tensor.h 17.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <functional>
#include <memory>
#include <utility>
20
#include <vector>
21

22 23 24 25
#ifdef PADDLE_WITH_CUDA
#include <cuda_runtime.h>
using gpuStream_t = cudaStream_t;
#endif
26

27 28 29 30 31
#ifdef PADDLE_WITH_HIP
#include <hip/hip_runtime.h>
using gpuStream_t = hipStream_t;
#endif

32
#include "paddle/phi/api/include/dll_decl.h"
33 34 35 36 37
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/common/layout.h"
#include "paddle/phi/common/place.h"

namespace phi {
38
class DenseTensor;
39
}  // namespace phi
40

41
namespace phi {
42
class TensorBase;
43
class DDim;
44
}  // namespace phi
45 46

namespace paddle {
47

48 49
namespace experimental {

50 51 52 53 54 55 56 57 58 59
class Tensor;

template <typename T>
class ScalarBase;
using Scalar = paddle::experimental::ScalarBase<Tensor>;

template <typename T>
class IntArrayBase;
using IntArray = paddle::experimental::IntArrayBase<Tensor>;

60 61 62 63 64 65 66 67
class AbstractAutogradMeta {
 public:
  // No AbstractAutogradMeta should be created
  virtual ~AbstractAutogradMeta() {}
};

/**
 * Tensor is the API description of the basic data structure in the
68
 * [ "Paddle Tensor Operation (phi)" Library ].
69 70 71 72 73 74 75
 *
 * It is not limited to a simple n-dimensional array.
 * It contains a smart pointer to `TensorImpl`. The data description contained
 * in Tensor is defined by TensorImpl. Tensor only defines the interface for
 * computation.
 *
 * This is a new Tensor design, which is independent of the original
76
 * phi::DenseTensor in fluid. The original Tensor will be gradually discarded
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
 * in the future.
 *
 * Note: Tensor can be NULL state, Tensor is meaningful only when the
 * TensorImpl to which it is pointed is not empty.
 *
 * Note: For the consistency of C++ API self, and the consistency between C++
 * API and Python API, all member methods of Tensor are named with lowercase
 * letters and underscores.
 *
 * Note: Tensor cannot be inherited. The heterogeneous Tensor implementation
 * can be achieved by inheriting the underlying TensorBase.
 *
 * Note: This Tensor API is suitable for training and custom operators,
 * another simple Tensor design may be required for inference.
 */

93
class PADDLE_API Tensor final {
94
 public:
95 96
  /* Part 1: Construction and destruction methods */

97 98 99 100 101 102 103 104
  /**
   * @brief Construct a new Tensor object
   */
  Tensor() = default;

  /**
   * @brief Construct a new Tensor object by copy
   */
105
  Tensor(const Tensor&) = default;
106 107 108 109

  /**
   * @brief Construct a new Tensor object by move
   */
110 111 112
  Tensor(Tensor&&) = default;

  /**
113 114 115 116
   * @brief Construct a new Tensor object by a TensorBase pointer
   *
   * @param tensor_impl
   */
117
  explicit Tensor(std::shared_ptr<phi::TensorBase> tensor_impl);
118 119 120

  /**
   * @brief Construct a new Tensor object on the target place.
121 122
   *
   * This is a deprecated method and may be removed in the future!!!
123 124
   *
   * @param place
125
   */
126
  explicit Tensor(const Place& place);
127 128 129 130

  /**
   * @brief Construct a new Tensor object on the target place
   * with specified shape.
131 132
   *
   * This is a deprecated method and may be removed in the future!!!
133 134 135 136
   *
   * @param place
   * @param shape
   */
137
  Tensor(const Place& place, const std::vector<int64_t>& shape);
138

139 140 141 142 143
  /**
   * @brief Construct a new Tensor object by a TensorBase pointer and name
   *
   * @param tensor_impl
   */
144
  Tensor(std::shared_ptr<phi::TensorBase> tensor_impl, const std::string& name);
145

J
Jiabin Yang 已提交
146
  /**
147
   * @brief Construct a new Tensor object with name
J
Jiabin Yang 已提交
148
   *
149 150 151
   * @note Internal method, used to adapt original execution mechanism and
   * debug analysis in the development of new dygraph. It may be removed in
   * the future.
152 153
   * */
  explicit Tensor(const std::string& name) : name_(name) {}
J
Jiabin Yang 已提交
154

155
  /* Part 2: Dimension, DataType and DataLayout methods */
156 157 158 159 160 161 162 163 164 165

  /**
   * @brief Return the number of elements of Tensor.
   *
   * @return int64_t
   */
  int64_t numel() const;

  /**
   * @brief Get the size of current tensor.
166
   *
167 168 169 170 171 172 173
   * The compatible method of `Tensor::numel()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return int64_t
   */
  int64_t size() const;

174
  /**
175 176
   * @brief Return the dimensions of Tensor.
   *
177
   * @return phi::DDim
178
   */
179
  const phi::DDim& dims() const;
180 181

  /**
182
   * @brief Return the shape (dimensions) of Tensor.
183
   *
184 185 186 187 188 189 190 191 192
   * The compatible method of `Tensor::dims()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return std::vector<int64_t>
   */
  std::vector<int64_t> shape() const;

  /**
   * @brief Reset the shape of the tensor.
193
   * @note: This method means Reset the shape of the tensor,
194
   * and must be called before calling mutable_data() or
195
   * copy_to(const Place& place), this is not a standard definition of
196
   * reshape behavior, so we will deprecated this feature in the future.
197 198 199 200 201 202 203 204 205
   *
   * @param shape
   */
  void reshape(const std::vector<int64_t>& shape);

  /**
   * @brief Return the data type of Tensor.
   *
   * @return DataType
206
   */
207
  DataType dtype() const;
208 209

  /**
210
   * @brief Return the data type of Tensor.
211
   *
212 213 214 215
   * The compatible method of `Tensor::dtype()`.
   * This is a deprecated method and may be removed in the future!
   *
   * @return DataType
216
   */
217
  DataType type() const;
218 219

  /**
220 221 222
   * @brief Return the layout of Tensor.
   *
   * @return DataLayout
223
   */
224
  phi::DataLayout layout() const;
225

C
Chen Weihang 已提交
226 227 228 229 230 231 232 233
  /**
   * @brief Determine whether tensor is DenseTensor
   *
   * @return true
   * @return false
   */
  bool is_dense_tensor() const;

234 235 236 237 238 239 240 241
  /**
   * @brief Determine whether tensor is SelectedRows
   *
   * @return true
   * @return false
   */
  bool is_selected_rows() const;

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
  /**
   * @brief Determine whether tensor is SparseCooTensor
   *
   * @return true
   * @return false
   */
  bool is_sparse_coo_tensor() const;

  /**
   * @brief Determine whether tensor is SparseCsrTensor
   *
   * @return true
   * @return false
   */
  bool is_sparse_csr_tensor() const;

J
Jack Zhou 已提交
258 259 260 261 262 263 264 265
  /**
   * @brief Determine whether tensor is StringTensor
   *
   * @return true
   * @return false
   */
  bool is_string_tensor() const;

266
  /* Part 3: Device and Backend methods */
267

268
  /**
269 270
   * @brief Return the place (device) of Tensor.
   *
271
   * @return Place
272
   */
273
  const Place& place() const;
274 275

  /**
276 277 278 279
   * @brief Determine whether the tensor device is CPU
   *
   * @return true
   * @return false
280
   */
281 282 283
  bool is_cpu() const;

  /**
284
   * @brief Determine whether the tensor device is GPU
285 286 287 288
   *
   * @return true
   * @return false
   */
289 290 291 292 293 294 295 296 297
  bool is_gpu() const;

  /**
   * @brief Determine whether the tensor device is GPU_PINNED
   *
   * @return true
   * @return false
   */
  bool is_gpu_pinned() const;
298

C
Chen Weihang 已提交
299 300 301 302 303 304 305 306
  /**
   * @brief Determine whether the tensor device is XPU
   *
   * @return true
   * @return false
   */
  bool is_xpu() const;

307 308 309 310 311 312 313 314
  /**
   * @brief Determine whether the tensor device is CustomDevice
   *
   * @return true
   * @return false
   */
  bool is_custom_device() const;

315
  /* Part 4: Data Access methods */
316 317 318

  /**
   * @brief Get the memory pointer in CPU or GPU with specific data type.
319
   * It's usually used to get the output data pointer, same as the T* data().
320 321 322 323 324 325 326
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  T* mutable_data();

327
  /**
328
   * @brief Get the memory pointer in CPU or GPU with specific data type.
329
   *
330 331 332 333 334 335 336 337
   * It's usually used to get the output data pointer.
   * This is a deprecated method and may be removed in the future!
   *
   * @tparam T
   * @param place
   * @return T*
   */
  template <typename T>
338
  T* mutable_data(const Place& place);
339 340 341 342 343 344 345 346 347 348 349 350 351

  /**
   * @brief Get the const memory pointer directly.
   * It's usually used to get the output data pointer.
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  const T* data() const;

  /**
   * @brief Get the memory pointer directly.
352
   * It's usually used to get the mutable output data pointer.
353 354 355 356 357 358 359
   *
   * @tparam T
   * @return T*
   */
  template <typename T>
  T* data();

360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
  /**
   * @brief Get the const memory pointer directly.
   * It's usually used to get the output data pointer.
   *
   * @tparam T
   * @return T*
   */
  const void* data() const;

  /**
   * @brief Get the memory pointer directly.
   * It's usually used to get the mutable output data pointer.
   *
   * @tparam T
   * @return T*
   */
  void* data();

378 379 380 381 382 383 384 385 386 387 388 389
  /**
   * @brief Return a sub-tensor of the given tensor.
   * It is usually used to extract a sub-tensor (which supports
   * modifying the data of the original tensor) to perform further
   * operations.
   *
   * @param begin_idx The index of the start row (inclusive) to slice.
   *                  The index number begins from 0.
   * @param end_idx The index of the end row (exclusive) to slice.
   *                 The index number begins from begin_idx + 1.
   * @return Tensor
   */
390
  Tensor slice(int64_t begin_idx, int64_t end_idx) const;
391 392

  /**
393
   * @brief Return the implementation of current Tensor.
394
   *
395
   * @return std::shared_ptr<phi::TensorBase>
396
   */
397
  const std::shared_ptr<phi::TensorBase>& impl() const;
398 399

  /**
400
   * @brief Set the implementation of current Tensor.
401 402 403
   *
   * @param impl
   */
404
  void set_impl(const std::shared_ptr<phi::TensorBase>& impl);
405

406
  /**
407
   * @brief Set the implementation of current Tensor.
408 409 410 411 412
   *
   * @param impl
   */
  void set_impl(std::shared_ptr<phi::TensorBase>&& impl);

413 414 415 416 417 418 419 420 421 422
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
  /**
   * @brief Get the stream where the tensor is currently located
   * This is a deprecated method and may be removed in the future!
   *
   * @return gpuStream_t
   */
  gpuStream_t stream() const;
#endif

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
  /**
   * @brief Return the name of Tensor.
   * @note Used to adapt original execution mechanism and debug analysis
   * in the development of new dygraph. It may be removed in the future.
   *
   * @return const std::string&
   */
  const std::string& name() const { return name_; }

  /**
   * @brief Set name of Tensor.
   * @note Used to adapt original execution mechanism and debug analysis
   * in the development of new dygraph. It may be removed in the future.
   *
   * @param const std::string& name
   */
  void set_name(const std::string& name) { name_ = name; }

441
  /* Part 5: Data Transform methods */
442 443
  /* Alert!!!!: All copy method can only deep copy impl, autograd info only be
   * copied */
444
  /* out of phi */
445 446
  /**
   * @brief Copy the current Tensor data to the specified device
447
   * and return the new Tensor. It's usually used to set the input tensor data.
448 449 450 451
   * @note The Tensor's `copy_to` method is deprecated since version 2.3, and
   * will be removed in version 2.4, please use `copy_to` method without
   * template argument instead.
   * reason: copying a Tensor to another device does not need to specify the
452
   * data type template argument
453 454 455 456
   *
   * @tparam T
   * @param target_place, the target place of which the tensor will copy to.
   * @return Tensor
457
   */
458
  template <typename T>
459
  Tensor copy_to(const Place& target_place) const;
460 461

  /**
462 463
   * @brief Transfer the current Tensor to the specified device and return.
   *
464
   * @param place, The target place of which the tensor will copy to.
465
   * @param blocking, Should we copy this in sync way.
466 467
   * @return Tensor
   */
468
  Tensor copy_to(const Place& place, bool blocking) const;
469 470

  /**
471 472 473 474 475 476
   * @brief Transfer the source Tensor to current Tensor.
   *
   * @param src, the source Tensor to be copied.
   * @param blocking, Should we copy this in sync way.
   * @return void
   */
477 478
  void copy_(const Tensor& src, const Place& target_place, bool blocking);

479
  /**
480 481 482 483
   * @brief Cast datatype from one to another
   *
   * @param target_type
   * @return Tensor
484
   */
485
  Tensor cast(DataType target_type) const;
486

487
  /* Part 6: Status utils methods */
488

489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
  /**
   * @brief Determine whether it is a meaningful Tensor
   *
   * @return true
   * @return false
   */
  bool defined() const;

  /**
   * @brief Determine whether Tensor is initialized.
   *
   * @return true
   * @return false
   */
  bool initialized() const;

  /**
   * @brief Determine whether Tensor is initialized.
   * This is a deprecated method and may be removed in the future!
   *
   * @return true
   * @return false
   */
  bool is_initialized() const;
513 514

  /**
515
   * @brief Reset the Tensor implementation
516
   */
517 518 519
  void reset();

  /* Part 7: Operator overloading */
520 521

  /**
522 523 524 525
   * @brief Assignment operator
   *
   * @param x
   * @return Tensor&
526
   */
527
  Tensor& operator=(const Tensor& x) &;
528 529

  /**
530 531 532 533
   * @brief Move assignment operator
   *
   * @param x
   * @return Tensor&
534
   */
535
  Tensor& operator=(Tensor&& x) &;
536

537 538 539 540 541 542 543 544 545 546 547 548 549 550
  /**
   * @brief Tensor operants
   *
   * @param other
   * @return Tensor
   */
  Tensor operator+(const Tensor& other) const;

  Tensor operator-(const Tensor& other) const;

  Tensor operator*(const Tensor& other) const;

  Tensor operator/(const Tensor& other) const;

551 552 553 554 555 556 557 558
  Tensor operator+(const Scalar& other) const;

  Tensor operator-(const Scalar& other) const;

  Tensor operator*(const Scalar& other) const;

  Tensor operator/(const Scalar& other) const;

559
  /* Part 8: Autograd methods */
560

561
  /**
562
   * @brief Get the autograd meta object pointer
563 564 565 566
   *
   * @return AbstractAutogradMeta*
   */
  AbstractAutogradMeta* get_autograd_meta() const;
567 568 569 570 571 572

  /**
   * @brief Get the shared pointer of autograd meta object
   *
   * @return std::shared_ptr<AbstractAutogradMeta>&
   */
573
  const std::shared_ptr<AbstractAutogradMeta>& mutable_autograd_meta() const;
574

575 576 577 578 579 580
  /**
   * @brief Set the autograd meta object
   *
   * @param autograd_meta
   */
  void set_autograd_meta(std::shared_ptr<AbstractAutogradMeta> autograd_meta);
581

582 583 584 585 586 587 588 589 590 591 592 593 594 595
  /* Part 9: Inplace methods */

  /**
   * @brief Increase inplace version
   */
  void bump_inplace_version();

  /**
   * @brief Get current inplace version
   *
   * @return uint32_t
   */
  uint32_t current_inplace_version();

596 597 598 599 600
  /**
   * @brief Reset inplace version
   */
  void reset_inplace_version(bool set_to_zero = false);

601
  /* Part 10: Auto generated Tensor methods */
602

603
  /* Part 11: Methods of converting underlying TensorType to each other
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626
   */
  /**
   * @brief Convert DenseTensor or SparseCsrTensor to SparseCooTensor
   *
   * @param sparse_dim, The number of sparse dimensions
   * @return Tensor
   */
  Tensor to_sparse_coo(const int64_t sparse_dim) const;

  /**
   * @brief Convert DenseTensor or SparseCooTensor to SparseCsrTensor
   *
   * @return Tensor
   */
  Tensor to_sparse_csr() const;

  /**
   * @brief Convert SparseCooTensor or SparseCsrTensor to DenseTensor
   *
   * @return Tensor
   */
  Tensor to_dense() const;

627 628 629 630 631 632 633 634
 private:
  /**
   * [ Why use abstract TensorImpl interface here? ]
   *
   * We hope that the data structure at the API level of the framework can be
   * unified to Tensor, but Tensor itself is heterogeneous.
   *
   * Tensor can generally be represented by void* and size_t, place.
635
   * This is suitable for most scenarios including CPU, GPU, HIP, NPU, etc.,
636 637 638 639 640 641 642 643 644 645
   * but there are a few cases where this definition cannot be described,
   * such as the Tensor representation in third-party lib such as Metal,
   * OpenCL, etc., as well as some special Tensor implementations, including
   * Tensor containing only one Scalar value, or Tensor representing String,
   * etc.
   *
   * Therefore, we hope to use a unified interface to shield the underlying
   * heterogeneous Tensor implementation, so that the API level can be unified
   * to one `Tensor`.
   */
H
hong 已提交
646
  std::shared_ptr<phi::TensorBase> impl_{nullptr};
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661

  /**
   * [ Why need abstract AbstractAutogradMeta here? ]
   *
   * Dynamic graphs need to hold backward information
   *
   * [ Why AutogradMeta not in TensorImpl? ]
   *
   * 1. AutogradMeta is only used in dynamic graph, It is execution-related
   *    information, not Tensor data description-related information.
   * 2. Kernel calculation does not require AutogradMeta.
   */
  std::shared_ptr<AbstractAutogradMeta> autograd_meta_{nullptr};

  /**
662
   * Tensor name: used to adapt original execution mechanism and debug analysis
663
   * in the development of new dygraph. It may be removed in the future.
664
   */
665
  std::string name_{""};
666

667
 public:
668 669 670 671 672 673
  // Tensor C++ APIs
  // Example: Tensor add(const Tensor& other) const;
  Tensor add(const Tensor& y) const;
  Tensor divide(const Tensor& y) const;
  Tensor multiply(const Tensor& y) const;
  Tensor subtract(const Tensor& y) const;
674 675 676 677 678
  Tensor add(const Scalar& y) const;
  Tensor divide(const Scalar& y) const;
  Tensor multiply(const Scalar& y) const;
  Tensor subtract(const Scalar& y) const;

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
  Tensor exp() const;
  Tensor floor() const;
  Tensor gather_nd(const Tensor& index) const;
  Tensor log() const;
  Tensor pow(const Scalar& y) const;
  Tensor roll(const IntArray& shifts, const std::vector<int64_t>& axis) const;
  Tensor scatter(const Tensor& index,
                 const Tensor& updates,
                 bool overwrite) const;
  Tensor scatter_nd_add(const Tensor& index, const Tensor& updates) const;
  Tensor abs() const;
  Tensor assign() const;
  Tensor elementwise_pow(const Tensor& y) const;
  Tensor expand(const IntArray& shape) const;
  Tensor matmul(const Tensor& y, bool transpose_x, bool transpose_y) const;
  Tensor max(const IntArray& axis, bool keepdim) const;
  Tensor maximum(const Tensor& y) const;
  Tensor minimum(const Tensor& y) const;
  Tensor scale(const Scalar& scale, float bias, bool bias_after_scale) const;
  Tensor sum(const IntArray& axis, DataType dtype, bool keepdim) const;
  Tensor tile(const IntArray& repeat_times) const;
700 701 702 703
};

}  // namespace experimental
}  // namespace paddle