adam_op.h 15.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yang Yu 已提交
16
#include <math.h>  // for sqrt in CPU and CUDA
17
#include <Eigen/Dense>
S
sneaxiy 已提交
18
#include <vector>
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
S
sneaxiy 已提交
21
#include "paddle/fluid/operators/math/algorithm.h"
Y
Yi Wang 已提交
22 23
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
24 25 26 27

namespace paddle {
namespace operators {

T
wip  
typhoonzero 已提交
28 29
namespace scatter = paddle::operators::math::scatter;

30 31 32 33 34 35
struct GPUAdam;
struct CPUAdam;

template <typename T, typename Flavour>
struct AdamFunctor;

Y
Yang Yu 已提交
36
template <typename T>
37
struct AdamFunctor<T, GPUAdam> {
Y
Yang Yu 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
Y
Yang Yu 已提交
51
  T* param_out_;
Y
Yang Yu 已提交
52 53 54

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
Y
Yang Yu 已提交
55 56
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
Y
Yang Yu 已提交
57 58 59 60 61 62 63 64 65 66 67
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
Y
Yang Yu 已提交
68 69
        param_(param),
        param_out_(param_out) {}
Y
Yang Yu 已提交
70

Y
Yang Yu 已提交
71
  inline HOSTDEVICE void operator()(size_t i) const {
Y
Yang Yu 已提交
72 73 74 75 76 77 78
    // Merge all memory access together.
    T g = grad_[i];
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
Y
Yang Yu 已提交
79
    T p = param_[i];
Y
Yang Yu 已提交
80 81

    // Calculation
Y
Yang Yu 已提交
82
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
83

Y
Yang Yu 已提交
84 85
    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
Y
Yang Yu 已提交
86
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
Y
Yang Yu 已提交
87 88 89 90

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
Y
Yang Yu 已提交
91
    param_out_[i] = p;
Y
Yang Yu 已提交
92 93 94
  }
};

95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
template <typename T>
struct AdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  AdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
              const T* beta2_pow, const T* mom1, T* mom1_out, const T* mom2,
              T* mom2_out, const T* lr, const T* grad, const T* param,
              T* param_out)
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out) {}

  void operator()(size_t numel) const {
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> g{
        grad_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom1{
        moment1_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> mom2{
        moment2_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<const Eigen::Array<T, 1, Eigen::Dynamic>> param{
        param_, static_cast<Eigen::Index>(numel)};

    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> param_out{
        param_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment1_out{
        moment1_out_, static_cast<Eigen::Index>(numel)};
    Eigen::Map<Eigen::Array<T, 1, Eigen::Dynamic>> moment2_out{
        moment2_out_, static_cast<Eigen::Index>(numel)};

    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    moment1_out = beta1_ * mom1 + (1 - beta1_) * g;
    moment2_out = beta2_ * mom2 + (1 - beta2_) * g * g;
    param_out = param - lr * (moment1_out / (moment2_out.sqrt() + epsilon_));
  }
};

160 161 162
template <typename T, typename Flavour>
struct SparseAdamFunctor;

T
wip  
typhoonzero 已提交
163
template <typename T>
M
minqiyang 已提交
164
struct SparseAdamFunctor<T, GPUAdam> {
T
wip  
typhoonzero 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
S
sneaxiy 已提交
182
  int64_t row_count_;
T
wip  
typhoonzero 已提交
183 184 185 186 187

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
S
sneaxiy 已提交
188
                    int64_t row_numel, int64_t row_count)
T
wip  
typhoonzero 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
S
sneaxiy 已提交
203 204 205
        row_numel_(row_numel),
        row_count_(row_count) {}

T
wip  
typhoonzero 已提交
206
  inline HOSTDEVICE void operator()(size_t i) const {
S
sneaxiy 已提交
207 208
    auto row_idx =
        math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
S
sneaxiy 已提交
209 210 211 212 213 214
    T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;

    // The following code is the same as dense
    T mom1 = moment1_[i];
    T mom2 = moment2_[i];
    T lr = *lr_;
T
typhoonzero 已提交
215 216
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
S
sneaxiy 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229
    T p = param_[i];

    // Calculation
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);

    mom1 = beta1_ * mom1 + (1 - beta1_) * g;
    mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
    p -= lr * (mom1 / (sqrt(mom2) + epsilon_));

    // Write back to global memory
    moment1_out_[i] = mom1;
    moment2_out_[i] = mom2;
    param_out_[i] = p;
T
wip  
typhoonzero 已提交
230 231 232
  }
};

M
minqiyang 已提交
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
template <typename T>
struct SparseAdamFunctor<T, CPUAdam> {
  T beta1_;
  T beta2_;
  T epsilon_;

  const T* beta1_pow_;
  const T* beta2_pow_;
  const T* moment1_;
  T* moment1_out_;
  const T* moment2_;
  T* moment2_out_;
  const T* lr_;
  const T* grad_;
  const T* param_;
  T* param_out_;

  const int64_t* rows_;
  int64_t row_numel_;
  int64_t row_count_;

  SparseAdamFunctor(T beta1, T beta2, T epsilon, const T* beta1_pow,
                    const T* beta2_pow, const T* mom1, T* mom1_out,
                    const T* mom2, T* mom2_out, const T* lr, const T* grad,
                    const T* param, T* param_out, const int64_t* rows,
                    int64_t row_numel, int64_t row_count)
      : beta1_(beta1),
        beta2_(beta2),
        epsilon_(epsilon),
        beta1_pow_(beta1_pow),
        beta2_pow_(beta2_pow),
        moment1_(mom1),
        moment1_out_(mom1_out),
        moment2_(mom2),
        moment2_out_(mom2_out),
        lr_(lr),
        grad_(grad),
        param_(param),
        param_out_(param_out),
        rows_(rows),
        row_numel_(row_numel),
        row_count_(row_count) {}

  inline void operator()(size_t numel) const {
    // lr could be reuse
    T lr = *lr_;
    T beta1_pow = *beta1_pow_;
    T beta2_pow = *beta2_pow_;
    lr *= sqrt(1 - beta2_pow) / (1 - beta1_pow);
M
Fix bug  
minqiyang 已提交
282
    size_t row_count = numel / row_numel_;
M
minqiyang 已提交
283

M
Fix bug  
minqiyang 已提交
284
    for (size_t i = 0U, j = 0U; i != row_count; ++i) {
M
minqiyang 已提交
285
      if (i == *(rows_ + j)) {
M
Fix bug  
minqiyang 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        for (size_t k = 0U; k != row_numel_; ++k) {
          T mom1 = moment1_[i * row_numel_ + k];
          T mom2 = moment2_[i * row_numel_ + k];
          T p = param_[i * row_numel_ + k];

          T g = grad_[j * row_numel_ + k];
          mom1 = beta1_ * mom1 + (1 - beta1_) * g;
          mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;

          p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
          // Write back to global memory
          moment1_out_[i * row_numel_ + k] = mom1;
          moment2_out_[i * row_numel_ + k] = mom2;
          param_out_[i * row_numel_ + k] = p;
        }
M
minqiyang 已提交
301 302
        ++j;
      } else {
M
Fix bug  
minqiyang 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316
        for (size_t k = 0U; k != row_numel_; ++k) {
          T mom1 = moment1_[i * row_numel_ + k];
          T mom2 = moment2_[i * row_numel_ + k];
          T p = param_[i * row_numel_ + k];

          mom1 = beta1_ * mom1;
          mom2 = beta2_ * mom2;

          p -= lr * (mom1 / (sqrt(mom2) + epsilon_));
          // Write back to global memory
          moment1_out_[i * row_numel_ + k] = mom1;
          moment2_out_[i * row_numel_ + k] = mom2;
          param_out_[i * row_numel_ + k] = p;
        }
M
minqiyang 已提交
317 318 319 320 321
      }
    }
  }
};

Q
QI JUN 已提交
322
template <typename DeviceContext, typename T>
323 324 325
class AdamOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
C
chengduo 已提交
326 327 328 329 330 331
    const auto* param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
                   ctx.Inputs("Param").front(), param_var->Type().name());

Y
Yang Yu 已提交
332 333
    using paddle::framework::LoDTensor;
    using paddle::operators::detail::Ref;
334

335 336 337
    T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
    T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
Y
Yang Yu 已提交
338
    auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param");
T
wip  
typhoonzero 已提交
339 340
    // auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
    auto* grad_var = ctx.InputVar("Grad");
Y
Yang Yu 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
    auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1");
    auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2");
    auto& lr =
        Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate");

    auto& beta1_pow =
        Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow");
    auto& beta2_pow =
        Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow");

    auto& param_out =
        Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut");
    auto& mom1_out =
        Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out");
    auto& mom2_out =
        Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out");

T
wip  
typhoonzero 已提交
358 359
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad");
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387

      if (platform::is_cpu_place(ctx.GetPlace())) {
        AdamFunctor<T, CPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));
        functor(param.numel());
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        AdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad.template data<T>(),
            param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()));

        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
388 389 390
    } else if (grad_var->IsType<framework::SelectedRows>()) {
      auto& grad =
          Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad");
391
      if (grad.rows().size() == 0) {
M
minqiyang 已提交
392
        VLOG(3) << "grad row size is 0!!";
393 394
        return;
      }
S
sneaxiy 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410

      std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
      bool is_strict_sorted = true;
      for (size_t i = 1; i < cpu_rows.size(); ++i) {
        if (cpu_rows[i - 1] >= cpu_rows[i]) {
          is_strict_sorted = false;
          break;
        }
      }

      const framework::SelectedRows* grad_merge_ptr;
      if (is_strict_sorted) {
        grad_merge_ptr = &grad;
      } else {
        // merge duplicated rows if any.
        // The rows of grad_merge have been sorted inside MergeAdd functor
411
        scatter::MergeAdd<DeviceContext, T> merge_func;
S
sneaxiy 已提交
412 413 414 415
        auto* grad_merge_var = const_cast<framework::Scope&>(ctx.scope())
                                   .Var()
                                   ->GetMutable<framework::SelectedRows>();
        merge_func(ctx.template device_context<DeviceContext>(), grad,
416
                   grad_merge_var, true);
S
sneaxiy 已提交
417 418 419 420
        grad_merge_ptr = grad_merge_var;
      }

      auto& grad_merge = *grad_merge_ptr;
T
wip  
typhoonzero 已提交
421
      auto& grad_tensor = grad_merge.value();
T
wip  
typhoonzero 已提交
422
      const T* grad_data = grad_tensor.template data<T>();
S
sneaxiy 已提交
423 424
      const int64_t* rows = nullptr;
// When compiled without CUDA, the CUDAData() interface should not be
425 426
// provided.
#if defined(PADDLE_WITH_CUDA)
D
dzhwinter 已提交
427
      if (platform::is_gpu_place(ctx.GetPlace())) {
S
sneaxiy 已提交
428
        rows = grad_merge.rows().CUDAData(ctx.GetPlace());
D
dzhwinter 已提交
429
      } else {
430
#endif
S
sneaxiy 已提交
431
        rows = grad_merge.rows().data();
432
#if defined(PADDLE_WITH_CUDA)
D
dzhwinter 已提交
433
      }
434
#endif
T
wip  
typhoonzero 已提交
435
      auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
T
wip  
typhoonzero 已提交
436

M
minqiyang 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
      if (platform::is_cpu_place(ctx.GetPlace())) {
        SparseAdamFunctor<T, CPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad_data, param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
            grad_merge.rows().size());

        functor(param.numel());
      } else if (platform::is_gpu_place(ctx.GetPlace())) {
        SparseAdamFunctor<T, GPUAdam> functor(
            beta1, beta2, epsilon, beta1_pow.template data<T>(),
            beta2_pow.template data<T>(), mom1.template data<T>(),
            mom1_out.template mutable_data<T>(ctx.GetPlace()),
            mom2.template data<T>(),
            mom2_out.template mutable_data<T>(ctx.GetPlace()),
            lr.template data<T>(), grad_data, param.template data<T>(),
            param_out.template mutable_data<T>(ctx.GetPlace()), rows, row_numel,
            grad_merge.rows().size());

        // FIXME(minqiyang): remove BinarySearch in GPU later
        platform::ForRange<DeviceContext> for_range(
            static_cast<const DeviceContext&>(ctx.device_context()),
            param.numel());
        for_range(functor);
      }
T
wip  
typhoonzero 已提交
466 467 468
    } else {
      PADDLE_THROW("Variable type not supported by adam_op");
    }
469 470 471 472 473
  }
};

}  // namespace operators
}  // namespace paddle