adam_op.h 22.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include <Eigen/Dense>
S
sneaxiy 已提交
18
#include <unordered_map>
S
sneaxiy 已提交
19
#include <vector>
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/op_registry.h"
Q
Qiao Longfei 已提交
21
#include "paddle/fluid/framework/threadpool.h"
Y
Yi Wang 已提交
22
#include "paddle/fluid/operators/detail/safe_ref.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/operators/math/algorithm.h"
Y
Yi Wang 已提交
24 25
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
26 27 28 29

namespace paddle {
namespace operators {

T
wip  
typhoonzero 已提交
30 31
namespace scatter = paddle::operators::math::scatter;

32 33 34 35 36 37 38 39 40 41
static inline float GetAttrFromTensor(const framework::Tensor* tensor) {
  const float* tensor_data = tensor->data<float>();
  framework::Tensor cpu_tensor;
  if (platform::is_gpu_place(tensor->place())) {
    TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);
    tensor_data = cpu_tensor.data<float>();
  }
  return tensor_data[0];
}

Y
Yibing Liu 已提交
42 43 44 45 46 47 48 49 50
class AdamOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override;
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
};

51 52 53 54
struct GPUAdam;
struct CPUAdam;

template <typename T, typename Flavour>
A
Aurelius84 已提交
55
class AdamFunctor;
56

Y
Yang Yu 已提交
57
template <typename T>
A
Aurelius84 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
class BetaPowFunctor {
 private:
  T beta1_;
  T beta2_;
  const T* beta1_pow_;
  const T* beta2_pow_;
  T* beta1_pow_out_;
  T* beta2_pow_out_;

 public:
  BetaPowFunctor(T beta1, T beta2, const T* beta1_pow, const T* beta2_pow,
                 T* beta1_pow_out, T* beta2_pow_out)
      : beta1_(beta1),
        beta2_(beta2),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        beta1_pow_out_(beta1_pow_out),
        beta2_pow_out_(beta2_pow_out) {}

  inline HOSTDEVICE void update_step(size_t i) const {
    T beta1_pow_i = beta1_pow_[i];
    T beta2_pow_i = beta2_pow_[i];

    beta1_pow_out_[i] = beta1_pow_i * beta1_;
    beta2_pow_out_[i] = beta2_pow_i * beta2_;
  }

  inline HOSTDEVICE void operator()(size_t i) const { update_step(i); }

  inline HOSTDEVICE void apply_update(size_t limit) const {
    for (size_t i = 0; i < limit; ++i) {
      update_step(i);
    }
  }
};

template <typename T>
class AdamFunctor<T, GPUAdam> {
 private:
Y
Yang Yu 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
110
  T* param_out_;
Y
Yang Yu 已提交
111

A
Aurelius84 已提交
112
 public:
Y
Yang Yu 已提交
113 114
  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
115 116
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
117 118 119 120 121 122 123 124 125 126 127
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
128 129
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
130

Y
Yang Yu 已提交
131
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
132 133 134 135 136 137 138
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
139
    T p = param_[i];
Y
Yang Yu 已提交
140 141

    // Calculation
Y
Yang Yu 已提交
142
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
143

Y
Yang Yu 已提交
144 145
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
Y
Yang Yu 已提交
146
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
Y
Yang Yu 已提交
147 148 149 150

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
151
    param_out_[i] = p;
Y
Yang Yu 已提交
152 153 154
  }
};

155
template <typename T>
A
Aurelius84 已提交
156 157
class AdamFunctor<T, CPUAdam> {
 private:
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

A
Aurelius84 已提交
173
 public:
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out) {}

  void operator()(size_t numel) const {
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
        grad_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
        moment1_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
        moment2_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
        param_, static_cast<Eigen::Index>(numel)};

    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
        param_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
        moment1_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
        moment2_out_, static_cast<Eigen::Index>(numel)};

    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
    moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
    param_out = param - lr * (moment1_out / (moment2_out.sqrt() + epsilon_));
  }
};

222
template <typename T, typename Flavour>
A
Aurelius84 已提交
223
class SparseAdamFunctor;
224

T
wip  
typhoonzero 已提交
225
template <typename T>
A
Aurelius84 已提交
226 227
class SparseAdamFunctor<T, GPUAdam> {
 private:
T
wip  
typhoonzero 已提交
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
S
sneaxiy 已提交
245
  int64_t row_count_;
Q
Qiao Longfei 已提交
246
  bool lazy_mode_;
T
wip  
typhoonzero 已提交
247

A
Aurelius84 已提交
248
 public:
T
wip  
typhoonzero 已提交
249 250 251 252
  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
Q
Qiao Longfei 已提交
253
                    int64_t row_numel, int64_t row_count, bool lazy_mode)
T
wip  
typhoonzero 已提交
254 255 256 257 258 259 260 261 262 263 264 265 266 267
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
S
sneaxiy 已提交
268
        row_numel_(row_numel),
Q
Qiao Longfei 已提交
269
        row_count_(row_count),
Q
Qiao Longfei 已提交
270
        lazy_mode_(lazy_mode) {}
S
sneaxiy 已提交
271

Q
Qiao Longfei 已提交
272
  inline HOSTDEVICE void adam_update(size_t i, T g) const {
S
sneaxiy 已提交
273 274 275 276
    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
T
typhoonzero 已提交
277 278
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
S
sneaxiy 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
T
wip  
typhoonzero 已提交
292
  }
Q
Qiao Longfei 已提交
293 294 295 296

  inline HOSTDEVICE void operator()(size_t i) const {
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
Q
Qiao Longfei 已提交
297 298 299
    if (lazy_mode_ && row_idx < 0) {
      return;
    } else {
Q
Qiao Longfei 已提交
300 301 302
      T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;
      adam_update(i, g);
    }
Q
Qiao Longfei 已提交
303
  }
T
wip  
typhoonzero 已提交
304 305
};

M
minqiyang 已提交
306
template <typename T>
A
Aurelius84 已提交
307 308
class SparseAdamFunctor<T, CPUAdam> {
 private:
M
minqiyang 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

A
Aurelius84 已提交
328
 public:
M
minqiyang 已提交
329 330 331 332
  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
333
                    int64_t row_numel, int64_t row_count, bool lazy_mode)
M
minqiyang 已提交
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
  inline HOSTDEVICE void adam_update(size_t i, T g) const {
    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
  }

M
minqiyang 已提交
373 374 375 376 377 378
  inline void operator()(size_t numel) const {
    // lr could be reuse
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
S
sneaxiy 已提交
379
    int64_t row_count = static_cast<int64_t>(numel / row_numel_);
M
minqiyang 已提交
380

S
sneaxiy 已提交
381
    for (int64_t i = 0, j = 0; i != row_count; ++i) {
M
minqiyang 已提交
382
      if (i == *(rows_ + j)) {
S
sneaxiy 已提交
383
        for (int64_t k = 0; k != row_numel_; ++k) {
M
Fix bug  
minqiyang 已提交
384
          T g = grad_[j * row_numel_ + k];
M
minqiyang 已提交
385
          adam_update(i * row_numel_ + k, g);
M
Fix bug  
minqiyang 已提交
386
        }
M
minqiyang 已提交
387 388
        ++j;
      } else {
S
sneaxiy 已提交
389
        for (int64_t k = 0; k != row_numel_; ++k) {
M
Fix bug  
minqiyang 已提交
390 391 392 393 394 395 396 397 398 399 400 401 402
          T mom1 = moment1_[i * row_numel_ + k];
          T mom2 = moment2_[i * row_numel_ + k];
          T p = param_[i * row_numel_ + k];

          mom1 = beta1_ * mom1;
          mom2 = beta2_ * mom2;

          p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
          // Write back to global memory
          moment1_out_[i * row_numel_ + k] = mom1;
          moment2_out_[i * row_numel_ + k] = mom2;
          param_out_[i * row_numel_ + k] = p;
        }
M
minqiyang 已提交
403 404 405 406 407
      }
    }
  }
};

Q
QI JUN 已提交
408
template <typename DeviceContext, typename T>
409 410 411
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
412 413 414 415
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
H
hong 已提交
416
                   ctx.InputNames("Param").front(),
S
sneaxiy 已提交
417
                   framework::ToTypeName(param_var->Type()));
C
chengduo 已提交
418

Y
Yang Yu 已提交
419 420
    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;
421

422 423
    int64_t min_row_size_to_use_multithread =
        ctx.Attr<int64_t>("min_row_size_to_use_multithread");
Q
Qiao Longfei 已提交
424
    bool lazy_mode = ctx.Attr<bool>("lazy_mode");
425
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
Y
Yang Yu 已提交
426
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
T
wip  
typhoonzero 已提交
427 428
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
Y
Yang Yu 已提交
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");
A
Aurelius84 已提交
445 446 447 448
    auto& beta1_pow_out =
        Ref(ctx.Output<LoDTensor>("Beta1PowOut"), "Must set Beta1PowOut");
    auto& beta2_pow_out =
        Ref(ctx.Output<LoDTensor>("Beta2PowOut"), "Must set Beta2PowOut");
Y
Yang Yu 已提交
449

450 451 452 453 454 455 456 457 458 459
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    if (ctx.HasInput("Beta1Tensor")) {
      auto* beta1_tensor = ctx.Input<framework::Tensor>("Beta1Tensor");
      beta1 = static_cast<T>(GetAttrFromTensor(beta1_tensor));
    }
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    if (ctx.HasInput("Beta2Tensor")) {
      auto* beta2_tensor = ctx.Input<framework::Tensor>("Beta2Tensor");
      beta2 = static_cast<T>(GetAttrFromTensor(beta2_tensor));
    }
A
Aurelius84 已提交
460 461 462 463 464 465 466 467
    VLOG(3) << "beta1_pow.numel() : " << beta1_pow.numel()
            << "beta2_pow.numel() : " << beta2_pow.numel();
    VLOG(3) << "param.numel(): " << param.numel();
    BetaPowFunctor<T> beta_functor(
        beta1, beta2, beta1_pow.template data<T>(),
        beta2_pow.template data<T>(),
        beta1_pow_out.template mutable_data<T>(ctx.GetPlace()),
        beta2_pow_out.template mutable_data<T>(ctx.GetPlace()));
468

T
wip  
typhoonzero 已提交
469 470
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
471 472 473 474 475 476 477 478 479 480 481 482

      if (platform::is_cpu_place(ctx.GetPlace())) {
        AdamFunctor<T, CPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));
        functor(param.numel());
A
Aurelius84 已提交
483
        beta_functor.apply_update(beta2_pow.numel());
484 485 486 487 488 489 490 491 492 493
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        AdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));
A
Aurelius84 已提交
494
        // update param and moment
495 496 497 498
        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
A
Aurelius84 已提交
499 500 501 502 503
        // update beta1 and beta2
        platform::ForRange<DeviceContext> for_range_beta(
            static_cast<const DeviceContext&>(ctx.device_context()),
            beta2_pow.numel());
        for_range_beta(beta_functor);
504
      }
T
wip  
typhoonzero 已提交
505 506 507
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto& grad =
          Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
508
      if (grad.rows().size() == 0) {
M
minqiyang 已提交
509
        VLOG(3) << "grad row size is 0!!";
510 511
        return;
      }
S
sneaxiy 已提交
512 513 514 515 516 517 518 519 520 521

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

S
sneaxiy 已提交
522
      framework::SelectedRows tmp_grad_merge;
S
sneaxiy 已提交
523 524 525 526 527 528 529 530
      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
        scatter::MergeAdd<DeviceContext, T> merge_func;
        merge_func(ctx.template device_context<DeviceContext>(), grad,
S
sneaxiy 已提交
531 532
                   &tmp_grad_merge, true);
        grad_merge_ptr = &tmp_grad_merge;
S
sneaxiy 已提交
533 534 535
      }

      auto& grad_merge = *grad_merge_ptr;
T
wip  
typhoonzero 已提交
536
      auto& grad_tensor = grad_merge.value();
T
wip  
typhoonzero 已提交
537
      const T* grad_data = grad_tensor.template data<T>();
S
sneaxiy 已提交
538
      const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
T
wip  
typhoonzero 已提交
539
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
T
wip  
typhoonzero 已提交
540

M
minqiyang 已提交
541 542
      if (platform::is_cpu_place(ctx.GetPlace())) {
        SparseAdamFunctor<T, CPUAdam> functor(
Q
Qiao Longfei 已提交
543 544 545 546 547 548 549 550
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad_data, param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
            grad_merge.rows().size(), lazy_mode);
A
Aurelius84 已提交
551 552
        // update beta1 and beta2
        beta_functor.apply_update(beta2_pow.numel());
553 554 555 556 557 558 559 560 561 562
        if (lazy_mode) {
          VLOG(3) << "run cpu lazy mode";
          size_t row_count = grad_merge.rows().size();
          std::vector<int64_t> cpu_rows(grad_merge.rows());
          for (size_t row_index = 0; row_index < row_count; ++row_index) {
            for (size_t offset = 0; offset < row_numel; ++offset) {
              size_t i = cpu_rows[row_index] * row_numel + offset;
              functor.adam_update(i, grad_data[row_index * row_numel + offset]);
            }
          }
563 564
        }
#ifndef _WIN32
S
sneaxiy 已提交
565
        else if (FLAGS_inner_op_parallelism > 1 &&  // NOLINT
566 567
                 min_row_size_to_use_multithread > 0 &&
                 param.dims()[0] > min_row_size_to_use_multithread) {
568 569
          VLOG(3) << "use multi thread, inner_op_parallelism="
                  << FLAGS_inner_op_parallelism
570
                  << " min_row_size_to_use_multithread="
571
                  << min_row_size_to_use_multithread;
Q
Qiao Longfei 已提交
572
          if (FLAGS_inner_op_parallelism > 10) {
573 574
            VLOG(1) << "FLAGS_inner_op_parallelism "
                    << FLAGS_inner_op_parallelism << " is two large!";
Q
Qiao Longfei 已提交
575
          }
576 577 578
          auto& grad_rows = grad_merge.rows();
          std::unordered_map<size_t, int> row_id_to_grad_row_offset;
          size_t param_row_count = param.numel() / row_numel;
Q
Qiao Longfei 已提交
579
          if (param_row_count < 1000) {
580 581 582
            VLOG(1) << "param_row_count should be larger then 1000 to use "
                       "multi thread, currently "
                    << param_row_count;
Q
Qiao Longfei 已提交
583
          }
584 585
          for (size_t i = 0; i < grad_rows.size(); ++i) {
            row_id_to_grad_row_offset[grad_rows[i]] = i;
Q
Qiao Longfei 已提交
586
          }
587
          std::vector<std::future<void>> fs;
Q
Qiao Longfei 已提交
588
          int64_t line_in_each_thread =
Q
Qiao Longfei 已提交
589
              param_row_count / FLAGS_inner_op_parallelism + 1;
590 591 592
          for (int i = 0; i < FLAGS_inner_op_parallelism; ++i) {
            int64_t start = i * line_in_each_thread;
            int64_t end = (i + 1) * line_in_each_thread;
S
sneaxiy 已提交
593
            if (start >= static_cast<int64_t>(param_row_count)) {
Q
Qiao Longfei 已提交
594 595
              break;
            }
S
sneaxiy 已提交
596 597
            if (end > static_cast<int64_t>(param_row_count)) {
              end = static_cast<int64_t>(param_row_count);
Q
Qiao Longfei 已提交
598
            }
Q
Qiao Longfei 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
            fs.push_back(
                framework::Async([&functor, &row_id_to_grad_row_offset,
                                  &grad_data, row_numel, start, end]() {
                  for (int64_t row_id = start; row_id < end; ++row_id) {
                    auto iter = row_id_to_grad_row_offset.find(row_id);
                    if (iter != row_id_to_grad_row_offset.end()) {
                      for (size_t row_offset = 0U; row_offset < row_numel;
                           ++row_offset) {
                        functor.adam_update(
                            row_id * row_numel + row_offset,
                            grad_data[iter->second * row_numel + row_offset]);
                      }
                    } else {
                      for (size_t row_offset = 0U; row_offset < row_numel;
                           ++row_offset) {
                        functor.adam_update(row_id * row_numel + row_offset, 0);
                      }
                    }
Q
Qiao Longfei 已提交
617 618
                  }
                }));
Q
Qiao Longfei 已提交
619
          }
620
          for (size_t i = 0; i < fs.size(); ++i) fs[i].wait();
621
        }
S
sneaxiy 已提交
622 623
#endif          // !_WIN32
        else {  // NOLINT
624
          functor(param.numel());
Q
Qiao Longfei 已提交
625
        }
M
minqiyang 已提交
626 627 628 629 630 631 632 633 634
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        SparseAdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad_data, param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
635
            grad_merge.rows().size(), lazy_mode);
M
minqiyang 已提交
636 637

        // FIXME(minqiyang): remove BinarySearch in GPU later
Q
Qiao Longfei 已提交
638 639 640 641
        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
A
Aurelius84 已提交
642 643 644 645 646
        // update beta1 and beta2
        platform::ForRange<DeviceContext> for_range_beta(
            static_cast<const DeviceContext&>(ctx.device_context()),
            beta2_pow.numel());
        for_range_beta(beta_functor);
Q
Qiao Longfei 已提交
647
      }
T
wip  
typhoonzero 已提交
648 649 650
    } else {
      PADDLE_THROW("Variable type not supported by adam_op");
    }
651 652 653 654 655
  }
};

}  // namespace operators
}  // namespace paddle