translated_layer.py 61.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
17

18 19
import numpy as np

20
import paddle
21 22
from paddle import _legacy_C_ops
from paddle.fluid import backward, core, framework, unique_name
23 24
from paddle.fluid.dygraph import layers
from paddle.fluid.dygraph.base import switch_to_static_graph
25 26
from paddle.fluid.executor import (
    _is_dy2st_enable_standalone_executor,
27
    _is_enable_standalone_executor,
28
)
29 30
from paddle.fluid.framework import OpProtoHolder, _non_static_mode
from paddle.fluid.layers.utils import _hash_with_id
31
from paddle.jit.dy2static.partial_program import (
32
    LazyInitialized,
33
    add_build_strategy_for,
34
)
35

36 37
from .dy2static.utils import _out_grad_names, _param_grad_names

J
JYChen 已提交
38
__all__ = []
39

40 41 42
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
43
INFER_PROPERTY_SUFFIX = '.meta'
44

45 46 47
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
48 49 50 51 52 53 54 55 56


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
57 58 59
        raise ValueError(
            "Unsupported program version: %d\n" % program_desc._version()
        )
60 61 62 63
    return program_desc


def _is_persistable(var_desc):
64 65 66 67 68 69
    if (
        var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var_desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var_desc.type() == core.VarDesc.VarType.READER
        or var_desc.type() == core.VarDesc.VarType.RAW
    ):
70 71 72 73 74 75 76
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
77
    for block_idx in range(program_desc.num_blocks()):
78
        block = program_desc.block(block_idx)
79
        for op_idx in range(block.op_size()):
80 81 82 83 84
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
85
    for block_idx in range(program_desc.num_blocks()):
86
        block = program_desc.block(block_idx)
87
        for op_idx in range(block.op_size()):
88 89 90 91 92 93 94 95 96 97 98 99
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
100
    for i in range(program_desc.num_blocks()):
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
119
    for i in range(program_desc.num_blocks()):
120 121 122 123 124 125
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


126
@switch_to_static_graph
127 128 129
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
130
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
131
    """
132 133 134
    suffix = LOADED_VAR_SUFFIX
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
135 136


137 138 139
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
140 141 142


def _append_loaded_suffix_to_var(program_desc):
143
    suffix_varname_dict = dict()
144 145 146 147
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
148
        suffix_varname_dict[new_name] = old_name
149
        var_desc.set_name(new_name)
150
        for block_idx in range(program_desc.num_blocks()):
151
            block = program_desc.block(block_idx)
152
            block._rename_var(old_name.encode(), new_name.encode())
153
            for op_idx in range(block.op_size()):
154 155 156
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
157
    return suffix_varname_dict
158 159


160 161 162 163 164 165 166 167 168 169 170 171 172 173
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
    new_old_dict = dict()
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
174
def _rename_var_program_desc(program_desc, include=None, exclude=None):
175
    """
176 177 178 179 180 181 182 183
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
184 185 186 187 188

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
189 190 191 192 193

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
194 195 196 197
    """
    dict_rename_var_old_new = dict()
    dict_rename_var_new_old = dict()
    old_names = []
198
    # Store all old names
199
    for b_idx in range(program_desc.num_blocks()):
200 201 202
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
203 204 205 206

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
207
    for b_idx in range(program_desc.num_blocks()):
208 209 210
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
211 212
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
213 214 215 216 217
            should_rename = (
                (include is None or name_old in include)
                and (exclude is None or name_old not in exclude)
                and not is_double_grad_var
            )
W
WeiXin 已提交
218
            if should_rename:
219 220 221 222
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
223 224 225
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
226 227 228 229 230 231
                        temp_name
                    )
                    if (
                        name_new
                        not in old_names[:var_idx] + old_names[var_idx + 1 :]
                    ):
W
WeiXin 已提交
232 233 234
                        break
            else:
                name_new = name_old
235
            if name_old != name_new:
236
                cur_block._rename_var(name_old.encode(), name_new.encode())
237 238 239 240 241 242 243 244
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
245
            for b_idx in range(program_desc.num_blocks()):
246 247 248 249 250
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
251 252
                            name_old, dict_rename_var_old_new[name_old]
                        )
253 254 255
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
256 257
                var_name
            ]
258
            dict_rename_var_new_old[
259 260
                double_grad_rename_dict[var_name]
            ] = var_name
261 262

    # Rename on program desc
263
    for b_idx in range(program_desc.num_blocks()):
264
        cur_block = program_desc.block(b_idx)
265
        for op_idx in range(cur_block.op_size()):
266 267 268
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
269 270 271 272
                    if (
                        input_arg_name
                        != dict_rename_var_old_new[input_arg_name]
                    ):
273 274
                        op._rename_input(
                            input_arg_name,
275 276
                            dict_rename_var_old_new[input_arg_name],
                        )
277
                        if cur_block.has_var(input_arg_name.encode()):
278
                            cur_block._rename_var(
279
                                input_arg_name.encode(),
280 281 282 283
                                dict_rename_var_old_new[
                                    input_arg_name
                                ].encode(),
                            )
284 285
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
286 287 288 289
                    if (
                        output_arg_name
                        != dict_rename_var_old_new[output_arg_name]
                    ):
290 291
                        op._rename_output(
                            output_arg_name,
292 293
                            dict_rename_var_old_new[output_arg_name],
                        )
294
                        if cur_block.has_var(output_arg_name.encode()):
295
                            cur_block._rename_var(
296
                                output_arg_name.encode(),
297 298 299 300
                                dict_rename_var_old_new[
                                    output_arg_name
                                ].encode(),
                            )
301 302 303 304
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


305 306 307 308 309
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
310
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
311 312 313 314 315 316 317
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
318
    for i in range(program_desc.num_blocks()):
319
        block = program_desc.block(i)
320
        for j in range(block.op_size()):
321 322 323 324 325
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


326
class _ProgramHolder:
327 328 329
    """
    Holds the execution information of a Program.

330 331
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
332 333 334 335 336 337
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
338
        super().__init__()
339

340
        # input, output, persistable, double_grads var info
341
        self._input_descs = []
342
        self._output_descs = []
343
        self._double_grad_descs = []
344
        self._persistable_names = []
345 346 347 348

        # execution scope
        self._inner_scope = core.Scope()

349 350
        # append suffix var name dict
        self._suffix_varname_dict = None
351 352 353 354
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
355 356
            self._infer_program_desc
        )
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
376
        start_op_index = self._infer_program_desc.block(0).op_size() + len(
377 378
            self._output_descs
        )
379
        end_op_index = whole_program.desc.block(0).op_size()
380 381 382 383
        if start_op_index < end_op_index:
            return add_build_strategy_for(
                whole_program, start_op_index, end_op_index
            )
384 385 386 387 388 389 390
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

391 392 393 394 395 396 397 398
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

399 400 401 402 403 404 405 406
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

407
    @property
408 409
    def input_descs(self):
        return self._input_descs
410 411

    @property
412
    def output_descs(self):
413 414 415 416 417 418
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

419 420 421 422
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

423 424 425 426 427
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
428 429
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
430
        rename_new_old_dict, _ = _rename_var_program_desc(
431 432
            program_desc, list_persistable_var
        )
433 434 435 436
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
437
        for i in range(root_block.op_size()):
438 439 440
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
441
                feed_var_name = op.input('X')[0].encode()
442
                root_block._remove_var(feed_var_name)
443
                self._input_descs.append(
444 445
                    root_block.find_var(op.output('Out')[0].encode())
                )
446
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
447 448
                'save_infer_model/scale_'
            ):
449
                ops_to_remove.append(i)
450
                out_var_name = op.output('Out')[0].encode()
451 452
                root_block._remove_var(out_var_name)
                self._output_descs.append(
453 454
                    root_block.find_var(op.input('X')[0].encode())
                )
455 456
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
457
                fetch_var_name = op.output('Out')[0].encode()
458 459 460 461
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
462 463
                        root_block.find_var(op.input('X')[0].encode())
                    )
464 465 466 467 468 469 470
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

471 472 473 474 475 476
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

477
        # 2. Input processing, reverse feed vars
478
        self._input_descs.reverse()
479 480 481 482

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
483 484 485 486 487
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
488
        # use, multiple outputs may be associated with multiple branches.
489 490 491 492
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
493 494 495 496 497
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
498
        # - append loaded suffix to persistable vars
499
        # NOTE: [why need to append suffix to persistable vars]
500 501 502 503 504 505
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
506
        # to add the LOADED suffix to the parameters of the model loaded
507
        self._suffix_varname_dict = _get_loaded_var_new_old(
508 509
            program_desc, rename_new_old_dict
        )
510

511 512 513 514 515 516 517 518 519 520 521 522
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
2
201716010711 已提交
523
                var = paddle.scale(
524 525
                    var, 1.0, name="translated_layer/scale_{}".format(i)
                )
526 527 528 529 530 531
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
532
    def _get_train_forward_program(self, infer_program_desc):
533 534 535 536 537 538 539 540
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
541
        # rewrite a series of methods for append_backward for program_desc.
542 543
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
544 545
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
546
        for block_idx in range(program.num_blocks):
547 548 549
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
550 551 552 553
                    if (
                        "ReserveSpace" not in op.output_names
                        or len(op.output("ReserveSpace")) == 0
                    ):
554 555
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
556 557
                                ".".join(["reserve_space", 'tmp'])
                            ),
558 559 560
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
561 562
                            stop_gradient=True,
                        )
563
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
                    continue

                proto = OpProtoHolder.instance().get_op_proto(op.type)
                has_create_intermediate_out = False
                for output_proto in proto.outputs:
                    if output_proto.intermediate:
                        intermediate_name = output_proto.name
                        if intermediate_name not in op.output_names:
                            has_create_intermediate_out = True
                            intermediate_var = block.create_var(
                                name=unique_name.generate_with_ignorable_key(
                                    ".".join(
                                        [
                                            op.type + '_' + intermediate_name,
                                            'tmp',
                                        ]
                                    )
                                ),
                                type=core.VarDesc.VarType.LOD_TENSOR,
                                persistable=False,
                                stop_gradient=True,
                            )
                            op.desc.set_output(
                                intermediate_name, [intermediate_var.name]
                            )
                if has_create_intermediate_out:
                    op.desc.infer_var_type(block.desc)
                    op.desc.infer_shape(block.desc)

593 594 595 596 597
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
598

599 600 601 602 603 604 605 606 607 608
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
609
#
610 611 612 613 614 615 616
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
617
#
618 619 620
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
621
# 1. Data Sharing:
622 623 624 625
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
626
#
627 628 629 630
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
631
#   We can not separate the program into forward and backward part, which will
632 633 634 635 636
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
637 638 639
def _load_persistable_vars_by_program(
    model_path, program_holder, params_filename=None
):
640 641 642 643
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
644
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
645 646
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
J
Jiabin Yang 已提交
647
            if framework._in_eager_without_dygraph_check():
648 649 650 651 652 653 654
                new_var = framework.EagerParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
655
            else:
656 657 658 659 660 661 662
                new_var = framework.ParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
663
        else:
664 665 666 667 668 669 670
            new_var = framework._varbase_creator(
                type=each_var.type(),
                name=each_var.name(),
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                persistable=True,
            )
671 672 673 674 675
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
676 677
                attrs={'file_path': os.path.join(model_path, orig_each_name)},
            )
678 679 680 681 682
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
683
        dict_name_old_new = {
684
            v: k for k, v in program_holder._suffix_varname_dict.items()
685 686 687
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
688 689 690 691 692

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
693 694
            attrs={'file_path': os.path.join(model_path, params_filename)},
        )
695 696 697 698 699 700 701 702

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
703
    # After loading the model, the stop_gradient information
704 705 706 707 708 709 710 711 712 713 714 715
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


716 717 718
def _load_persistable_vars(
    model_path, var_info_path, program_holder, params_filename
):
719 720
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
721
        extra_var_info = pickle.load(f)
722 723 724 725

    # 2. construct var dict
    load_var_dict = dict()
    load_var_list = []
726
    inv_suffix_varname_dict = {
727
        value: key for key, value in program_holder._suffix_varname_dict.items()
728
    }
729 730 731

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
732
    # var in `extra_var_info` may have been pruned
733 734 735 736 737
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
738 739
                name,
            )
740 741
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
742 743 744
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
J
Jiabin Yang 已提交
745
            if framework._in_eager_without_dygraph_check():
746 747 748 749 750 751
                new_var = framework.EagerParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
752 753
                    persistable=True,
                )
754 755 756 757 758 759 760
            else:
                new_var = framework.ParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
761 762
                    persistable=True,
                )
763
        else:
764 765 766
            new_var = framework._varbase_creator(
                name=new_name, persistable=True
            )
767 768 769 770 771 772

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
773 774 775 776 777 778
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
779 780 781 782 783 784
        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': var_file_path},
        )
785 786 787 788

    return load_var_dict


789 790 791 792 793 794 795 796 797
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
    no_suffix_var_dict = dict()
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


798 799 800 801 802 803 804 805
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
    program_holder_dict = dict()

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
806 807
        model_name = model_filename[: -len(INFER_MODEL_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
808 809 810 811 812
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
813 814 815 816 817
                model_name
            ):
                parsing_names = filename[
                    len(model_name) : -len(INFER_MODEL_SUFFIX) + 1
                ].split('.')
818 819 820 821 822
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
823 824 825
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
826 827
                _load_program_desc(model_file_path)
            )
828 829 830 831 832 833 834 835 836 837 838
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
839 840
                        _load_program_desc(model_file_path)
                    )
841 842 843 844

    return program_holder_dict


845 846 847
def _construct_params_and_buffers(
    model_path, programs, params_filename=None, append_suffix=True
):
848 849
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
850
    params_path = os.path.join(model_path, str(params_filename))
851

852
    if os.path.exists(var_info_path):
853 854 855 856 857
        var_dict = _load_persistable_vars(
            model_path, var_info_path, programs['forward'], params_filename
        )
        model_name = params_filename[: -len(INFER_PARAMS_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
858
        for file_name in os.listdir(model_path):
859
            if file_name.startswith(model_name) and file_name.endswith(
860 861 862 863 864
                INFER_PARAMS_SUFFIX
            ):
                parsing_names = file_name[
                    len(model_name) : -len(INFER_PARAMS_SUFFIX) + 1
                ].split('.')
865 866 867 868
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
869 870 871 872
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
873 874 875 876
                _load_persistable_vars(
                    model_path, var_info_path, programs[func_name], file_name
                )
            )
877 878 879
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
        return dict()
880
    else:
881 882 883
        var_dict = _load_persistable_vars_by_program(
            model_path, programs['forward'], params_filename
        )
884 885 886 887

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

888 889 890
    return var_dict


0
0x45f 已提交
891
def _valid_vars(vars):
892
    return vars if vars else None
0
0x45f 已提交
893 894


W
WeiXin 已提交
895 896 897 898 899
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
900
        if not isinstance(value, (np.ndarray, core.VarBase, core.eager.Tensor)):
W
WeiXin 已提交
901 902
            raise TypeError(
                "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
903 904
                % type(value)
            )
W
WeiXin 已提交
905 906
        # NOTE: In order to unify the API, firstly convert the input to VarBase
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
907
            if framework._in_eager_without_dygraph_check():
908 909 910 911 912
                var = core.eager.Tensor(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
913 914
                    zero_copy=True,
                )
915
            else:
916 917 918 919 920 921 922
                var = core.VarBase(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True,
                )
W
WeiXin 已提交
923 924
        else:
            var = value
925
            # NOTE: we changed var name here,
W
WeiXin 已提交
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
944 945
                % var_name
            )
W
WeiXin 已提交
946 947 948

    output_vars = []
    for var_desc in program_holder.output_descs:
J
Jiabin Yang 已提交
949
        if framework._in_eager_without_dygraph_check():
950 951 952 953 954 955 956
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
957
        else:
958 959 960 961 962 963 964
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
W
WeiXin 已提交
965 966 967
        output_vars.append(var)

    # hold forward variables
J
Jiabin Yang 已提交
968
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
969
        tmp_scope_vec = [program_holder.scope]
970
    else:
971 972 973 974 975 976 977
        tmp_scope_vec = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "program_out_scope",
            core.VarDesc.VarType.STEP_SCOPES,
            True,
        )
0
0x45f 已提交
978
        tmp_scope_vec.value().set_scope(program_holder.scope)
W
WeiXin 已提交
979

980 981
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
J
Jiabin Yang 已提交
982
        if framework._in_eager_without_dygraph_check():
983 984 985 986 987 988 989
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
990
        else:
991 992 993 994 995 996 997
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
998 999
        double_grad_vars.append(var)

W
WeiXin 已提交
1000
    # 2. run program by op
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    trace_program = (
        program_holder.infer_program
        if instance._is_test
        else program_holder.train_program
    )
    forward_program = (
        program_holder._infer_program_desc
        if instance._is_test
        else program_holder.forward_program
    )
W
WeiXin 已提交
1011
    end_op_index = program_holder.infer_program.block(0).op_size()
1012 1013 1014

    attrs = [
        'global_block',
1015 1016 1017 1018 1019 1020 1021 1022 1023
        trace_program.block(0),
        'start_op_index',
        0,
        'end_op_index',
        end_op_index,
        'is_test',
        instance._is_test,
        'program_id',
        _hash_with_id(trace_program, instance),
1024
    ]
1025 1026 1027 1028 1029 1030 1031 1032 1033
    if not instance._is_test:
        attrs.extend(
            (
                'param_grad_names',
                _param_grad_names(trace_program, persistable_vars),
                'out_grad_names',
                _out_grad_names(trace_program, end_op_index, len(output_vars)),
            )
        )
1034

1035 1036 1037 1038
    use_interpretorcore = (
        _is_enable_standalone_executor()
        and _is_dy2st_enable_standalone_executor()
    )
1039 1040 1041
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
            (
                'forward_global_block',
                forward_program.block(0),
                'backward_global_block',
                program_holder.backward_program.block(0),
            )
        )

    _legacy_C_ops.run_program(
        _valid_vars(input_vars),
        _valid_vars(persistable_vars),
        _valid_vars(output_vars),
        tmp_scope_vec,
        _valid_vars(double_grad_vars),
        None,
        *attrs
    )
1059

W
WeiXin 已提交
1060 1061 1062 1063 1064 1065 1066 1067
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
    # set param grad VarBase by forward VarBase(LoDTensor)
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
1068
        grad_var_name = persistable_var.name + core.grad_var_suffix()
1069
        grad_var = trace_program.block(0).find_var(grad_var_name.encode())
1070
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
1087 1088
        trace_program, exclude=param_var_names
    )
W
WeiXin 已提交
1089 1090 1091
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
1092 1093 1094 1095 1096 1097 1098
    _append_block(
        main_program,
        trace_program,
        program_holder,
        input,
        dict_rename_var_old_new,
    )
W
WeiXin 已提交
1099
    main_program._sync_with_cpp()
1100 1101 1102
    outs = _get_output_from_program(
        main_program, program_holder, dict_rename_var_old_new
    )
W
WeiXin 已提交
1103 1104 1105 1106 1107 1108 1109 1110
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
1111

W
WeiXin 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


1130 1131 1132 1133 1134 1135 1136
def _append_block(
    dest_program,
    src_program_desc,
    program_holder,
    input_variables,
    dict_rename_var_old_new=None,
):
W
WeiXin 已提交
1137 1138
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1139

W
WeiXin 已提交
1140 1141 1142 1143 1144
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1145
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1146 1147 1148 1149
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
1150 1151 1152 1153 1154 1155 1156 1157
    param_var_names = _collect_current_and_parent_var(
        dest_program, origin_block_idx
    )
    append_var_from_block_desc_static(
        dest_program.block(origin_block_idx),
        src_program_desc.block(0),
        exclude=param_var_names,
    )
W
WeiXin 已提交
1158 1159 1160 1161 1162

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
1163 1164 1165 1166
            "The number of input is invalid, expected {}, but received {}.".format(
                len(name_inp_desc), len(input_names)
            )
        )
W
WeiXin 已提交
1167 1168 1169 1170 1171 1172
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
1173 1174
            outputs={'Out': [out_name]},
        )
W
WeiXin 已提交
1175 1176

    append_ops = append_op_from_block_desc_static(
1177 1178
        dest_program.block(origin_block_idx), src_program_desc.block(0)
    )
W
WeiXin 已提交
1179 1180 1181
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1
1182
    parent_idx = 0
W
WeiXin 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191
    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1192 1193 1194
            append_var_from_block_desc_static(
                dest_block, src_block, exclude=param_var_names
            )
1195
            append_ops += append_op_from_block_desc_static(
1196 1197
                dest_block, src_block
            )
W
WeiXin 已提交
1198 1199 1200 1201 1202 1203 1204 1205 1206

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
1207 1208 1209
            op._set_attr(
                'sub_block', dest_program.block(offset_block_idx + origin_id)
            )
W
WeiXin 已提交
1210 1211 1212 1213
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


1214 1215 1216
def _get_output_from_program(
    program, program_holder, dict_rename_var_old_new=None
):
W
WeiXin 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
    """
    Get output name of 'program' according to program_holder
    """
    outs = list()
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1265 1266 1267 1268 1269 1270 1271 1272
    op = framework.Operator(
        block=block,
        desc=op_append,
        type=op_type,
        inputs=None,
        outputs=None,
        attrs=None,
    )
W
WeiXin 已提交
1273 1274 1275 1276
    block.ops.append(op)
    return op


1277 1278 1279
def append_var_from_block_desc_static(
    block, src_block_desc, include=None, exclude=None
):
W
WeiXin 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
1298 1299
            exclude is None or var_desc_name not in exclude
        )
W
WeiXin 已提交
1300 1301 1302
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
1303 1304 1305
                core.VarDesc.VarType.SELECTED_ROWS,
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1306 1307 1308 1309 1310 1311 1312
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
1313 1314
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1315 1316 1317 1318 1319
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1320 1321 1322 1323 1324
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1325
            vars_append.append(
1326
                current_block.create_var(
W
WeiXin 已提交
1327 1328 1329 1330 1331 1332
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
1333 1334 1335
                    set_need_check_feed=var_desc.need_check_feed(),
                )
            )
W
WeiXin 已提交
1336 1337 1338
    return vars_append


1339 1340
class TranslatedLayer(layers.Layer):
    """
1341 1342
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1343
    general Layer object in eval or train mode.
1344

1345
    .. note:
1346
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1347 1348 1349 1350 1351

    Examples:
        .. code-block:: python

            import numpy as np
1352 1353 1354
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1355

1356 1357 1358
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1359

1360 1361 1362 1363 1364 1365 1366
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1367

1368 1369 1370 1371
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1372

1373 1374
                def __len__(self):
                    return self.num_samples
1375

1376 1377
            class LinearNet(nn.Layer):
                def __init__(self):
1378
                    super().__init__()
1379
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1380

1381
                @paddle.jit.to_static
1382 1383 1384
                def forward(self, x):
                    return self._linear(x)

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1396 1397
            # 1. train & save model.

1398 1399 1400 1401
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1402

1403 1404 1405 1406 1407 1408 1409
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1410

1411 1412
            # train
            train(layer, loader, loss_fn, adam)
1413

1414
            # save
1415
            model_path = "linear.example.model"
1416
            paddle.jit.save(layer, model_path)
1417 1418

            # 2. load model as TranslatedLayer
1419 1420 1421 1422

            # load
            translated_layer = paddle.jit.load(model_path)

1423 1424
            # inference
            translated_layer.eval()
1425
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1426
            pred = translated_layer(x)
1427

1428 1429
            # fine-tune
            translated_layer.train()
1430 1431
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1432 1433 1434 1435

    """

    def __init__(self, programs, persistable_vars):
1436
        super().__init__()
1437 1438 1439 1440 1441 1442 1443

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1444
                "TranslatedLayer need to use persistable variable dict for initialization."
1445 1446 1447 1448
            )

        self._program_holder_dict = programs

1449 1450 1451 1452 1453 1454 1455 1456
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
        # in the form of `self.**.**``, but the ParamBase or BarBase
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
        self._persistable_var_name_dict = dict()
1457 1458 1459
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
1460 1461 1462
                if isinstance(
                    var, (framework.ParamBase, framework.EagerParamBase)
                ):
1463 1464 1465
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
1466
                elif isinstance(var, (core.VarBase, core.eager.Tensor)):
1467 1468 1469 1470 1471 1472 1473
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1474 1475

        self._is_test = True
W
WeiXin 已提交
1476
        self._input_args_names = None
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1494
        # 2. load layer parameters & buffers
1495
        persistable_vars = _construct_params_and_buffers(
1496 1497
            model_path, programs, params_filename
        )
1498 1499 1500 1501 1502 1503

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1504 1505 1506 1507
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1508
            setattr(
1509 1510
                TranslatedLayer,
                method_name,
1511
                TranslatedLayer._execution_method_creator(
1512 1513 1514
                    method_name, program_holder
                ),
            )
1515 1516 1517 1518 1519 1520 1521 1522

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
W
WeiXin 已提交
1523 1524 1525 1526
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1527
            if _non_static_mode():
W
WeiXin 已提交
1528 1529 1530 1531 1532 1533 1534
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
1535 1536
                    core.ProgramDesc(program_holder.infer_program)
                )
W
WeiXin 已提交
1537 1538 1539 1540
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1541 1542 1543

    def train(self):
        self._is_test = False
1544
        self.training = True
1545 1546 1547

    def eval(self):
        self._is_test = True
1548
        self.training = False
1549 1550 1551 1552 1553 1554 1555 1556

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1557

1558 1559 1560 1561 1562
        Returns:
            Program

        Examples:
            .. code-block:: python
1563

1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
1591
                        super().__init__()
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1636
        program_holder = self._get_program_holder(method_name)
1637 1638 1639 1640 1641 1642 1643

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1644 1645 1646 1647 1648

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
1649 1650 1651
                "The method `%s` does not exist in loaded TranslatedLayer."
                % method_name
            )
1652 1653 1654 1655 1656 1657 1658 1659 1660
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1661 1662 1663 1664 1665
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1677 1678
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1679
            # construct the description of Output tensor
1680 1681 1682 1683 1684
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1685 1686 1687
            output_spec.append(spec)

        return output_spec