tensor.h 18.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <functional>
#include <memory>
#include <utility>
20
#include <vector>
21

22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include <cuda_runtime.h>
using gpuStream_t = cudaStream_t;
#endif
26

27 28 29 30 31
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
using gpuStream_t = hipStream_t;
#endif

32
#include "paddle/phi/api/include/dll_decl.h"
33
#include "paddle/phi/common/data_type.h"
34
#include "paddle/phi/common/int_array.h"
35 36
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/place.h"
37
#include "paddle/phi/common/scalar.h"
38 39

namespace phi {
40
class DenseTensor;
41
}  // namespace phi
42

43
namespace phi {
44
class TensorBase;
45
class DDim;
46
}  // namespace phi
47 48

namespace paddle {
49 50 51
// TODO(chenweihang): Remove the experimental namespace for Scalar and IntArray
using Scalar = experimental::Scalar;
using IntArray = experimental::IntArray;
52 53 54 55 56 57 58 59 60

class AbstractAutogradMeta {
 public:
  // No AbstractAutogradMeta should be created
  virtual ~AbstractAutogradMeta() {}
};

/**
 * Tensor is the API description of the basic data structure in the
61
 * [ "Paddle Tensor Operation (phi)" Library ].
62 63 64 65 66 67 68
 *
 * It is not limited to a simple n-dimensional array.
 * It contains a smart pointer to `TensorImpl`. The data description contained
 * in Tensor is defined by TensorImpl. Tensor only defines the interface for
 * computation.
 *
 * This is a new Tensor design, which is independent of the original
69
 * phi::DenseTensor in fluid. The original Tensor will be gradually discarded
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 * in the future.
 *
 * Note: Tensor can be NULL state, Tensor is meaningful only when the
 * TensorImpl to which it is pointed is not empty.
 *
 * Note: For the consistency of C++ API self, and the consistency between C++
 * API and Python API, all member methods of Tensor are named with lowercase
 * letters and underscores.
 *
 * Note: Tensor cannot be inherited. The heterogeneous Tensor implementation
 * can be achieved by inheriting the underlying TensorBase.
 *
 * Note: This Tensor API is suitable for training and custom operators,
 * another simple Tensor design may be required for inference.
 */

86
class PADDLE_API Tensor final {
87
 public:
88 89
  /* Part 1: Construction and destruction methods */

90 91 92 93 94 95 96 97
  /**
   * @brief Construct a new Tensor object
   */
  Tensor() = default;

  /**
   * @brief Construct a new Tensor object by copy
   */
98
  Tensor(const Tensor&) = default;
99 100 101 102

  /**
   * @brief Construct a new Tensor object by move
   */
103 104 105
  Tensor(Tensor&&) = default;

  /**
106 107 108 109
   * @brief Construct a new Tensor object by a TensorBase pointer
   *
   * @param tensor_impl
   */
110
  explicit Tensor(std::shared_ptr<phi::TensorBase> tensor_impl);
111 112 113

  /**
   * @brief Construct a new Tensor object on the target place.
114 115
   *
   * This is a deprecated method and may be removed in the future!!!
116 117
   *
   * @param place
118
   */
119
  explicit Tensor(const Place& place);
120 121 122 123

  /**
   * @brief Construct a new Tensor object on the target place
   * with specified shape.
124 125
   *
   * This is a deprecated method and may be removed in the future!!!
126 127 128 129
   *
   * @param place
   * @param shape
   */
130
  Tensor(const Place& place, const std::vector<int64_t>& shape);
131

132 133 134 135 136
  /**
   * @brief Construct a new Tensor object by a TensorBase pointer and name
   *
   * @param tensor_impl
   */
137
  Tensor(std::shared_ptr<phi::TensorBase> tensor_impl, const std::string& name);
138

J
Jiabin Yang 已提交
139
  /**
140
   * @brief Construct a new Tensor object with name
J
Jiabin Yang 已提交
141
   *
142 143 144
   * @note Internal method, used to adapt original execution mechanism and
   * debug analysis in the development of new dygraph. It may be removed in
   * the future.
145 146
   * */
  explicit Tensor(const std::string& name) : name_(name) {}
J
Jiabin Yang 已提交
147

148
  /* Part 2: Dimension, DataType and DataLayout methods */
149 150 151 152 153 154 155 156 157 158

  /**
   * @brief Return the number of elements of Tensor.
   *
   * @return int64_t
   */
  int64_t numel() const;

  /**
   * @brief Get the size of current tensor.
159
   *
160 161 162 163 164 165 166
   * The compatible method of `Tensor::numel()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return int64_t
   */
  int64_t size() const;

167
  /**
168 169
   * @brief Return the dimensions of Tensor.
   *
170
   * @return phi::DDim
171
   */
172
  const phi::DDim& dims() const;
173 174

  /**
175
   * @brief Return the shape (dimensions) of Tensor.
176
   *
177 178 179 180 181 182 183 184 185
   * The compatible method of `Tensor::dims()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return std::vector<int64_t>
   */
  std::vector<int64_t> shape() const;

  /**
   * @brief Reset the shape of the tensor.
186
   * @note: This method means Reset the shape of the tensor,
187
   * and must be called before calling mutable_data() or
188
   * copy_to(const Place& place), this is not a standard definition of
189
   * reshape behavior, so we will deprecated this feature in the future.
190 191 192 193 194 195 196 197 198
   *
   * @param shape
   */
  void reshape(const std::vector<int64_t>& shape);

  /**
   * @brief Return the data type of Tensor.
   *
   * @return DataType
199
   */
200
  DataType dtype() const;
201 202

  /**
203
   * @brief Return the data type of Tensor.
204
   *
205 206 207 208
   * The compatible method of `Tensor::dtype()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return DataType
209
   */
210
  DataType type() const;
211 212

  /**
213 214 215
   * @brief Return the layout of Tensor.
   *
   * @return DataLayout
216
   */
217
  phi::DataLayout layout() const;
218

C
Chen Weihang 已提交
219 220 221 222 223 224 225 226
  /**
   * @brief Determine whether tensor is DenseTensor
   *
   * @return true
   * @return false
   */
  bool is_dense_tensor() const;

227 228 229 230 231 232 233 234
  /**
   * @brief Determine whether tensor is SelectedRows
   *
   * @return true
   * @return false
   */
  bool is_selected_rows() const;

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  /**
   * @brief Determine whether tensor is SparseCooTensor
   *
   * @return true
   * @return false
   */
  bool is_sparse_coo_tensor() const;

  /**
   * @brief Determine whether tensor is SparseCsrTensor
   *
   * @return true
   * @return false
   */
  bool is_sparse_csr_tensor() const;

J
Jack Zhou 已提交
251 252 253 254 255 256 257 258
  /**
   * @brief Determine whether tensor is StringTensor
   *
   * @return true
   * @return false
   */
  bool is_string_tensor() const;

259
  /* Part 3: Device and Backend methods */
260

261
  /**
262 263
   * @brief Return the place (device) of Tensor.
   *
264
   * @return Place
265
   */
266
  const Place& place() const;
267 268

  /**
269 270 271 272
   * @brief Determine whether the tensor device is CPU
   *
   * @return true
   * @return false
273
   */
274 275 276
  bool is_cpu() const;

  /**
277
   * @brief Determine whether the tensor device is GPU
278 279 280 281
   *
   * @return true
   * @return false
   */
282 283 284 285 286 287 288 289 290
  bool is_gpu() const;

  /**
   * @brief Determine whether the tensor device is GPU_PINNED
   *
   * @return true
   * @return false
   */
  bool is_gpu_pinned() const;
291

C
Chen Weihang 已提交
292 293 294 295 296 297 298 299
  /**
   * @brief Determine whether the tensor device is XPU
   *
   * @return true
   * @return false
   */
  bool is_xpu() const;

300 301 302 303 304 305 306 307
  /**
   * @brief Determine whether the tensor device is CustomDevice
   *
   * @return true
   * @return false
   */
  bool is_custom_device() const;

308
  /* Part 4: Data Access methods */
309 310 311

  /**
   * @brief Get the memory pointer in CPU or GPU with specific data type.
312
   * It's usually used to get the output data pointer, same as the T* data().
313 314 315 316 317 318 319
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  T* mutable_data();

320
  /**
321
   * @brief Get the memory pointer in CPU or GPU with specific data type.
322
   *
323 324 325 326 327 328 329 330
   * It's usually used to get the output data pointer.
   * This is a deprecated method and may be removed in the future!
   *
   * @tparam T
   * @param place
   * @return T*
   */
  template <typename T>
331
  T* mutable_data(const Place& place);
332 333 334 335 336 337 338 339 340 341 342 343 344

  /**
   * @brief Get the const memory pointer directly.
   * It's usually used to get the output data pointer.
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  const T* data() const;

  /**
   * @brief Get the memory pointer directly.
345
   * It's usually used to get the mutable output data pointer.
346 347 348 349 350 351 352
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  T* data();

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
  /**
   * @brief Get the const memory pointer directly.
   * It's usually used to get the output data pointer.
   *
   * @tparam T
   * @return T*
   */
  const void* data() const;

  /**
   * @brief Get the memory pointer directly.
   * It's usually used to get the mutable output data pointer.
   *
   * @tparam T
   * @return T*
   */
  void* data();

371 372 373 374 375 376 377 378 379 380 381 382
  /**
   * @brief Return a sub-tensor of the given tensor.
   * It is usually used to extract a sub-tensor (which supports
   * modifying the data of the original tensor) to perform further
   * operations.
   *
   * @param begin_idx The index of the start row (inclusive) to slice.
   *                  The index number begins from 0.
   * @param end_idx The index of the end row (exclusive) to slice.
   *                 The index number begins from begin_idx + 1.
   * @return Tensor
   */
383
  Tensor slice(int64_t begin_idx, int64_t end_idx) const;
384 385

  /**
386
   * @brief Return the implementation of current Tensor.
387
   *
388
   * @return std::shared_ptr<phi::TensorBase>
389
   */
390
  const std::shared_ptr<phi::TensorBase>& impl() const;
391 392

  /**
393
   * @brief Set the implementation of current Tensor.
394 395 396
   *
   * @param impl
   */
397
  void set_impl(const std::shared_ptr<phi::TensorBase>& impl);
398

399
  /**
400
   * @brief Set the implementation of current Tensor.
401 402 403 404 405
   *
   * @param impl
   */
  void set_impl(std::shared_ptr<phi::TensorBase>&& impl);

406 407 408 409 410 411 412 413 414 415
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  /**
   * @brief Get the stream where the tensor is currently located
   * This is a deprecated method and may be removed in the future!
   *
   * @return gpuStream_t
   */
  gpuStream_t stream() const;
#endif

416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
  /**
   * @brief Return the name of Tensor.
   * @note Used to adapt original execution mechanism and debug analysis
   * in the development of new dygraph. It may be removed in the future.
   *
   * @return const std::string&
   */
  const std::string& name() const { return name_; }

  /**
   * @brief Set name of Tensor.
   * @note Used to adapt original execution mechanism and debug analysis
   * in the development of new dygraph. It may be removed in the future.
   *
   * @param const std::string& name
   */
  void set_name(const std::string& name) { name_ = name; }

434
  /* Part 5: Data Transform methods */
435 436
  /* Alert!!!!: All copy method can only deep copy impl, autograd info only be
   * copied */
437
  /* out of phi */
438 439
  /**
   * @brief Copy the current Tensor data to the specified device
440
   * and return the new Tensor. It's usually used to set the input tensor data.
441 442 443 444
   * @note The Tensor's `copy_to` method is deprecated since version 2.3, and
   * will be removed in version 2.4, please use `copy_to` method without
   * template argument instead.
   * reason: copying a Tensor to another device does not need to specify the
445
   * data type template argument
446 447 448 449
   *
   * @tparam T
   * @param target_place, the target place of which the tensor will copy to.
   * @return Tensor
450
   */
451
  template <typename T>
452
  Tensor copy_to(const Place& target_place) const;
453 454

  /**
455 456
   * @brief Transfer the current Tensor to the specified device and return.
   *
457
   * @param place, The target place of which the tensor will copy to.
458
   * @param blocking, Should we copy this in sync way.
459 460
   * @return Tensor
   */
461
  Tensor copy_to(const Place& place, bool blocking) const;
462 463

  /**
464 465 466 467 468 469
   * @brief Transfer the source Tensor to current Tensor.
   *
   * @param src, the source Tensor to be copied.
   * @param blocking, Should we copy this in sync way.
   * @return void
   */
470 471
  void copy_(const Tensor& src, const Place& target_place, bool blocking);

472
  /**
473 474 475 476
   * @brief Cast datatype from one to another
   *
   * @param target_type
   * @return Tensor
477
   */
478
  Tensor cast(DataType target_type) const;
479

480
  /* Part 6: Status utils methods */
481

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
  /**
   * @brief Determine whether it is a meaningful Tensor
   *
   * @return true
   * @return false
   */
  bool defined() const;

  /**
   * @brief Determine whether Tensor is initialized.
   *
   * @return true
   * @return false
   */
  bool initialized() const;

  /**
   * @brief Determine whether Tensor is initialized.
   * This is a deprecated method and may be removed in the future!
   *
   * @return true
   * @return false
   */
  bool is_initialized() const;
506 507

  /**
508
   * @brief Reset the Tensor implementation
509
   */
510 511 512
  void reset();

  /* Part 7: Operator overloading */
513 514

  /**
515 516 517 518
   * @brief Assignment operator
   *
   * @param x
   * @return Tensor&
519
   */
520
  Tensor& operator=(const Tensor& x) &;
521 522

  /**
523 524 525 526
   * @brief Move assignment operator
   *
   * @param x
   * @return Tensor&
527
   */
528
  Tensor& operator=(Tensor&& x) &;
529

530 531 532 533 534 535 536 537 538 539 540 541 542 543
  /**
   * @brief Tensor operants
   *
   * @param other
   * @return Tensor
   */
  Tensor operator+(const Tensor& other) const;

  Tensor operator-(const Tensor& other) const;

  Tensor operator*(const Tensor& other) const;

  Tensor operator/(const Tensor& other) const;

544 545 546 547 548 549 550 551
  Tensor operator+(const Scalar& other) const;

  Tensor operator-(const Scalar& other) const;

  Tensor operator*(const Scalar& other) const;

  Tensor operator/(const Scalar& other) const;

552 553
  Tensor operator-() const;

554 555 556 557 558 559 560 561
  Tensor operator~() const;

  Tensor operator&(const Tensor& other) const;

  Tensor operator|(const Tensor& other) const;

  Tensor operator^(const Tensor& other) const;

562
  /* Part 8: Autograd methods */
563

564
  /**
565
   * @brief Get the autograd meta object pointer
566 567 568 569
   *
   * @return AbstractAutogradMeta*
   */
  AbstractAutogradMeta* get_autograd_meta() const;
570 571 572 573 574 575

  /**
   * @brief Get the shared pointer of autograd meta object
   *
   * @return std::shared_ptr<AbstractAutogradMeta>&
   */
576
  const std::shared_ptr<AbstractAutogradMeta>& mutable_autograd_meta() const;
577

578 579 580 581 582 583
  /**
   * @brief Set the autograd meta object
   *
   * @param autograd_meta
   */
  void set_autograd_meta(std::shared_ptr<AbstractAutogradMeta> autograd_meta);
584

585 586 587 588 589 590 591 592 593 594 595 596 597 598
  /* Part 9: Inplace methods */

  /**
   * @brief Increase inplace version
   */
  void bump_inplace_version();

  /**
   * @brief Get current inplace version
   *
   * @return uint32_t
   */
  uint32_t current_inplace_version();

599 600 601 602 603
  /**
   * @brief Reset inplace version
   */
  void reset_inplace_version(bool set_to_zero = false);

604
  /* Part 10: Auto generated Tensor methods */
605

606
  /* Part 11: Methods of converting underlying TensorType to each other
607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
   */
  /**
   * @brief Convert DenseTensor or SparseCsrTensor to SparseCooTensor
   *
   * @param sparse_dim, The number of sparse dimensions
   * @return Tensor
   */
  Tensor to_sparse_coo(const int64_t sparse_dim) const;

  /**
   * @brief Convert DenseTensor or SparseCooTensor to SparseCsrTensor
   *
   * @return Tensor
   */
  Tensor to_sparse_csr() const;

  /**
   * @brief Convert SparseCooTensor or SparseCsrTensor to DenseTensor
   *
   * @return Tensor
   */
  Tensor to_dense() const;

630 631 632 633 634 635 636 637
 private:
  /**
   * [ Why use abstract TensorImpl interface here? ]
   *
   * We hope that the data structure at the API level of the framework can be
   * unified to Tensor, but Tensor itself is heterogeneous.
   *
   * Tensor can generally be represented by void* and size_t, place.
638
   * This is suitable for most scenarios including CPU, GPU, HIP, NPU, etc.,
639 640 641 642 643 644 645 646 647 648
   * but there are a few cases where this definition cannot be described,
   * such as the Tensor representation in third-party lib such as Metal,
   * OpenCL, etc., as well as some special Tensor implementations, including
   * Tensor containing only one Scalar value, or Tensor representing String,
   * etc.
   *
   * Therefore, we hope to use a unified interface to shield the underlying
   * heterogeneous Tensor implementation, so that the API level can be unified
   * to one `Tensor`.
   */
H
hong 已提交
649
  std::shared_ptr<phi::TensorBase> impl_{nullptr};
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664

  /**
   * [ Why need abstract AbstractAutogradMeta here? ]
   *
   * Dynamic graphs need to hold backward information
   *
   * [ Why AutogradMeta not in TensorImpl? ]
   *
   * 1. AutogradMeta is only used in dynamic graph, It is execution-related
   *    information, not Tensor data description-related information.
   * 2. Kernel calculation does not require AutogradMeta.
   */
  std::shared_ptr<AbstractAutogradMeta> autograd_meta_{nullptr};

  /**
665
   * Tensor name: used to adapt original execution mechanism and debug analysis
666
   * in the development of new dygraph. It may be removed in the future.
667
   */
668
  std::string name_{""};
669

670
 public:
671 672 673 674 675 676
  // Tensor C++ APIs
  // Example: Tensor add(const Tensor& other) const;
  Tensor add(const Tensor& y) const;
  Tensor divide(const Tensor& y) const;
  Tensor multiply(const Tensor& y) const;
  Tensor subtract(const Tensor& y) const;
677 678 679 680
  Tensor add(const Scalar& y) const;
  Tensor divide(const Scalar& y) const;
  Tensor multiply(const Scalar& y) const;
  Tensor subtract(const Scalar& y) const;
681 682 683 684
  Tensor bitwise_and(const Tensor& y) const;
  Tensor bitwise_or(const Tensor& y) const;
  Tensor bitwise_xor(const Tensor& y) const;
  Tensor bitwise_not() const;
685 686
  Tensor pow(const Tensor& y) const;
  Tensor pow(const Scalar& y) const;
687

688 689 690 691
  Tensor exp() const;
  Tensor floor() const;
  Tensor gather_nd(const Tensor& index) const;
  Tensor log() const;
692 693
  Tensor roll(const IntArray& shifts = {},
              const std::vector<int64_t>& axis = {}) const;
694 695
  Tensor scatter(const Tensor& index,
                 const Tensor& updates,
696
                 bool overwrite = true) const;
697 698 699 700 701
  Tensor scatter_nd_add(const Tensor& index, const Tensor& updates) const;
  Tensor abs() const;
  Tensor assign() const;
  Tensor elementwise_pow(const Tensor& y) const;
  Tensor expand(const IntArray& shape) const;
702 703 704 705
  Tensor matmul(const Tensor& y,
                bool transpose_x = false,
                bool transpose_y = false) const;
  Tensor max(const IntArray& axis = {}, bool keepdim = false) const;
706 707
  Tensor maximum(const Tensor& y) const;
  Tensor minimum(const Tensor& y) const;
708 709 710 711 712 713 714
  Tensor scale(const Scalar& scale = 1.0,
               float bias = 0.0,
               bool bias_after_scale = true) const;
  Tensor sum(const IntArray& axis = {},
             DataType dtype = DataType::UNDEFINED,
             bool keepdim = false) const;
  Tensor tile(const IntArray& repeat_times = {}) const;
715 716
};

717 718 719 720 721 722 723 724
PADDLE_API Tensor operator+(const Scalar& x, const Tensor& y);

PADDLE_API Tensor operator-(const Scalar& x, const Tensor& y);

PADDLE_API Tensor operator*(const Scalar& x, const Tensor& y);

PADDLE_API Tensor operator/(const Scalar& x, const Tensor& y);

725
}  // namespace paddle