matmul_v2_op.cc 13.9 KB
Newer Older
1
//   Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
S
ShenLiang 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/matmul_v2_op.h"
16

S
ShenLiang 已提交
17 18 19
#include <string>
#include <vector>

20
#include "paddle/fluid/framework/infershape_utils.h"
21
#include "paddle/fluid/prim/api/composite_backward/composite_backward_api.h"
22 23
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
24

S
ShenLiang 已提交
25 26 27
namespace paddle {
namespace operators {

28 29 30 31 32 33 34 35 36 37 38 39
void MatMulV2Op::InferShape(framework::InferShapeContext* ctx) const {
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
  OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
  OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
  bool trans_x = ctx->Attrs().Get<bool>("trans_x");
  bool trans_y = ctx->Attrs().Get<bool>("trans_y");

  std::vector<int64_t> dims_x = phi::vectorize(ctx->GetInputDim("X"));
  std::vector<int64_t> dims_y = phi::vectorize(ctx->GetInputDim("Y"));
  auto ndims_x = dims_x.size();
  auto ndims_y = dims_y.size();
  PADDLE_ENFORCE_GT(ndims_x,
40
                    0,
41 42 43 44 45 46 47 48
                    phi::errors::InvalidArgument(
                        "The Input(X) dims size must be greater than 0,"
                        " but received dims size is 0. "));
  PADDLE_ENFORCE_GT(ndims_y,
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(Y) dims size must be greater than 0,"
                        " but received dims size is 0. "));
S
ShenLiang 已提交
49

50 51
  bool x_broadcasted = false;
  bool y_broadcasted = false;
S
ShenLiang 已提交
52

53 54 55 56 57
  if (ndims_x == 1) {
    dims_x.insert(dims_x.begin(), 1);
    ndims_x = 2;
    x_broadcasted = true;
  }
S
ShenLiang 已提交
58

59 60 61 62 63
  if (ndims_y == 1) {
    dims_y.push_back(1);
    ndims_y = 2;
    y_broadcasted = true;
  }
64

65 66 67 68 69 70 71 72 73 74 75
  size_t M, N;
  if (trans_x) {
    M = dims_x[ndims_x - 1];
  } else {
    M = dims_x[ndims_x - 2];
  }
  if (trans_y) {
    N = dims_y[ndims_y - 2];
  } else {
    N = dims_y[ndims_y - 1];
  }
76

77 78 79 80 81 82 83 84 85
  std::vector<int64_t> new_dims;
  if (ndims_x > ndims_y) {
    new_dims.assign(dims_x.begin(), dims_x.end() - 2);
  } else if (ndims_x < ndims_y) {
    new_dims.assign(dims_y.begin(), dims_y.end() - 2);
  } else {
    new_dims.reserve(ndims_x);
    for (size_t i = 0; i < ndims_x - 2; ++i) {
      new_dims.push_back(std::max(dims_x[i], dims_y[i]));
86
    }
S
ShenLiang 已提交
87
  }
88 89 90 91 92 93 94 95
  if (!x_broadcasted) {
    new_dims.push_back(M);
  }
  if (!y_broadcasted) {
    new_dims.push_back(N);
  }
  if (x_broadcasted && y_broadcasted) {
    new_dims.push_back(1);
96 97
  }

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
  ctx->SetOutputDim("Out", phi::make_ddim(new_dims));
  ctx->ShareLoD("X", "Out");
}

phi::KernelKey MatMulV2Op::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  auto input_data_type =
      OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
  return phi::KernelKey(input_data_type, ctx.GetPlace());
}

phi::KernelKey MatMulV2Op::GetKernelTypeForVar(
    const std::string& var_name,
    const phi::DenseTensor& tensor,
    const phi::KernelKey& expected_kernel_type) const {
  if (framework::IsComplexType(expected_kernel_type.dtype())) {
    // only promote inputs’s types when contains complex input
    return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
  } else {
117
#ifdef PADDLE_WITH_MKLDNN
118 119 120 121 122 123
    // When matmul_v2 is first oneDNN op in a chain (there was some non oneDNN
    // op previously) then we also need to rotate shape NHWC -> NCWH
    if ((expected_kernel_type.layout() == phi::DataLayout::ONEDNN) &&
        (tensor.layout() != phi::DataLayout::ONEDNN) &&
        phi::OneDNNContext::tls().get_cur_paddle_data_layout() ==
            phi::DataLayout::kNHWC) {
124
      return phi::KernelKey(
125
          tensor.place(), phi::DataLayout::kNHWC, expected_kernel_type.dtype());
126
    }
127 128 129
#endif
    return phi::KernelKey(
        tensor.place(), tensor.layout(), expected_kernel_type.dtype());
S
ShenLiang 已提交
130
  }
131
}
S
ShenLiang 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146
void MatMulV2OpMaker::Make() {
  AddInput("X", "tensor of shape (d0, d1 ... M, K)");
  AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
  AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
  AddAttr<bool>("trans_x",
                "Set true to transpose the last two dimensions of X before "
                "doing multiplication")
      .SetDefault(false);
  AddAttr<bool>("trans_y",
                "Set true to transpose the last two dimensions of Y before "
                "doing multiplication")
      .SetDefault(false);
  AddComment(
      R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K),
147
        B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)).
S
ShenLiang 已提交
148 149 150
        In addition, it also follows the broadcast rule which is similar as
        numpy.matmul.
)DOC");
151 152
  Apply();
}
S
ShenLiang 已提交
153 154 155 156 157 158

class MatMulV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
159
  phi::KernelKey GetExpectedKernelType(
C
chentianyu03 已提交
160
      const framework::ExecutionContext& ctx) const override {
161 162
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
163
    return phi::KernelKey(input_data_type, ctx.GetPlace());
C
chentianyu03 已提交
164 165
  }

166
  phi::KernelKey GetKernelTypeForVar(
167
      const std::string& var_name,
168
      const phi::DenseTensor& tensor,
169 170
      const phi::KernelKey& expected_kernel_type) const override {
    if (framework::IsComplexType(expected_kernel_type.dtype())) {
C
chentianyu03 已提交
171
      // only promote inputs’s types when contains complex input
172
      return phi::KernelKey(tensor.place(), tensor.layout(), tensor.dtype());
C
chentianyu03 已提交
173
    } else {
174 175
      return phi::KernelKey(
          tensor.place(), tensor.layout(), expected_kernel_type.dtype());
C
chentianyu03 已提交
176 177
    }
  }
S
ShenLiang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
};

template <typename T>
class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    op->SetAttrMap(this->Attrs());
  }
};

W
wawltor 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
class MatMulV2OpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
    OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul");
    OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul");
    OP_INOUT_CHECK(context->HasInput("DOut"), "Input", "DOut", "matmul");

    if (context->HasOutput("DX") && context->HasInput("DDY")) {
      context->ShareDim("X", "DX");
    }

    if (context->HasOutput("DY") && context->HasInput("DDX")) {
      context->ShareDim("Y", "DY");
    }

    if (context->HasOutput("DDOut") &&
        (context->HasInput("DDY") || context->HasInput("DDX"))) {
      context->ShareDim("DOut", "DDOut");
    }
  }
};

template <typename T>
class MatMulV2OpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_grad_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));

    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddy = this->OutputGrad(framework::GradVarName("Y"));

    if (!ddx.empty() || !ddy.empty()) {
      op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
    }
    op->SetOutput("DX",
                  ddy.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    op->SetOutput("DY",
                  ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));

    op->SetAttrMap(this->Attrs());
  }
};
250 251 252 253 254 255

class MatMulCompositeDoubleGradOpMaker : public prim::CompositeGradOpMakerBase {
 public:
  using prim::CompositeGradOpMakerBase::CompositeGradOpMakerBase;
  void Apply() override {
    // get inputs
256 257 258
    paddle::Tensor x = this->GetSingleForwardInput("X");
    paddle::Tensor y = this->GetSingleForwardInput("Y");
    paddle::Tensor dout =
259
        this->GetSingleForwardInput(framework::GradVarName("Out"));
260
    paddle::optional<paddle::Tensor> ddx =
261
        this->GetOptionalSingleOutputGrad(framework::GradVarName("X"));
262
    paddle::optional<paddle::Tensor> ddy =
263 264 265 266 267 268 269
        this->GetOptionalSingleOutputGrad(framework::GradVarName("Y"));

    // get attr
    bool trans_x = this->Attr<bool>("trans_x");
    bool trans_y = this->Attr<bool>("trans_y");

    // get output
270 271 272
    paddle::Tensor x_grad_t = this->GetSingleInputGrad("X");
    paddle::Tensor y_grad_t = this->GetSingleInputGrad("Y");
    paddle::Tensor grad_out_grad_t =
273 274 275
        this->GetSingleInputGrad(framework::GradVarName("Out"));

    // get output ptr
276 277 278
    paddle::Tensor* x_grad = this->GetOutputPtr(&x_grad_t);
    paddle::Tensor* y_grad = this->GetOutputPtr(&y_grad_t);
    paddle::Tensor* grad_out_grad = this->GetOutputPtr(&grad_out_grad_t);
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
    // get output orginal name
    std::string x_grad_name = this->GetOutputName(x_grad_t);
    std::string y_grad_name = this->GetOutputName(y_grad_t);
    std::string grad_out_grad_name = this->GetOutputName(grad_out_grad_t);
    VLOG(3) << "Runing matmul_double_grad composite func";
    // call composite backward func
    prim::matmul_double_grad<prim::DescTensor>(
        x, y, dout, ddx, ddy, trans_x, trans_y, x_grad, y_grad, grad_out_grad);
    // recover output name
    this->RecoverOutputName(x_grad_t, x_grad_name);
    this->RecoverOutputName(y_grad_t, y_grad_name);
    this->RecoverOutputName(grad_out_grad_t, grad_out_grad_name);
  }
};

294 295 296 297 298 299
class MatMulV2OpTripleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* context) const override {
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    OP_INOUT_CHECK(
        context->HasInput("X"), "Input", "X", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("Y"), "Input", "Y", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DOut"), "Input", "DOut", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DDX"), "Input", "DDX", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("DDY"), "Input", "DDY", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("D_DX"), "Input", "D_DX", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(
        context->HasInput("D_DY"), "Input", "D_DY", "matmul_v2_triple_grad");
    OP_INOUT_CHECK(context->HasInput("D_DDOut"),
                   "Input",
                   "D_DDOut",
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365
                   "matmul_v2_triple_grad");

    if (context->HasOutput("D_X_out")) {
      context->ShareDim("X", "D_X_out");
    }
    if (context->HasOutput("D_Y_out")) {
      context->ShareDim("Y", "D_Y_out");
    }
    if (context->HasOutput("D_DOut_out")) {
      context->ShareDim("DOut", "D_DOut_out");
    }
    if (context->HasOutput("D_DDX_out")) {
      context->ShareDim("X", "D_DDX_out");
    }
    if (context->HasOutput("D_DDY_out")) {
      context->ShareDim("Y", "D_DDY_out");
    }
  }
};

template <typename T>
class MatMulV2OpTripleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType("matmul_v2_triple_grad");

    // get input from double grad
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Input("Y"));
    op->SetInput("DOut", this->Input("DOut"));
    op->SetInput("DDX", this->Input("DDX"));
    op->SetInput("DDY", this->Input("DDY"));
    op->SetInput("D_DX", this->OutputGrad("DX"));
    op->SetInput("D_DY", this->OutputGrad("DY"));
    op->SetInput("D_DDOut", this->OutputGrad("DDOut"));

    // set outputs
    op->SetOutput("D_X_out", this->InputGrad("X"));
    op->SetOutput("D_Y_out", this->InputGrad("Y"));
    op->SetOutput("D_DOut_out", this->InputGrad("DOut"));
    op->SetOutput("D_DDX_out", this->InputGrad("DDX"));
    op->SetOutput("D_DDY_out", this->InputGrad("DDY"));

    op->SetAttrMap(this->Attrs());
  }
};
S
ShenLiang 已提交
366 367 368 369
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
370 371 372
REGISTER_OPERATOR(matmul_v2,
                  ops::MatMulV2Op,
                  ops::MatMulV2OpMaker,
S
ShenLiang 已提交
373 374 375
                  ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);

376 377
DECLARE_INFER_SHAPE_FUNCTOR(matmul_v2_grad,
                            MatMulV2GradInferShapeFunctor,
378
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
379 380
REGISTER_OPERATOR(matmul_v2_grad,
                  ops::MatMulV2OpGrad,
W
wawltor 已提交
381
                  ops::MatMulV2OpDoubleGradMaker<paddle::framework::OpDesc>,
382
                  ops::MatMulV2OpDoubleGradMaker<paddle::imperative::OpBase>,
383
                  ops::MatMulCompositeDoubleGradOpMaker,
384
                  MatMulV2GradInferShapeFunctor);
W
wawltor 已提交
385

386 387
REGISTER_OPERATOR(matmul_v2_grad_grad,
                  ops::MatMulV2OpDoubleGrad,
388 389 390 391
                  ops::MatMulV2OpTripleGradMaker<paddle::framework::OpDesc>,
                  ops::MatMulV2OpTripleGradMaker<paddle::imperative::OpBase>);

REGISTER_OPERATOR(matmul_v2_triple_grad, ops::MatMulV2OpTripleGrad);