auc_op.h 4.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
T
typhoonzero 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <string>
#include <vector>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
T
typhoonzero 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

T
auc_op  
typhoonzero 已提交
26 27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
T
typhoonzero 已提交
31
class AucKernel : public framework::OpKernel<T> {
T
typhoonzero 已提交
32 33
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
Q
Qiao Longfei 已提交
34
    auto* predict = ctx.Input<Tensor>("Predict");
T
typhoonzero 已提交
35 36
    auto* label = ctx.Input<Tensor>("Label");
    auto* auc = ctx.Output<Tensor>("AUC");
W
Wu Yi 已提交
37 38 39 40 41 42
    // Only use output var for now, make sure it's persistable and
    // not cleaned up for each batch.
    auto* true_positive = ctx.Output<Tensor>("TPOut");
    auto* false_positive = ctx.Output<Tensor>("FPOut");
    auto* true_negative = ctx.Output<Tensor>("TNOut");
    auto* false_negative = ctx.Output<Tensor>("FNOut");
T
typhoonzero 已提交
43

Q
Qiao Longfei 已提交
44
    auto* auc_data = auc->mutable_data<double>(ctx.GetPlace());
T
typhoonzero 已提交
45 46 47

    std::string curve = ctx.Attr<std::string>("curve");
    int num_thresholds = ctx.Attr<int>("num_thresholds");
Q
Qiao Longfei 已提交
48
    std::vector<double> thresholds_list;
T
typhoonzero 已提交
49 50
    thresholds_list.reserve(num_thresholds);
    for (int i = 1; i < num_thresholds - 1; i++) {
Q
Qiao Longfei 已提交
51
      thresholds_list[i] = static_cast<double>(i) / (num_thresholds - 1);
T
typhoonzero 已提交
52
    }
Q
Qiao Longfei 已提交
53
    const double kEpsilon = 1e-7;
T
typhoonzero 已提交
54 55 56
    thresholds_list[0] = 0.0f - kEpsilon;
    thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;

Q
Qiao Longfei 已提交
57 58
    size_t batch_size = predict->dims()[0];
    size_t inference_width = predict->dims()[1];
T
auc_op  
typhoonzero 已提交
59

Q
Qiao Longfei 已提交
60 61
    const T* inference_data = predict->data<T>();
    const auto* label_data = label->data<int64_t>();
T
typhoonzero 已提交
62

W
Wu Yi 已提交
63 64 65 66
    auto* tp_data = true_positive->mutable_data<int64_t>(ctx.GetPlace());
    auto* fn_data = false_negative->mutable_data<int64_t>(ctx.GetPlace());
    auto* tn_data = true_negative->mutable_data<int64_t>(ctx.GetPlace());
    auto* fp_data = false_positive->mutable_data<int64_t>(ctx.GetPlace());
T
typhoonzero 已提交
67

T
typhoonzero 已提交
68
    for (int idx_thresh = 0; idx_thresh < num_thresholds; idx_thresh++) {
Q
Qiao Longfei 已提交
69
      // calculate TP, FN, TN, FP for current thresh
武毅 已提交
70 71
      int64_t tp = 0, fn = 0, tn = 0, fp = 0;
      for (size_t i = 0; i < batch_size; i++) {
Q
Qiao Longfei 已提交
72
        // NOTE: label_data used as bool, labels > 0 will be treated as true.
武毅 已提交
73
        if (label_data[i]) {
Q
Qiao Longfei 已提交
74
          if (inference_data[i * inference_width + 1] >=
武毅 已提交
75
              (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
76 77
            tp++;
          } else {
T
typhoonzero 已提交
78
            fn++;
T
auc_op  
typhoonzero 已提交
79 80
          }
        } else {
Q
Qiao Longfei 已提交
81
          if (inference_data[i * inference_width + 1] >=
武毅 已提交
82
              (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
83
            fp++;
T
typhoonzero 已提交
84
          } else {
T
typhoonzero 已提交
85
            tn++;
T
typhoonzero 已提交
86 87 88 89
          }
        }
      }
      // store rates
W
Wu Yi 已提交
90 91 92 93
      tp_data[idx_thresh] += tp;
      fn_data[idx_thresh] += fn;
      tn_data[idx_thresh] += tn;
      fp_data[idx_thresh] += fp;
T
typhoonzero 已提交
94 95
    }
    // epsilon to avoid divide by zero.
Q
Qiao Longfei 已提交
96
    double epsilon = 1e-6;
T
typhoonzero 已提交
97 98 99 100 101
    // Riemann sum to caculate auc.
    Tensor tp_rate, fp_rate, rec_rate;
    tp_rate.Resize({num_thresholds});
    fp_rate.Resize({num_thresholds});
    rec_rate.Resize({num_thresholds});
Q
Qiao Longfei 已提交
102 103 104
    auto* tp_rate_data = tp_rate.mutable_data<double>(ctx.GetPlace());
    auto* fp_rate_data = fp_rate.mutable_data<double>(ctx.GetPlace());
    auto* rec_rate_data = rec_rate.mutable_data<double>(ctx.GetPlace());
T
typhoonzero 已提交
105
    for (int i = 0; i < num_thresholds; i++) {
Q
Qiao Longfei 已提交
106
      tp_rate_data[i] = (static_cast<double>(tp_data[i]) + epsilon) /
107 108
                        (tp_data[i] + fn_data[i] + epsilon);
      fp_rate_data[i] =
Q
Qiao Longfei 已提交
109 110
          static_cast<double>(fp_data[i]) / (fp_data[i] + tn_data[i] + epsilon);
      rec_rate_data[i] = (static_cast<double>(tp_data[i]) + epsilon) /
111
                         (tp_data[i] + fp_data[i] + epsilon);
T
typhoonzero 已提交
112
    }
T
typhoonzero 已提交
113
    *auc_data = 0.0f;
T
typhoonzero 已提交
114
    if (curve == "ROC") {
T
typhoonzero 已提交
115 116 117
      for (int i = 0; i < num_thresholds - 1; i++) {
        auto dx = fp_rate_data[i] - fp_rate_data[i + 1];
        auto y = (tp_rate_data[i] + tp_rate_data[i + 1]) / 2.0f;
T
typhoonzero 已提交
118 119
        *auc_data = *auc_data + dx * y;
      }
T
update  
typhoonzero 已提交
120
    } else if (curve == "PR") {
T
typhoonzero 已提交
121 122 123 124 125 126 127 128 129 130 131
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
        auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle