initializer.py 29.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
import numpy as np
S
rename  
sneaxiy 已提交
19
from .wrapped_decorator import signature_safe_contextmanager
20
from .core import VarDesc
W
Wu Yi 已提交
21
from . import unique_name
22

23
__all__ = [
24 25 26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
    'MSRA', 'force_init_on_cpu', 'init_on_cpu', 'ConstantInitializer',
    'UniformInitializer', 'NormalInitializer', 'TruncatedNormalInitializer',
27 28
    'XavierInitializer', 'BilinearInitializer', 'MSRAInitializer',
    'NumpyArrayInitializer'
29
]
30

31 32 33 34
_force_init_on_cpu_ = False


def force_init_on_cpu():
Q
qiaolongfei 已提交
35 36 37
    """
    The flag of whether force to init variables on CPU.

Q
Qiao Longfei 已提交
38 39
    Returns:
        bool: the state if we should force init on CPU.
40

Q
qiaolongfei 已提交
41
    Examples:
Q
Qiao Longfei 已提交
42

Q
qiaolongfei 已提交
43 44 45
        .. code-block:: python

            if force_init_on_cpu():
Q
Qiao Longfei 已提交
46
                create_op('force_cpu': force_init_on_cpu())
Q
qiaolongfei 已提交
47 48

    """
49 50 51
    return _force_init_on_cpu_


S
rename  
sneaxiy 已提交
52
@signature_safe_contextmanager
53 54
def init_on_cpu():
    """
Q
qiaolongfei 已提交
55
    Force the variable to be inited on CPU.
56 57

    Examples:
Q
qiaolongfei 已提交
58 59 60 61
        .. code-block:: python

            with init_on_cpu():
                step = layers.create_global_var()
62 63 64 65 66 67 68 69 70

    """
    global _force_init_on_cpu_

    pre_state = force_init_on_cpu()
    _force_init_on_cpu_ = True
    yield
    _force_init_on_cpu_ = pre_state

71 72 73 74 75 76 77 78 79 80

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
81
    def __init__(self):
82 83 84 85 86 87 88
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

124 125 126

class ConstantInitializer(Initializer):
    """Implements the constant initializer
127 128 129 130 131 132 133 134 135

    Args:
        value (float): constant value to initialize the variable

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
136 137
    """

138
    def __init__(self, value=0.0, force_cpu=False):
139 140 141
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
142
        self._force_cpu = force_cpu
143 144 145 146 147 148 149 150 151 152 153 154 155 156

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

172
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
173
        op = block._prepend_op(
174
            type="fill_constant",
175
            outputs={"Out": out_var},
176 177
            attrs={
                "shape": var.shape,
178
                "dtype": int(out_dtype),
179 180
                "value": float(self._value),
                'force_cpu': self._force_cpu or force_init_on_cpu()
M
minqiyang 已提交
181 182
            },
            stop_gradient=True)
183 184 185 186 187 188 189 190 191

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
192
        if not framework.in_dygraph_mode():
193
            var.op = op
194 195 196 197
        return op


class UniformInitializer(Initializer):
198
    """Implements the random uniform distribution initializer
199 200 201 202 203 204 205 206 207

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
208 209
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
210 211
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
212 213 214 215 216
    """

    def __init__(self, low=-1.0, high=1.0, seed=0):
        assert low is not None
        assert high is not None
217
        assert high >= low
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
        assert seed is not None
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
238 239
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
240

X
polish  
Xin Pan 已提交
241
        # to be compatible of fp16 initializers
W
Wu Yi 已提交
242 243 244
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
245 246
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
247 248 249 250 251 252 253 254
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
255
        op = block._prepend_op(
256
            type="uniform_random",
W
Wu Yi 已提交
257
            outputs={"Out": out_var},
258 259
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
260
                "dtype": out_dtype,
261 262 263
                "min": self._low,
                "max": self._high,
                "seed": self._seed
M
minqiyang 已提交
264 265
            },
            stop_gradient=True)
W
Wu Yi 已提交
266 267 268 269 270 271 272 273 274

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
275
        if not framework.in_dygraph_mode():
276
            var.op = op
277
        return op
278 279 280


class NormalInitializer(Initializer):
281 282 283 284 285 286 287 288 289 290 291 292
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
318 319
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
320 321 322 323 324

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
325 326
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
327 328 329 330 331 332 333 334
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
335
        op = block._prepend_op(
336
            type="gaussian_random",
W
Wu Yi 已提交
337
            outputs={"Out": out_var},
338 339
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
340
                "dtype": out_dtype,
341 342
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
343 344
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
345 346
            },
            stop_gradient=True)
W
Wu Yi 已提交
347 348 349 350 351 352 353 354

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
355
        if not framework.in_dygraph_mode():
356
            var.op = op
357
        return op
358 359


360 361 362 363 364 365 366 367 368 369 370
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
371 372
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
373 374 375 376 377 378 379 380
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
381
        super(TruncatedNormalInitializer, self).__init__()
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add truncated normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
402 403 404 405 406 407

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
408
                    ['truncated_gaussian_random', var.name, 'tmp'])),
409 410 411 412 413 414 415 416
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

417 418
        op = block._prepend_op(
            type="truncated_gaussian_random",
419
            outputs={"Out": out_var},
420 421
            attrs={
                "shape": var.shape,
422
                "dtype": out_dtype,
423 424 425
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
426 427
            },
            stop_gradient=True)
428 429 430 431 432 433 434 435

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
436
        if not framework.in_dygraph_mode():
437
            var.op = op
438 439 440
        return op


441
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
442
    """
443
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
444 445 446
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
447 448 449

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
450 451 452 453 454 455
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

456
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
457
    is
458

Q
qiaolongfei 已提交
459
    .. math::
460

Q
qiaolongfei 已提交
461
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
462 463


Q
qiaolongfei 已提交
464 465 466 467 468 469 470 471 472 473 474 475 476 477
    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for Xavier initialization. If None, it is
                inferred from the variable.
        fan_out (float): fan_out for Xavier initialization. If None, it is
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
478 479
            import paddle.fluid as fluid
            queries = fluid.layers.data(name='x', shape=[1], dtype='float32')
Q
qiaolongfei 已提交
480 481 482 483 484 485 486
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
514 515 516
        if self._seed == 0:
            self._seed = block.program.random_seed

517 518 519 520 521 522 523 524 525 526 527 528 529 530
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

531 532
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
533
            op = block._prepend_op(
534
                type="uniform_random",
535
                outputs={"Out": out_var},
536
                attrs={
537 538
                    "shape": out_var.shape,
                    "dtype": out_dtype,
539 540 541
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
542 543
                },
                stop_gradient=True)
544 545 546

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
547
            op = block._prepend_op(
548
                type="gaussian_random",
549
                outputs={"Out": out_var},
550
                attrs={
551 552
                    "shape": out_var.shape,
                    "dtype": out_dtype,
553 554 555
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
556 557
                },
                stop_gradient=True)
558 559 560 561 562 563 564 565 566

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
567
        if not framework.in_dygraph_mode():
568
            var.op = op
569
        return op
570 571 572 573 574 575


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
638 639 640
        if self._seed == 0:
            self._seed = block.program.random_seed

641 642 643 644 645 646 647 648 649 650 651 652 653 654
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

655 656
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
657
            op = block._prepend_op(
658
                type="uniform_random",
659
                outputs={"Out": out_var},
660
                attrs={
661 662
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
663 664 665
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
666 667
                },
                stop_gradient=True)
668 669 670

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
671
            op = block._prepend_op(
672
                type="gaussian_random",
673
                outputs={"Out": out_var},
674
                attrs={
675 676
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
677 678 679
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
680 681
                },
                stop_gradient=True)
682 683 684 685 686 687 688 689 690

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
691
        if not framework.in_dygraph_mode():
692
            var.op = op
693
        return op
694 695


696
class BilinearInitializer(Initializer):
697
    """
698 699 700
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

    Examples:

        .. code-block:: python

            factor = 2
            w_attr = ParamAttr(learning_rate=0., regularizer=L2Decay(0.),
                               initializer=Bilinear())
            conv_up = fluid.layers.conv2d_transpose(
                input,
                num_filters=C,
                output_size=None,
                filter_size=2 * factor - factor % 2,
                padding=ceil((factor - 1) / 2.),
                stride=factor,
                groups=C,
                param_attr=w_attr,
                bias_attr=False)

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
721 722 723 724 725
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
726 727
    interpolation unchanged during training.

728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
        """Add biliear initialization ops for a variable

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
744
            Operator: the initialization op
745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
790 791 792 793 794 795 796 797
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
798
            outputs={'Out': [out_var]},
799
            attrs={
800
                'dtype': out_dtype,
801 802 803
                'shape': list(shape),
                value_name: values
            })
804 805 806 807 808 809 810 811 812

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
813
        if not framework.in_dygraph_mode():
814
            var.op = op
815 816 817
        return op


818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array

    Args:
        value (numpy): numpy array to initialize the variable

    Examples:
        .. code-block:: python

            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

867
        # Initialization Ops should be prepended and not appended
868
        if out_dtype == VarDesc.VarType.FP32:
869
            value_name = "fp32_values"
870 871
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
872
            value_name = "int32_values"
873
            values = [int(v) for v in np_value.flat]
874 875
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
876
        if self._value.size > 1024 * 1024 * 1024:
877 878 879 880
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
881
            outputs={'Out': out_var},
882
            attrs={
883
                'dtype': out_dtype,
884
                'shape': list(self._value.shape),
885 886 887
                value_name: values
            },
            stop_gradient=True)
888 889 890 891 892 893 894 895 896

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
897
        if not framework.in_dygraph_mode():
898
            var.op = op
899 900 901
        return op


902 903 904 905 906 907 908 909 910 911 912 913
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
914
TruncatedNormal = TruncatedNormalInitializer
915 916
Xavier = XavierInitializer
MSRA = MSRAInitializer
917
Bilinear = BilinearInitializer