054 1055 1056
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
1057

W
WeiXin 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


1076 1077 1078 1079 1080 1081 1082
def _append_block(
    dest_program,
    src_program_desc,
    program_holder,
    input_variables,
    dict_rename_var_old_new=None,
):
W
WeiXin 已提交
1083 1084
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1085

W
WeiXin 已提交
1086 1087 1088 1089 1090
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1091
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1092 1093 1094 1095
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
1096 1097 1098 1099 1100 1101 1102 1103
    param_var_names = _collect_current_and_parent_var(
        dest_program, origin_block_idx
    )
    append_var_from_block_desc_static(
        dest_program.block(origin_block_idx),
        src_program_desc.block(0),
        exclude=param_var_names,
    )
W
WeiXin 已提交
1104 1105 1106 1107 1108

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
1109 1110 1111 1112
            "The number of input is invalid, expected {}, but received {}.".format(
                len(name_inp_desc), len(input_names)
            )
        )
W
WeiXin 已提交
1113 1114 1115 1116 1117 1118
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
1119 1120
            outputs={'Out': [out_name]},
        )
W
WeiXin 已提交
1121 1122

    append_ops = append_op_from_block_desc_static(
1123 1124
        dest_program.block(origin_block_idx), src_program_desc.block(0)
    )
W
WeiXin 已提交
1125 1126 1127
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1
1128
    parent_idx = 0
W
WeiXin 已提交
1129 1130 1131 1132 1133 1134 1135 1136 1137
    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1138 1139 1140
            append_var_from_block_desc_static(
                dest_block, src_block, exclude=param_var_names
            )
1141
            append_ops += append_op_from_block_desc_static(
1142 1143
                dest_block, src_block
            )
W
WeiXin 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
1153 1154 1155
            op._set_attr(
                'sub_block', dest_program.block(offset_block_idx + origin_id)
            )
W
WeiXin 已提交
1156 1157 1158 1159
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


1160 1161 1162
def _get_output_from_program(
    program, program_holder, dict_rename_var_old_new=None
):
W
WeiXin 已提交
1163 1164 1165
    """
    Get output name of 'program' according to program_holder
    """
1166
    outs = []
W
WeiXin 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1211 1212 1213 1214 1215 1216 1217 1218
    op = framework.Operator(
        block=block,
        desc=op_append,
        type=op_type,
        inputs=None,
        outputs=None,
        attrs=None,
    )
W
WeiXin 已提交
1219 1220 1221 1222
    block.ops.append(op)
    return op


1223 1224 1225
def append_var_from_block_desc_static(
    block, src_block_desc, include=None, exclude=None
):
W
WeiXin 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
1244 1245
            exclude is None or var_desc_name not in exclude
        )
W
WeiXin 已提交
1246 1247 1248
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
1249 1250 1251
                core.VarDesc.VarType.SELECTED_ROWS,
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1252 1253 1254 1255 1256 1257 1258
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
1259 1260
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1261 1262 1263 1264 1265
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1266 1267 1268 1269 1270
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1271
            vars_append.append(
1272
                current_block.create_var(
W
WeiXin 已提交
1273 1274 1275 1276 1277 1278
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
1279 1280 1281
                    set_need_check_feed=var_desc.need_check_feed(),
                )
            )
W
WeiXin 已提交
1282 1283 1284
    return vars_append


1285 1286
class TranslatedLayer(layers.Layer):
    """
1287 1288
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1289
    general Layer object in eval or train mode.
1290

1291
    .. note:
1292
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1293 1294 1295 1296 1297

    Examples:
        .. code-block:: python

            import numpy as np
1298 1299 1300
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1301

1302 1303 1304
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1305

1306 1307 1308 1309 1310 1311 1312
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1313

1314 1315 1316 1317
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1318

1319 1320
                def __len__(self):
                    return self.num_samples
1321

1322 1323
            class LinearNet(nn.Layer):
                def __init__(self):
1324
                    super().__init__()
1325
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1326

1327
                @paddle.jit.to_static
1328 1329 1330
                def forward(self, x):
                    return self._linear(x)

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1342 1343
            # 1. train & save model.

1344 1345 1346 1347
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1348

1349 1350 1351 1352 1353 1354 1355
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1356

1357 1358
            # train
            train(layer, loader, loss_fn, adam)
1359

1360
            # save
1361
            model_path = "linear.example.model"
1362
            paddle.jit.save(layer, model_path)
1363 1364

            # 2. load model as TranslatedLayer
1365 1366 1367 1368

            # load
            translated_layer = paddle.jit.load(model_path)

1369 1370
            # inference
            translated_layer.eval()
1371
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1372
            pred = translated_layer(x)
1373

1374 1375
            # fine-tune
            translated_layer.train()
1376 1377
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1378 1379 1380 1381

    """

    def __init__(self, programs, persistable_vars):
1382
        super().__init__()
1383 1384 1385 1386 1387 1388 1389

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1390
                "TranslatedLayer need to use persistable variable dict for initialization."
1391 1392 1393 1394
            )

        self._program_holder_dict = programs

1395 1396 1397 1398
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
W
wanghuancoder 已提交
1399
        # in the form of `self.**.**``, but the EagerParamBase or BarBase
1400 1401
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
1402
        self._persistable_var_name_dict = {}
1403 1404 1405
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
W
wanghuancoder 已提交
1406
                if isinstance(var, framework.EagerParamBase):
1407 1408 1409
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
W
wanghuancoder 已提交
1410
                elif isinstance(var, core.eager.Tensor):
1411 1412 1413 1414 1415 1416 1417
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1418 1419

        self._is_test = True
W
WeiXin 已提交
1420
        self._input_args_names = None
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1438
        # 2. load layer parameters & buffers
1439
        persistable_vars = _construct_params_and_buffers(
1440 1441
            model_path, programs, params_filename
        )
1442 1443 1444 1445 1446 1447

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1448 1449 1450 1451
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1452
            setattr(
1453 1454
                TranslatedLayer,
                method_name,
1455
                TranslatedLayer._execution_method_creator(
1456 1457 1458
                    method_name, program_holder
                ),
            )
1459 1460 1461 1462 1463 1464 1465 1466

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
W
WeiXin 已提交
1467 1468 1469 1470
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1471
            if _non_static_mode():
W
WeiXin 已提交
1472 1473 1474 1475 1476 1477 1478
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
1479 1480
                    core.ProgramDesc(program_holder.infer_program)
                )
W
WeiXin 已提交
1481 1482 1483 1484
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1485 1486 1487

    def train(self):
        self._is_test = False
1488
        self.training = True
1489 1490 1491

    def eval(self):
        self._is_test = True
1492
        self.training = False
1493 1494 1495 1496 1497 1498 1499 1500

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1501

1502 1503 1504 1505 1506
        Returns:
            Program

        Examples:
            .. code-block:: python
1507

1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
1535
                        super().__init__()
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1580
        program_holder = self._get_program_holder(method_name)
1581 1582 1583 1584 1585 1586 1587

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1588 1589 1590 1591 1592

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
1593 1594 1595
                "The method `%s` does not exist in loaded TranslatedLayer."
                % method_name
            )
1596 1597 1598 1599 1600 1601 1602 1603 1604
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1605 1606 1607 1608 1609
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1621 1622
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1623
            # construct the description of Output tensor
1624 1625 1626 1627 1628
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1629 1630 1631
            output_spec.append(spec)

        return output_spec