Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
2b58c62a
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
2b58c62a
编写于
7月 19, 2018
作者:
Q
Qiao Longfei
提交者:
GitHub
7月 19, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update auc op (#12199)
fix AUC op optimize it's test
上级
37713f22
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
52 addition
and
108 deletion
+52
-108
paddle/fluid/operators/auc_op.cc
paddle/fluid/operators/auc_op.cc
+13
-17
paddle/fluid/operators/auc_op.h
paddle/fluid/operators/auc_op.h
+20
-21
python/paddle/fluid/layers/metric_op.py
python/paddle/fluid/layers/metric_op.py
+7
-18
python/paddle/fluid/metrics.py
python/paddle/fluid/metrics.py
+1
-1
python/paddle/fluid/tests/unittests/test_auc_op.py
python/paddle/fluid/tests/unittests/test_auc_op.py
+11
-51
未找到文件。
paddle/fluid/operators/auc_op.cc
浏览文件 @
2b58c62a
...
...
@@ -24,15 +24,16 @@ class AucOp : public framework::OperatorWithKernel {
protected:
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Out"
),
"Input of Out should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Indices"
),
"Input of Indices should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Predict"
),
"Input of Out should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Label"
),
"Input of Label should not be null."
);
auto
inference_height
=
ctx
->
GetInputDim
(
"Out"
)[
0
];
auto
predict_width
=
ctx
->
GetInputDim
(
"Predict"
)[
1
];
PADDLE_ENFORCE_EQ
(
predict_width
,
2
,
"Only support binary classification"
);
auto
predict_height
=
ctx
->
GetInputDim
(
"Predict"
)[
0
];
auto
label_height
=
ctx
->
GetInputDim
(
"Label"
)[
0
];
PADDLE_ENFORCE_EQ
(
inference
_height
,
label_height
,
PADDLE_ENFORCE_EQ
(
predict
_height
,
label_height
,
"Out and Label should have same height."
);
int
num_thres
=
ctx
->
Attrs
().
Get
<
int
>
(
"num_thresholds"
);
...
...
@@ -43,14 +44,14 @@ class AucOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"FPOut"
,
{
num_thres
});
ctx
->
SetOutputDim
(
"FNOut"
,
{
num_thres
});
ctx
->
ShareLoD
(
"
Ou
t"
,
/*->*/
"AUC"
);
ctx
->
ShareLoD
(
"
Predic
t"
,
/*->*/
"AUC"
);
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"
Ou
t"
)
->
type
()),
framework
::
ToDataType
(
ctx
.
Input
<
Tensor
>
(
"
Predic
t"
)
->
type
()),
ctx
.
device_context
());
}
};
...
...
@@ -58,18 +59,13 @@ class AucOp : public framework::OperatorWithKernel {
class
AucOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"Out"
,
"A floating point 2D tensor, values are in the range [0, 1]."
"Each row is sorted in descending order. This input should be the"
"output of topk."
AddInput
(
"Predict"
,
"A floating point 2D tensor with shape [batch_size, 2], values "
"are in the range [0, 1]."
"Typically, this tensor indicates the probability of each label"
);
AddInput
(
"Indices"
,
"An int 2D tensor, indicating the indices of original"
"tensor before sorting. Typically, this tensor indicates which "
"label the probability stands for."
);
AddInput
(
"Label"
,
"A 2D int tensor indicating the label of the training data."
"
The height is batch size and width is always 1.
"
);
"A 2D int tensor indicating the label of the training data.
"
"
shape: [batch_size, 1]
"
);
AddInput
(
"TP"
,
"True-Positive value."
);
AddInput
(
"FP"
,
"False-Positive value."
);
AddInput
(
"TN"
,
"True-Negative value."
);
...
...
paddle/fluid/operators/auc_op.h
浏览文件 @
2b58c62a
...
...
@@ -31,7 +31,7 @@ template <typename DeviceContext, typename T>
class
AucKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
inference
=
ctx
.
Input
<
Tensor
>
(
"Ou
t"
);
auto
*
predict
=
ctx
.
Input
<
Tensor
>
(
"Predic
t"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
auc
=
ctx
.
Output
<
Tensor
>
(
"AUC"
);
// Only use output var for now, make sure it's persistable and
...
...
@@ -41,24 +41,24 @@ class AucKernel : public framework::OpKernel<T> {
auto
*
true_negative
=
ctx
.
Output
<
Tensor
>
(
"TNOut"
);
auto
*
false_negative
=
ctx
.
Output
<
Tensor
>
(
"FNOut"
);
float
*
auc_data
=
auc
->
mutable_data
<
float
>
(
ctx
.
GetPlace
());
auto
*
auc_data
=
auc
->
mutable_data
<
double
>
(
ctx
.
GetPlace
());
std
::
string
curve
=
ctx
.
Attr
<
std
::
string
>
(
"curve"
);
int
num_thresholds
=
ctx
.
Attr
<
int
>
(
"num_thresholds"
);
std
::
vector
<
float
>
thresholds_list
;
std
::
vector
<
double
>
thresholds_list
;
thresholds_list
.
reserve
(
num_thresholds
);
for
(
int
i
=
1
;
i
<
num_thresholds
-
1
;
i
++
)
{
thresholds_list
[
i
]
=
static_cast
<
float
>
(
i
)
/
(
num_thresholds
-
1
);
thresholds_list
[
i
]
=
static_cast
<
double
>
(
i
)
/
(
num_thresholds
-
1
);
}
const
float
kEpsilon
=
1e-7
;
const
double
kEpsilon
=
1e-7
;
thresholds_list
[
0
]
=
0.0
f
-
kEpsilon
;
thresholds_list
[
num_thresholds
-
1
]
=
1.0
f
+
kEpsilon
;
size_t
batch_size
=
inference
->
dims
()[
0
];
size_t
inference_width
=
inference
->
dims
()[
1
];
size_t
batch_size
=
predict
->
dims
()[
0
];
size_t
inference_width
=
predict
->
dims
()[
1
];
const
T
*
inference_data
=
inference
->
data
<
T
>
();
const
int64_t
*
label_data
=
label
->
data
<
int64_t
>
();
const
T
*
inference_data
=
predict
->
data
<
T
>
();
const
auto
*
label_data
=
label
->
data
<
int64_t
>
();
auto
*
tp_data
=
true_positive
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
auto
*
fn_data
=
false_negative
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
...
...
@@ -66,20 +66,19 @@ class AucKernel : public framework::OpKernel<T> {
auto
*
fp_data
=
false_positive
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
for
(
int
idx_thresh
=
0
;
idx_thresh
<
num_thresholds
;
idx_thresh
++
)
{
// caculate TP, FN, TN, FP for current thresh
// ca
l
culate TP, FN, TN, FP for current thresh
int64_t
tp
=
0
,
fn
=
0
,
tn
=
0
,
fp
=
0
;
for
(
size_t
i
=
0
;
i
<
batch_size
;
i
++
)
{
// NOTE: label_data used as bool, labels >0 will be treated as true.
// NOTE: label_data used as bool, labels >
0 will be treated as true.
if
(
label_data
[
i
])
{
// use first(max) data in each row
if
(
inference_data
[
i
*
inference_width
]
>=
if
(
inference_data
[
i
*
inference_width
+
1
]
>=
(
thresholds_list
[
idx_thresh
]))
{
tp
++
;
}
else
{
fn
++
;
}
}
else
{
if
(
inference_data
[
i
*
inference_width
]
>=
if
(
inference_data
[
i
*
inference_width
+
1
]
>=
(
thresholds_list
[
idx_thresh
]))
{
fp
++
;
}
else
{
...
...
@@ -94,21 +93,21 @@ class AucKernel : public framework::OpKernel<T> {
fp_data
[
idx_thresh
]
+=
fp
;
}
// epsilon to avoid divide by zero.
float
epsilon
=
1e-6
;
double
epsilon
=
1e-6
;
// Riemann sum to caculate auc.
Tensor
tp_rate
,
fp_rate
,
rec_rate
;
tp_rate
.
Resize
({
num_thresholds
});
fp_rate
.
Resize
({
num_thresholds
});
rec_rate
.
Resize
({
num_thresholds
});
float
*
tp_rate_data
=
tp_rate
.
mutable_data
<
float
>
(
ctx
.
GetPlace
());
float
*
fp_rate_data
=
fp_rate
.
mutable_data
<
float
>
(
ctx
.
GetPlace
());
float
*
rec_rate_data
=
rec_rate
.
mutable_data
<
float
>
(
ctx
.
GetPlace
());
auto
*
tp_rate_data
=
tp_rate
.
mutable_data
<
double
>
(
ctx
.
GetPlace
());
auto
*
fp_rate_data
=
fp_rate
.
mutable_data
<
double
>
(
ctx
.
GetPlace
());
auto
*
rec_rate_data
=
rec_rate
.
mutable_data
<
double
>
(
ctx
.
GetPlace
());
for
(
int
i
=
0
;
i
<
num_thresholds
;
i
++
)
{
tp_rate_data
[
i
]
=
(
static_cast
<
float
>
(
tp_data
[
i
])
+
epsilon
)
/
tp_rate_data
[
i
]
=
(
static_cast
<
double
>
(
tp_data
[
i
])
+
epsilon
)
/
(
tp_data
[
i
]
+
fn_data
[
i
]
+
epsilon
);
fp_rate_data
[
i
]
=
static_cast
<
float
>
(
fp_data
[
i
])
/
(
fp_data
[
i
]
+
tn_data
[
i
]
+
epsilon
);
rec_rate_data
[
i
]
=
(
static_cast
<
float
>
(
tp_data
[
i
])
+
epsilon
)
/
static_cast
<
double
>
(
fp_data
[
i
])
/
(
fp_data
[
i
]
+
tn_data
[
i
]
+
epsilon
);
rec_rate_data
[
i
]
=
(
static_cast
<
double
>
(
tp_data
[
i
])
+
epsilon
)
/
(
tp_data
[
i
]
+
fp_data
[
i
]
+
epsilon
);
}
*
auc_data
=
0.0
f
;
...
...
python/paddle/fluid/layers/metric_op.py
浏览文件 @
2b58c62a
...
...
@@ -114,23 +114,13 @@ def auc(input, label, curve='ROC', num_thresholds=200, topk=1):
prediction = network(image, is_infer=True)
auc_out=fluid.layers.auc(input=prediction, label=label)
"""
warnings
.
warn
(
"This interface is not recommended, fluid.layers.auc compute the auc at every minibatch,
\
but can not aggregate them and get the pass AUC, because pass
\
auc can not be averaged with weighted from the minibatch auc value.
\
Please use fluid.metrics.Auc, it can compute the auc value via Python natively,
\
which can get every minibatch and every pass auc value."
,
Warning
)
helper
=
LayerHelper
(
"auc"
,
**
locals
())
topk_out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
topk_indices
=
helper
.
create_tmp_variable
(
dtype
=
"int64"
)
topk_out
,
topk_indices
=
nn
.
topk
(
input
,
k
=
k
)
auc_out
=
helper
.
create_tmp_variable
(
dtype
=
"float32"
)
auc_out
=
helper
.
create_tmp_variable
(
dtype
=
"float64"
)
# make tp, tn, fp, fn persistable, so that can accumulate all batches.
tp
=
helper
.
create_global_variable
(
persistable
=
True
)
tn
=
helper
.
create_global_variable
(
persistable
=
True
)
fp
=
helper
.
create_global_variable
(
persistable
=
True
)
fn
=
helper
.
create_global_variable
(
persistable
=
True
)
tp
=
helper
.
create_global_variable
(
persistable
=
True
,
dtype
=
'int64'
)
tn
=
helper
.
create_global_variable
(
persistable
=
True
,
dtype
=
'int64'
)
fp
=
helper
.
create_global_variable
(
persistable
=
True
,
dtype
=
'int64'
)
fn
=
helper
.
create_global_variable
(
persistable
=
True
,
dtype
=
'int64'
)
for
var
in
[
tp
,
tn
,
fp
,
fn
]:
helper
.
set_variable_initializer
(
var
,
Constant
(
...
...
@@ -139,8 +129,7 @@ def auc(input, label, curve='ROC', num_thresholds=200, topk=1):
helper
.
append_op
(
type
=
"auc"
,
inputs
=
{
"Out"
:
[
topk_out
],
"Indices"
:
[
topk_indices
],
"Predict"
:
[
input
],
"Label"
:
[
label
],
"TP"
:
[
tp
],
"TN"
:
[
tn
],
...
...
@@ -156,4 +145,4 @@ def auc(input, label, curve='ROC', num_thresholds=200, topk=1):
"FPOut"
:
[
fp
],
"FNOut"
:
[
fn
]
})
return
auc_out
return
auc_out
,
[
tp
,
tn
,
fp
,
fn
]
python/paddle/fluid/metrics.py
浏览文件 @
2b58c62a
...
...
@@ -591,7 +591,7 @@ class Auc(MetricBase):
for
i
in
range
(
self
.
_num_thresholds
-
2
)]
thresholds
=
[
0.0
-
kepsilon
]
+
thresholds
+
[
1.0
+
kepsilon
]
# caculate TP, FN, TN, FP count
# ca
l
culate TP, FN, TN, FP count
for
idx_thresh
,
thresh
in
enumerate
(
thresholds
):
tp
,
fn
,
tn
,
fp
=
0
,
0
,
0
,
0
for
i
,
lbl
in
enumerate
(
labels
):
...
...
python/paddle/fluid/tests/unittests/test_auc_op.py
浏览文件 @
2b58c62a
...
...
@@ -15,13 +15,13 @@
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
from
paddle.fluid
import
metrics
class
TestAucOp
(
OpTest
):
def
setUp
(
self
):
self
.
op_type
=
"auc"
pred
=
np
.
random
.
random
((
128
,
2
)).
astype
(
"float32"
)
indices
=
np
.
random
.
randint
(
0
,
2
,
(
128
,
2
))
labels
=
np
.
random
.
randint
(
0
,
2
,
(
128
,
1
))
num_thresholds
=
200
tp
=
np
.
zeros
((
num_thresholds
,
)).
astype
(
"int64"
)
...
...
@@ -30,8 +30,7 @@ class TestAucOp(OpTest):
fn
=
np
.
zeros
((
num_thresholds
,
)).
astype
(
"int64"
)
self
.
inputs
=
{
'Out'
:
pred
,
'Indices'
:
indices
,
'Predict'
:
pred
,
'Label'
:
labels
,
'TP'
:
tp
,
'TN'
:
tn
,
...
...
@@ -39,57 +38,18 @@ class TestAucOp(OpTest):
'FN'
:
fn
}
self
.
attrs
=
{
'curve'
:
'ROC'
,
'num_thresholds'
:
num_thresholds
}
# NOTE: sklearn use a different way to generate thresholds
# which will cause the result differs slightly:
# from sklearn.metrics import roc_curve, auc
# fpr, tpr, thresholds = roc_curve(labels, pred)
# auc_value = auc(fpr, tpr)
# we caculate AUC again using numpy for testing
kepsilon
=
1e-7
# to account for floating point imprecisions
thresholds
=
[(
i
+
1
)
*
1.0
/
(
num_thresholds
-
1
)
for
i
in
range
(
num_thresholds
-
2
)]
thresholds
=
[
0.0
-
kepsilon
]
+
thresholds
+
[
1.0
+
kepsilon
]
# caculate TP, FN, TN, FP count
tp_list
=
np
.
ndarray
((
num_thresholds
,
))
fn_list
=
np
.
ndarray
((
num_thresholds
,
))
tn_list
=
np
.
ndarray
((
num_thresholds
,
))
fp_list
=
np
.
ndarray
((
num_thresholds
,
))
for
idx_thresh
,
thresh
in
enumerate
(
thresholds
):
tp
,
fn
,
tn
,
fp
=
0
,
0
,
0
,
0
for
i
,
lbl
in
enumerate
(
labels
):
if
lbl
:
if
pred
[
i
,
0
]
>=
thresh
:
tp
+=
1
else
:
fn
+=
1
else
:
if
pred
[
i
,
0
]
>=
thresh
:
fp
+=
1
else
:
tn
+=
1
tp_list
[
idx_thresh
]
=
tp
fn_list
[
idx_thresh
]
=
fn
tn_list
[
idx_thresh
]
=
tn
fp_list
[
idx_thresh
]
=
fp
epsilon
=
1e-6
tpr
=
(
tp_list
.
astype
(
"float32"
)
+
epsilon
)
/
(
tp_list
+
fn_list
+
epsilon
)
fpr
=
fp_list
.
astype
(
"float32"
)
/
(
fp_list
+
tn_list
+
epsilon
)
rec
=
(
tp_list
.
astype
(
"float32"
)
+
epsilon
)
/
(
tp_list
+
fp_list
+
epsilon
)
x
=
fpr
[:
num_thresholds
-
1
]
-
fpr
[
1
:]
y
=
(
tpr
[:
num_thresholds
-
1
]
+
tpr
[
1
:])
/
2.0
auc_value
=
np
.
sum
(
x
*
y
)
python_auc
=
metrics
.
Auc
(
name
=
"auc"
,
curve
=
'ROC'
,
num_thresholds
=
num_thresholds
)
python_auc
.
update
(
pred
,
labels
)
self
.
outputs
=
{
'AUC'
:
auc_value
,
'TPOut'
:
tp_list
,
'FNOut'
:
fn_list
,
'TNOut'
:
tn_list
,
'FPOut'
:
fp_list
'AUC'
:
python_auc
.
eval
()
,
'TPOut'
:
python_auc
.
tp_list
,
'FNOut'
:
python_auc
.
fn_list
,
'TNOut'
:
python_auc
.
tn_list
,
'FPOut'
:
python_auc
.
fp_list
}
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录