auc_op.h 5.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
T
typhoonzero 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16 17
#include <string>
#include <vector>
Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
T
typhoonzero 已提交
20 21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

T
auc_op  
typhoonzero 已提交
26 27 28 29
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
T
typhoonzero 已提交
31
class AucKernel : public framework::OpKernel<T> {
T
typhoonzero 已提交
32 33
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
武毅 已提交
34
    auto* inference = ctx.Input<Tensor>("Out");
T
typhoonzero 已提交
35 36 37 38 39 40 41 42 43 44
    auto* label = ctx.Input<Tensor>("Label");
    auto* auc = ctx.Output<Tensor>("AUC");

    float* auc_data = auc->mutable_data<float>(ctx.GetPlace());

    std::string curve = ctx.Attr<std::string>("curve");
    int num_thresholds = ctx.Attr<int>("num_thresholds");
    std::vector<float> thresholds_list;
    thresholds_list.reserve(num_thresholds);
    for (int i = 1; i < num_thresholds - 1; i++) {
45
      thresholds_list[i] = static_cast<float>(i) / (num_thresholds - 1);
T
typhoonzero 已提交
46 47 48 49 50
    }
    const float kEpsilon = 1e-7;
    thresholds_list[0] = 0.0f - kEpsilon;
    thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;

武毅 已提交
51 52
    size_t batch_size = inference->dims()[0];
    size_t inference_width = inference->dims()[1];
T
auc_op  
typhoonzero 已提交
53 54

    const T* inference_data = inference->data<T>();
武毅 已提交
55
    const int64_t* label_data = label->data<int64_t>();
T
typhoonzero 已提交
56

T
auc_op  
typhoonzero 已提交
57
    // Create local tensor for storing the curve: TP, FN, TN, FP
T
typhoonzero 已提交
58
    // TODO(typhoonzero): use eigen op to caculate these values.
T
update  
typhoonzero 已提交
59
    Tensor true_positive, false_positive, true_negative, false_negative;
T
typhoonzero 已提交
60 61 62 63 64 65

    true_positive.Resize({num_thresholds});
    false_negative.Resize({num_thresholds});
    true_negative.Resize({num_thresholds});
    false_positive.Resize({num_thresholds});

武毅 已提交
66 67 68 69
    int64_t* tp_data = true_positive.mutable_data<int64_t>(ctx.GetPlace());
    int64_t* fn_data = false_negative.mutable_data<int64_t>(ctx.GetPlace());
    int64_t* tn_data = true_negative.mutable_data<int64_t>(ctx.GetPlace());
    int64_t* fp_data = false_positive.mutable_data<int64_t>(ctx.GetPlace());
T
typhoonzero 已提交
70

T
typhoonzero 已提交
71
    for (int idx_thresh = 0; idx_thresh < num_thresholds; idx_thresh++) {
T
typhoonzero 已提交
72
      // caculate TP, FN, TN, FP for current thresh
武毅 已提交
73 74 75 76 77 78 79
      int64_t tp = 0, fn = 0, tn = 0, fp = 0;
      for (size_t i = 0; i < batch_size; i++) {
        // NOTE: label_data used as bool, labels >0 will be treated as true.
        if (label_data[i]) {
          // use first(max) data in each row
          if (inference_data[i * inference_width] >=
              (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
80 81
            tp++;
          } else {
T
typhoonzero 已提交
82
            fn++;
T
auc_op  
typhoonzero 已提交
83 84
          }
        } else {
武毅 已提交
85 86
          if (inference_data[i * inference_width] >=
              (thresholds_list[idx_thresh])) {
T
auc_op  
typhoonzero 已提交
87
            fp++;
T
typhoonzero 已提交
88
          } else {
T
typhoonzero 已提交
89
            tn++;
T
typhoonzero 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
          }
        }
      }
      // store rates
      tp_data[idx_thresh] = tp;
      fn_data[idx_thresh] = fn;
      tn_data[idx_thresh] = tn;
      fp_data[idx_thresh] = fp;
    }
    // epsilon to avoid divide by zero.
    float epsilon = 1e-6;
    // Riemann sum to caculate auc.
    Tensor tp_rate, fp_rate, rec_rate;
    tp_rate.Resize({num_thresholds});
    fp_rate.Resize({num_thresholds});
    rec_rate.Resize({num_thresholds});
T
update  
typhoonzero 已提交
106 107 108
    float* tp_rate_data = tp_rate.mutable_data<float>(ctx.GetPlace());
    float* fp_rate_data = fp_rate.mutable_data<float>(ctx.GetPlace());
    float* rec_rate_data = rec_rate.mutable_data<float>(ctx.GetPlace());
T
typhoonzero 已提交
109
    for (int i = 0; i < num_thresholds; i++) {
110 111 112 113 114 115
      tp_rate_data[i] = (static_cast<float>(tp_data[i]) + epsilon) /
                        (tp_data[i] + fn_data[i] + epsilon);
      fp_rate_data[i] =
          static_cast<float>(fp_data[i]) / (fp_data[i] + tn_data[i] + epsilon);
      rec_rate_data[i] = (static_cast<float>(tp_data[i]) + epsilon) /
                         (tp_data[i] + fp_data[i] + epsilon);
T
typhoonzero 已提交
116
    }
T
typhoonzero 已提交
117
    *auc_data = 0.0f;
T
typhoonzero 已提交
118
    if (curve == "ROC") {
T
typhoonzero 已提交
119 120 121
      for (int i = 0; i < num_thresholds - 1; i++) {
        auto dx = fp_rate_data[i] - fp_rate_data[i + 1];
        auto y = (tp_rate_data[i] + tp_rate_data[i + 1]) / 2.0f;
T
typhoonzero 已提交
122 123
        *auc_data = *auc_data + dx * y;
      }
T
update  
typhoonzero 已提交
124
    } else if (curve == "PR") {
T
typhoonzero 已提交
125 126 127 128 129 130 131 132 133 134 135
      for (int i = 1; i < num_thresholds; i++) {
        auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
        auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
        *auc_data = *auc_data + dx * y;
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle